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A Prototype Vision System for Analyzing
CT Imagery of Hardwood Logs

Dongping Zhu, Member, IEEE, Richard W. Conners, Member, IEEE, Daniel L. Schmoldt, and Philip A. Araman

Abstract— To fully optimize the value of material produced
from a hardwoed log requires information about type and loca-
tion of internal defects in the log. This paper describes a prototype
vision system that automatically locates and identifies certain
classes of defects in hardwood logs. This system uses computer
tomograph (CT) imagery. The system uses a number of process-
ing steps. First, an adaptive filter smoothes each 2-Dimensional
CT image to eliminate annual ring structure while preserving
other image details. Second, a multi-threshold 2-D segmentation
scheme is used to separate potential defect areas from areas of
clear wood on each CT image. This differentiation is based on
density variations and the fact that most of the log is clear wood.
Third, by generalizing 8-neighbor connectivity to 3-dimensions,
sequences of consecutive, segmented 2-D slices are then analyzed
to find connected 3-D regions. Because of the natural variability
of wood and the variety of ways defects manifest themselves in
logs, there is considerable imprecision and ambiguity in assigning
labels to these 3-D regions. One consequence of this variability is
that exact 3-D geometric models seemingly cannot be used in the
recognition process. Therefore, a set of basic features are defined
to capture basic 3-D characteristics of wood defects. For 3-D
object (defect) recognition, a set of hypothesis tests are employed
that use this set of features. To further help cope with the above
mentioned variability, the Dempster-Shafer theory of evidential
reasoning is used to classify defect objects. Results of preliminary
experiments employing two very different types of hardwood logs
are given. The logs used are southern red oak, a group of ring
porous species, and yellow poplar, a diffuse porous species. These
two log types represent the two extremes in hardwood anatomy.
Initial experimental results demonstrate the feasibility of the
proposed vision system.

1. INTRODUCTION

TEADILY increasing costs of raw materials and labor in

the manufacture of lumber and veneer demand improved
methods for processing wood. Because the costs of logs can
constitute up to 75% of the production cost in US sawmills, op-
timizing wood conversion into useful products is an economic
necessity [6], [17], [33], [38], [42]. Automated log inspection
systems can potentially increase mill productivity and improve
the quality of the material derived from logs. The value of
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hardwood lumber cut from a log depends on the lumber’s
quality which in turn depends on the size and number of clear
areas on a board’s surface. It therefore seems reasonable to
suppose that if one can locate and identify the internal defects
in a log prior to its breakdowninto lumber, one should be able
to formulate a method for cutting the log into lumber that has
the highest possible value.

A defect in wood is any feature that lowers its market
value; wood defects, such as knots, holes, stains, and decay,
all affect the grade of lumber. The fewer defects a piece of
lumber has, the higher is its grade. Numerous studies suggest
that at least 10 to 21% improvement in lumber value can
result from a well-chosen breakdown strategy [22], [27], [33].
Currently, log inspection is.performed by human experts,
but their performance is quite limited. Selecting the best
log breakdown strategy is a difficult task that calls for the
application of more quantitative methods. While the work in
[11], [19] represents an important step toward this goal, no
one has attempted to create a general-purpose machine vision
system for the automated analysis of log images.

This work aims to demonstrate the feasibility of auto-
matically inspecting hardwood logs for a subset of defects
using a prototype vision system. Computer tomography (CT)
enables one to detect a wide range of wood defects, in-
cluding knots, splits, decays, bark, voids, holes, and etc.
[11, [37], [40]. In this study, however, a limited number
of wood defects, such as knots, decay, and bark, could be
used, due to limited log data available. The prototype system
consists of 3 components: (1) a data acquisition unit (e.g.,
CT scanner), (2) an image segmentation module, and (3)
a scene analysis module. Nevertheless, the work described
here does not address the collection of images, but focuses
instead on computer interpretation of acquired CT images.
Section II reviews related work on automated wood inspection.
Section III describes the segmentation module and Section IV
presents the scene analysis module. In Section V we offer some
experimental results from the application of the prototype
vision system. Finally, Section VI provides conclusions, and
proposes future research directions.

II. PROBLEM BACKGROUND

A. Wood Image Analysis

In recent years, much research on hardwood timber pro-
cessing has been focused on two closely related areas, optimal
breakdown strategy and log scanning. To better utilize knowl-
edge about internal defects in log scanning, some researchers
have examined optimal breakdown strategies {27], [33]. Most
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of the efforts to date have involved computer simulations to
evaluate increased value recovery from optimized breakdown.
Little has been done, however, to integrate optimal breakdown
and internal imaging of logs by analyzing scanned images for
optimal cut-up decisions.

While attempts are being made to find new and better
sawing patterns, during the last 10 years some computer-aided
sawing systems have been introduced into sawmills. Generally,
these systems try to estimate the external shape of logs using
data from a set of light beams and photo-sensors, or from a
close circuit video camera. Because these systems can measure
a log’s shape more accurately than a human operator, to some
extent they are able to improve volume yield. These systems,
however, do not optimize value yield from logs, because value
yield is ciosely tied to the location of defects on sawn products,
which external scanning systems ignore.

Other log inspection techniques for measuring a log’s shape
have been tested. These include using ultrasound [2], laser
[21], optical scanners [24], and microwave {26}, and computed
tomograph [1], [8], [12], (13], [15], {31}, [32], [40]. For
example, an optical scanner is used in [24] to obtain the profile
of a log, and a parametric paraboloid function models the
internal projection of knots. Based on this mathematical model,
the location, shape, size, and orientation of knots are predicted.
The information obtained is then used in knot-related grading
rules so that an optimal log cutting pattern can be specified.
In an experiment performed using 10 test logs, this system
improved the value recovery by 7.5%.

Recent efforts to improve value recovery from sawlogs
have used new technologies, such as CT and magnetic res-
onance imaging (MRI) to obtain 3-D information about the
internal defects of sawlogs [371, [39]. An initial study of
CT’s feasibility for sawmill use evaluated its capability for
detecting knots [35]. A more complete evaluation of CT’s
usefulness for identifying defects was reported in {11] where 3
features were derived from the images and were then used in a
recognition process. These 3 features were: (1) pixel density,
(2) object shape, and (3) growth ring texture patterns. In its
decisionmaking stage, this vision system recognized knots
by pixel density and 2-D shape, clear wood by the circular
patterns of growth rings, decay by density and growth ring
patterns, and image background by density. This system was
able to successfully identify knots, decay, holes, and clear
wood using CT-scans of sawlogs.

The work in [11] represents the first attempt to automatically
classify internal wood structures by analyzing scanned data.
Not surprisingly, this study has several limitations. First, it was
not tested on log features other than those reported, e.g., bark
and compression wood. Second, the methods were only tested
on image samples from 3 softwood species. Hence, the robust-
ness of the system for hardwoods has not been established.
Third, no attempt was made to deal with the possible “noise”
problem inherent in CT imaging. For example, the unwanted
annual rings in log images, if not eliminated at an early stage,
could misguide the identification task. Furthermore, because
annual rings are present in most parts of a CT image, process-
ing them will significantly reduce vision system throughput.
Fourth, object identification was based on insufficient infor-
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mation to apply to a generalized vision system because 3-D
topological and geometric features were not utilized.

B. Knowledge-Based Vision in Wood Inspection

While no general method to automatically interpret log
CT images currently exists, progress has been made toward
machine vision systems for lumber inspection. A common
feature of these vision systems is that they combine com-
puted feature information with a reasoning process using
either texture-related. measures [7], decision trees [23], or
knowledge-based systems [6], [42]. Successful application of
machine vision systems to lumber quality inspection indicates
that their methods might also be adopted to the log inspection
problem if an appropriate imaging method is used.

Knowledge-based systems have been used successfully for
machine vision system applications. There are normally two
levels of information processing in industrial machine vision
systems: image segmentation and image interpretation. Image
segmentation separates regions of interest from the rest of
the image, while image interpretation labels image regions
by using both low-level information, i.e. transformed scan
data, and high-level, domain specific knowledge (often in
the form of heuristic production rules). Knowledge sources
extract image feature information from a subset of regions in
a segmented image, this can include spectral, texture, shape,
and spatial attributes of regions. Based on image feature infor-
mation, knowledge sources form opinions about the presence
or absence of objects they are capable of observing. Belief
about the identity of objects, based on these opinions, will be
imperfect, however. At best, such opinions can only be viewed
as evidence to suggest the presence or absence of semantically
meaningful entities in a particular scene of interest.

To represent uncertainty in expert systems, inexact rea-
soning methods are often used. In many circumstances, a
pure probabilistic-based approach to reasoning in complex
domains is overly restrictive. As a consequence, probabilistic
approaches are typically compromised by making ad hoc
modifications to Bayes' rule [18]. The Dempster-Shafer (D-
S) theory of evidence [9], [29], on the other hand, relaxes the
principle of the excluded middle used in probability theory.
In principle, it is a formal and uniform representation of
ignorance, and it can distinguish disbelief from belief.

Evidential reasoning based on Dempster’s rules [9] can be
used to combine evidence about an object that is collected
from different knowledge sources. It provides an intuitive
method for reasoning under uncertainty because, in this the-
ory, evidence that only partially favors a hypothesis is not
construed as also partially supporting its negation. This means,
belief in the negation of a hypothesis is treated independently
from belief in the hypothesis. D-S has been successfully
applied to uncertainty reasoning in knowledge-based machine
vision systems [6], [16]. The benefit of employing such
techniques is that a vision system is able to corfectly label a
significantly greater number of regions in an image, by using
previously unavailable information such as the amount of
ignorance or ambiguity that a label (classification) hypothesis
exhibits. In the context of industrial vision system applications,
this means that this method of inexact reasoning has the
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potential to produce more accurate inspection in an automated
environment.

Object recognition is the primary goal for many industrial
vision systems. One key issue that plagues object recognition
is dealing with the inherent uncertainty of data measurements
from real devices and real scenes. Most current methods are
suited to recognition tasks where objects have regular shapes
or they can be approximated by mathematically described
shapes, such as cylinders, spheres, or ellipsoids, or by physical
and anatomical models. In many real-world circumstances,
however, a recognition procedure must deal with objects
having complex shapes, for which exact geometric models are
difficult to obtain. Some authors [34] argue that contextual
information is central to solving it. Generally, information
content in 3-D is considerably richer than that in 2-D. Because
the 3-D shape of anatomic structures in a log may contain
correspondingly large amounts of information useful for even-
tual log sawing, it is advantageous to explore methods for
extraction and classification of information directly from the
3-D structures.

III. SEGMENTATION MODULE

Implementation of the segmentation module consists of 3
steps: (1) 2-D image segmentation of each CT slice to separate
potential defect areas from clear wood, (2) morphological
post-processing to remove spurious pixel clusters, and (3) 3-
D connected volume growing to produce 3-D representations
of potential defect areas. This module generates a 3-D image
that highlights all the connected volumes that might represent
defects. This image is passed to the scene analysis module for
object recognition.

A. A 3-D Adaptive Smoothing Scheme

Growth rings are wood that is laid down annually around
the stem of a tree in a radial fashion. They form a regular
pattern of concentric rings of alternating density levels. Fig. 1
(upper left and lower right) show two CT images from two
different red oak segments. On these images, the regular ring
structure and defects, such as knots, decay and bark, can be
clearly identified. As such, the growth rings obfuscate the
segmentation and differentiation of important structures within
a log. These annual rings not only adversely affect the quality
of image segmentation, but they also adversely affect the
object recognition task [41], making the analysis of log images
a difficult task. Therefore, an important problem is how to filter
out these rings while preserving other image details, e.g., small
splits and holes. In this work, we developed an adaptive filter
by extending the filter model proposed in [36]. In the following
mathematical derivations, it is assumed that subscripts ¢, 7, and
k are used to represent the z,y, and = coordinates of a 3-D
image. Then the observed image signal z; ; at (7,7, k) can
be expressed by the sum of two uncorrelated components: the
true signal u; jk, and a corrupting noise n;,;x with variance

o2, ie.,

Tigk = Uikt Nigke M

Filtering improves the signal-to-noise ratio at most points
of an image. However, in regions of heavy edges or texture,

Fig. 1.
oak: Original red oak image and its segmented version. Another original red
oak CT image and its segmented version.

(clockwise from upper left corner) Two sample CT images of red

filtering may degrade the signal more than it actually reduces
the noise. In this case, a compromise would be not to do
any filtering of the data. On the other hand, we may want to
filter nontextured or nonedged areas. Accordingly, to obtain
an optimal estimate, z; ; x, of the true image signal, u; ;. @
weighted sum of the observed signal, z;;x, and a restored
VETSION, ¥; j .k, 1S constructed by

Zigk = QijkTigk + bijkYik ()

with y; ; » defined as a convolution of z; ; » and h; ; x, where
hi j ., called an initial filter, is a space-invariant operator. Note
that a; ; x and b; ; x are the coefficients that are to be adjusted
so that: (1) for edge regions, the noisy observation z; ;x is
retained by down weighting y; ; , and (2) for nonedge regions,
Yi 5,k 1s retained by down weighting z; ; x-

It is noted that pixel z;;x on the kth slice is closely
correlated with those on the (k — 1)th and (k + 1)th slices
in a sequence of images. Hence, one way of improving
filter performance is to find the solution for a least square
problem defined in a finite 3-D volume. In solving this 3-D
problem, filter coefficients a; j x and b; ;  in (2) are computed
from image data in consecutive slices of an image sequence.
This extended 3-D filter also uses consecutive cross-sectional
images to perform the initial image restoration on the pixels
in a volume V. Operator h; ; x can be chosen as the averaging
filter as in [36], the 3-D Gaussian smoothing filter, or other
nonlinear filters [41].

To compute the optimum filter coefficients a; ; . and b; ; &, a
least squares criterion is introduced to minimize the quadratic
error over V

1
e%(a,b) = N Z (2 — Ui k)? (3)

T (i..k)EV
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where V is defined as a cubic volume with dimension D,,, and
N, is the number of pixels in thevolume V [41]. To find the
optimum a; j and b; ; &, let us assume, for the present, that
these two coefficients are constant over the volume V| though
later they are allowed to change at different spatial points. For
simplicity, the subscripts ¢, j, and & for all the variables will
be omitted in Equations 4-6. To retain the average intensity
at a given point (2,7, k), the constraint a + b = 1 is added.
This is equivalent to the constraint ‘

gla,y=a+b—-1=0 4)

that will be used in the minimization procedure.

Introducing a Lagrange multiplier A to minimize error
¢%(a,b) under the constraint g(a,b), we obtain the following
criterion

e{a,b,A) = €?(a,b) + Ag(a,b). (5

Taking partial derivatives of e(a,b,A) with respect to
a,b and )\, and solving a set of simultaneous equations for
{a,b, A}, we have the following matrix equation

Sez Szy 1 a Suz
Syz Syy 1 b| = |Suy (6)
1 1 0 A 1

where terms with subscripts can be expressed by the following

general expression
D TigYiik

Lo i,7,k)EV
Sy = Saylis§, ) = 22O NG

Solving (6) we obtain the optimal solutions for o and b
defined by (5). The result is

(1-p)a?
P(Zu?vk)’

where the constant p is equal to A(0,0,0) when h; ; is an
averaging filter. P(%,7,k) is given by

P(ivjv k) = S(z—y)(z—y)(iajv k) >0 9

which is a local estimate of the variance of the difference
between the noisy and filtered signal that we refer to as the
residue. This is a particularly simple implementation of the
adaptive filter. Experiments [43] have indicated that the results
obtained from this filter are better than those from other filters
such as the o-filter [20], and 2-D adaptive filter [36].

a5k =1~ bijr=1—0ai;k )

B. Image Segmentation Method

Given the strong variation in wood density among different
types of defects and among different species of hardwood
logs [43], one or more fixed thresholds are not.appropriate
for segmenting a log CT image into distinctive regions. In
this study log images are thresholded on an slice-by-slice
basis, using an adaptive multi-thresholding scheme similar to
that in [11]. In this scheme, a histogram is first computed
from each filtered image slice, then it is smoothed with a
Gaussian function to eliminate spurious peaks. Thresholds are
computed based on this smoothed histogram. According to
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Fig. 2. A typical gray-level histogram of a CT log image with computed
thresholds T, 75,73 that can be used to separate CT image pixels into
decay, clearwood, and knots.

[43] a log image contains pixels representing background,
decay, splits, bark, knots, and clear wood. Because both bark
and knots can have similar CT-numbers, they are temporarily
treated like a single type of defect and will be separated by
the object recognition module. Accordingly, three thresholds
{T1,72,T3} are computed from the smoothed histogram
h(k) of an image. Fig. 2 shows a typical histogram of a CT
log image that has been smoothed. Threshold Ty is used to
separate pixels that likely represent air surrounding the log
or air that represents voids in the log. Note that since the
density of air does not change, Tj can be a fixed threshold.
Thresholds 77 and 75 are used to separate pixels of likely
decay and. splits. Finally, thresholds 77 and 75 are used to
separate pixels of likely bark and knots. These three threshold
values are determined as follows:

1) Ty: Ty < Ty < T — D, where T and d are adjustable
constants, e.g., Tp = 400,d = 50.

2) Ty = k, where k is defined by h”(k) = max h"(i) for
all 7, i.e., T3 is the location where the second derivative
of h(i) has a global maximum.

3) T3 = i, where 1 is the location of the last zero-crossing
of h'(k), the first derivative of h(k).

C. Morphological Post-Processing

Using the above thresholds, image segmentation produces
a numbeér of sizable, uniform 2-D areas that have jagged
boundaries. These regions correspond to true wood defects.
However, the segmentation also produces a small number of
smaller spurious defect areas of different sizes. Morphological
operations, such as erosion and dilation, are applied to a
segmented image slice to eliminate rugged boundaries and
spurious areas [42]. Let us denote a digital image by X, and a
structuring element by B that is defined over on a finite mask
Q. In image erosion, a structuring element B scans through
the image X in raster order, and it eliminates a pixel if none
of its neighboring pixels in (2 has the same gray level as
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Fig. 3.

(clockwise from upper left corner) Segmentation module operations:
Original red oak CT image; its segmented version; after image erosion, and
after image dilation.

it has. Whereas in image dilation, the gray levels of all the
neighboring pixels in {2 are changed to that of the center pixel.
These morphological masks B can be defined by a series of
windows of size N by N, with N = 3,5,7,---

In the prototype vision system, an image erosion operation
is first performed on a segmented image slice to remove those
small, spurious areas. Then an image dilation is performed
to restore those pixels of the real defect areas that may have
been eliminate by the erosion operation. These filtering seg-
mentation and erosion-dilation procedures produce a number
of uniform areas on each 2-D image. Fig. 3 demonstrates
these two image morphological operations on a red oak image
following segmentation. When consecutive image slices are
grouped together, corresponding areas on different image
slices are combined to form 3-D connected regions or volumes.
This grouping into volumes provides 3-D shape information
that is used by the defect recognition system to label each
of the volumes found. In this study, the 2-D version of
the connected component labeling (CCL) algorithm [30] was
modified to create a 3-D version, called 3-D connected volume
growing, to group together individual 2-D areas on consecutive
slices [41]. This grouping operation might create, however,
some small, spurious volumes which do not correspond to any
real defect object in a log. Therefore a volume thresholding
process is adopted whereby each 3-D volume is compared
against a preset value and all volumes with a number of pixels
less than this value are automatically eliminated.

IV. SCENE ANALYSIS MODULE

After segmentation and 3-D volume growing, features,
such as density, texture, geometric properties and geometrical
relationships, of internal objects are computed from the 3-
D imagery. These computed features are applied to defect
recognition in the scene analysis module. In this module,

inexact knowledge is manipulated using the Dempster-Shafer
model for reasoning under uncertainty, and the inference
engine is based on the theory of evidential reasoning. Log
CT images are rich in wood grain texture, which can aid the
recognition task; however, texture analysis for defect detection
is treated separately in [44].

In industrial automation, most current inspection methods
are based on exact information about the object, and they
tend to implement a simple form of the Bayesian discriminant
in their decision process. In most practical cases, however,
observations about objects are unreliable and incomplete,
representation of objects is ambiguous, measurement can be
imprecise, and propositions about hypotheses based on a col-
lection of evidence are uncertain. Given the CT characteristics
of wood defects [43], statistical or analytical classification
procedures alone are difficult to successfully implement. Less
exacting methods are required in this scene analysis problem
[3], [28). To mitigate these difficulties, we have applied a
heuristic, knowledge-based recognition system, as described in
[5] for identifying surface defects in sawn lumber. That system
has been successful in recognizing several types of defects on
a large number of boards from a variety of different hardwood
species. It effectively combines domain-independent, low-level
image features with domain-specific heuristics to create a
general recognition scheme.

The scene analysis module is comprised of the following
three steps: (1) compute image features from connected vol-
umes produced by the segmentation module, (2) apply a set of
hypothesis tests to each object using the D-S model, and (3)
perform object recognition by evidential reasoning.

A. The Basic Feature Set for Wood Defect Identification

After the 3-D connected volume growing operation, the
scene analysis module extracts a vector of basic features
from each of the 3-D connected volumes. The set of basic
features captures intensity- ( i.e., density-) and orientation-
related properties of the various internal log defects, and,
hence, are features that can be used to label the 3-D volumes.
Let us denote an original 3-D CT image by G(z,y,z). The
pixels of G(z,y, z) have intensities ranging from 0 to 2047.
Let O(z,y, z) denote a 3-D connected volume found by the
connected volume growing operation. O(z,y, z) has the same
spatial dimensions as G(z,y, z) but if O(z,y,2) is the kth
connected volume found then O(z,y,z) = k when (z,y, z)
is in this connected volume and O(z,y,2) = 0 otherwise.
Also let the number of pixels in this connected volume, i.e.,
the number of pixels where O(z,y,2) = k, be denoted by
the integer V. After a gray level conversion, each connected
volume O(z, y, z) can be decomposed into N binary functions
bi{z,y),s = 1,2,---, N, where N is the number of slices
spanned by the object in the z direction. The values of

-these binary functions b;(z,y) are 1 for (z,y) € R;, and 0

elsewhere, where R; is the 2-D cross section of the connected
volume in slice <. From each connected volume O(z,y, z), a
set of 7 basic features f;(1 = 1,2,---7) are extracted. These
basic features are:

Average Angle (9): The average angle is defined as the
average of N — 1 angles 6;(i = 1,2,---,N — 1), where 6, is
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spanned by the z-y plane and a line connecting the centroids
of two adjacent slices, expressed as

1 = dz
d = No1 ; #; where 6; = arctan (E) (10)
where dz is the slice spacing (which is 8 mm for the CT
scanner used in this work), and D, is the shift in centroid on
the z-y plane from slice ¢ to slice ¢ + 1. For the two centroids
at (z;,y:) and (@41, ¥i+1) on the two slices, D; is computed
as the distance D; = /(zit1 — 7:)% + (Yir1 — ¥:)2-

Compactness (C): The compactness of a 3-D connected
volume is defined as the ratio of its surface area (S) to its
volume (V), ie,

S
C=v

where S is the number of boundary pixels and where V is
defined as above.

Average Elongation (E): The average elongation of a 3-
D connected volume is the average of the 2-D elongations,
E;,i = 1,---, N, of the corresponding N planer regions in
the object, expressed by .

1mn

1
E=_ ;
N ¢ B
=1
where
\/Mg‘o(i) - MO’Q(Z.) + 4M1’1(i)
E. = (12)
* Mo.o(7)

and

M (1) = Z (z —20)™(y — y0)"bi(z,y)
(z.y)
form,n =10,1,2

where M, (2) is the mnth order central moment about the
centroid (g, yo) of the ith binary function b;(z,y).

Area_Variation (A): This shape-related feature is the nor-
malized variance of the area values of the IV slices belonging
to the 3-D connected volume, and it is defined as

_ VarSaea
"~ A9 Sarea

where Var_Sarea and Avg.S,ce. are respectively the variance
and average of the area values that are computed from these
N slices.

Object Intensiry Ave (p): This feature is defined as the av-
erage pixel intensity of a connected volume

1
p= _VT Z G(IL‘,y,Z).
(z,y,2)€0

(13)

Object Intensity Var (s): This intensity-related feature is
defined as the standard deviation of the pixel intensity (CT
number) of a connected volume, and it is calculated by

> (Glz,y,2) =)
5= (z,y,z)€O = . (15)

(14)
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Moment_of Inertia (I): This shape-related feature is calcu-
lated as follows:

2

(z,y,2) €0

I= [(z — z0)? + (¥ - 10)?]|G(z,y, 2). (16)

where g and 1o are the z and y coordinates of the centroid
of the 3-D object.

B. Imperfect Knowledge Representation: The D-S Model

Defect recognition is conducted by passing each connected
volume through a number of hypothesis tests that are imple-
mented as production rules (IF-THEN statements). The basic
features f;,i =1,2,---,7, defined in the previous section, are
used in the test set IT of the scene analysis module. There are
7 tests in II, and they are denoted by

Ilg, Average_Angle

U Compactess

I, Average_Elongation

1I A» Area\_Variation

My, Object_Intensity_Ave

Ilg, Objech\_Intensity_Var

II I Moment_of _Inertia.

These tests II are applied in different combinations to the
various 3-D connected volumes. The output from each of these
tests provides the vision system partial evidence to support
or refute a hypothesis about the identity of a volume. Based
on partial evidence, the vision system arrives at a consensus-a
final decision on the identity of the defect, by using Dempster’s
rule of evidence combination [9].

In the D-S theory of evidence, a frame of discernment ©
is defined as a finite set of mutually exclusive hypotheses.
For a specific task, a set is a frame of discernment, if (1) its
elements are interpreted as all possible answers to a question,
and (2) exactly one of these elements is the correct answer. For
the wood defect inspection problem under study, all possible
answers to the question “what is the identity of this 3-D
connected volume?” can be enumerated. The possible answers
are: knot, split, pith, bark, stain, decay, and hole. It is noted
that clear wood is not included in the frame of discernment
because it can be readily classified by its volume, which is
much larger than the volumes of any defects. Therefore, the
frame of discernment in this case is

© = {knot, split, pith, stain, decay, hole}. an

Any subset X of ©,X C O, is a hypothesis about the
answer to the question, i.e., about the identity of a connected
volume (defect). For instance, when applied to a connected
volume some of the tests I1; generate evidence that the identity
of the object could be {knot}, {decay}, or {decay} U {knot}.

Note that the 3-D connected volume’s identity could be ei-
ther knot or decay based on partial information extracted from
the volume. In Bayesian reasoning, the posterior probability
changes as evidence is acquired [10]. Likewise, in D-S theory,
the belief in evidence may vary. It is customary in D-S theory
to think about the degree of belief in evidence as analogous to
the mass of a physical object, i.e., the mass of evidence that
supports a belief. The evidence measure, symbolized by the
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letter m, is analogous to the amount of mass. Associated with
each piece of evidence is a basic probability assignment (bpa),
denoted as function m(X), that represents the impact of the
evidence on the subsets of ©, i.e., the probability assigned
to the subset X. The quantity m(X) can be viewed as the
portion of total belief assigned exactly to X. The function
m(X) maps the power set of ©(2°) to values between 0 and
1. This mapping is formally expressed as

m: P(®) — [0,1]. (18)

According to the D-S theory, the bpa must satisfy the
following two properties:

1) the basic probability assignment of a null event & 1s 0,
m(&) = 0; and

2) the sum of the bpa’s for all subsets of © must be 1.

D-S theory does not force belief to be assigned to ignorance
or refutation of a hypothesis. Instead, the belief or mass
determined by the bpa mapping function m(X) is assigned
only to those subsets of the frame of discernment ©, called
focal elements of ©, to which one wishes to assign nonzero
belief. Any belief that is not assigned to a specific subset is
considered no belief or nonbelief and is just associated with ©.
Belief that refutes a hypothesis is disbelief, which is distinct
from nonbelief.

In our scene analysis module, each of the seven tests in
the test set Il = Iy, o Hp, 1 4,11,,Ils, 11y maps the
evidence that is extracted from the detected objects into a
bpam;(-), a set of discrete mass values between 0 and 1, ie.,

mi(X) = [0,1] for any X C O, 1=1,2,---,7. (19)

where m;(-) could be replaced by one of the bpa mapping
functions {me(-), ma(-), mE(), ma(), mu(), mao(-),
my(-)}, depending on the particular test used. In general, each
test IT; is a function of a measurement made on the object (by
the basic feature f;) and a parameter vector T;, ie.

I, = gi(fi, T).

The parameter vectors T; consist of a set of thresholding
values that represent delimiting points for different ranges
of the g; functions. These values are determined either from
training examples in an image data base, or by experts in the
field of hardwood log grading.

In the knowledge base, the bpa’s are implemented as a set
of discrete table look-up functions embedded in the vision
system. Evidential strengths are extracted by consulting these
look-up tables. For instance, the two tests that are designed
to hypothesize knots are the Average Angle test Il and the
Area_Variation test I 4. Associated with these two tests are
two evidence mapping functions, me(-) and m 4(-), together
with the corresponding parameters te and t 4. These two bpa
mapping functions are defined respectively by

(20)

bpa Mapping Function me(-) by Test I1g:

if (To > to)
0.9X = {knot}
me(X) =< 0.06X = {decay}
0.05X = {6}

else
[ 0-1X = {knot)
me(X) = ¢ 0.6X = {bark} U {decay}
1 0.3X = {©}
bpa Mapping Function m 4(-) by Test I14:
if (Tqa >ta)
_ J 09X = {knot}
ma(X) = {0.1X = {0}
else

ma(X) = { 06X = flark) U {docay)

The bpa’s for other tests all have the format similar to the
above examples [43].

C. Object Recognition by Evidential Reasoning

As stated above, there are seven tests that target differ-
ent types of hardwood log defects. For example, the Aver-
age\ Angle test Ilg is designed to inspect knots, and the
Compactness test 1y detects pith, and so forth. To recognize a
candidate object with minimal computation, our vision system
employs a focus of attention mechanism. For each object pro-
duced by the segmentation module, the Object Intensity_Ave
test I, is applied first. The purpose of this test is to coarsely
divide the clear wood and defects into 3 groups of candidate
objects according to their CT-numbers: Group 1—knots and
bark with the highest CT numbers, Group 2—<clear wood, de-
cay and sta n with medium CT numbers, and Group 3—splits,
holes and pith with the lowest CT numbers. This division
into groups does not alleviate the problem of distinguishing
between group members. For example, knots may have the
same average CT-number as bark, and stain may have the
same CT-number as clear wood. Nevertheless, this test does
provide a valuable, initial classification.

Next, a subset of II is applied to objects belonging to one of
the 3 groups of candidate objects. Responses to each of these
tests provide partial evidence (also called evidence strength)
to different hypotheses about the identity of objects. Note that
results of tests from II may logically conflict, but others may
verify a hypothesis. D-S theory selects a belief function that
is able to synthesize all partial knowledge and to achieve a
multi-criteria optimization. Evidence provided by each test II;
is represented as a bpa over a hypothesis space spanned by ©.
An individual hypothesis, such as X = {the connected volume
is a knot} is supported or refuted depending on the response of
a connected volume to its corresponding tests. Each such test
II; merely contributes to the overall support, and the effect of
II; on a hypothesis is determined by its evidential strength or
degree of confirmation. An inference network that propagates
evidence strength can then be constructed using Dempster’s
rule of combination [9].

Let m; and my be the bpa of two independent pieces of
evidence obtained by applying two tests II;, and Il to one
object. Also let X and Y denote any two subsets of the frame
of discernment ®,X C ©, and Y C ©. We denote m(Z) as
a new belief function that is obtained by synthesizing the two
pieces of partial evidence m1(X) and mo(Y) from these two
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independent tests. Because Dempster’s rule of combination
is commutative and associative, m1(X) and mo(Y) can be
combined regardless of order. calculated Using Dempster’s
rule of combination, the new bpa m(Z), for any Z C ©, can
be given by

K my(X)mo(Y) if Z#9Y
m(Z) :{ anyjzz H{&)ma(Y) * @D
ifZ =0
where K is a normalization factor [18]
1
K= (22)
1= > m(X)ma(Y)

XnY=g

When there are more than two tests, the above rule of
evidence combination still can be used. Each time a pair of
m;’s is combined, the resulting bpa is combined with the bpa
generated by the next test. The same procedure can be applied
N — 1 times until all Nbpa’s have been combined.

At the final stage of reasoning, a single hypothesis estab-
lishes defect identity, if and only if its belief function has a
maximum value that is greater than Tg, a threshold specified
in the knowledge base. The connected volume is recognized as
defect type 1 if the discrete value of the combined bpa m(X;)
is maximum and it is above the threshold Tg.

Due to the limited number of log images available, the
actual frame of discernment © in this study is smaller than
that given in (17). It consists of a finite number of exhaustive
and mutually exclusive subsets, each of which is one of the
following hypotheses: (1) {An object is a knot}, denoted as
{K}, (2) {An object is decay, i.e. “rot”}, denoted as { R}, and
(3) {An object is bark}, denoted as {B}.

In experiments, the threshold vectors T; associated with
each test II; are, at present, determined by observation. In
addition, the threshold value T, which is used to select a
single hypothesis from final evidence strengths, is specified
in the knowledge base, and it is set to T = 0.5. This
means, when belief for a hypothesis is maximum among all
hypotheses and is greater than or equal to 0.5, that hypothesis
is selected. Once the identity of each defect in a log has
been determined by this scene analysis module, this identity
information, along with each defect’s location, size, density
and minimum bounding volume, can be output to a data file.
This defect information could then be used as input to software
that calculates the best cutting pattern for the log. In a further
stage of sawmill automation, this cutting pattern, also in the
form of a data file, could be passed to a controller unit, that
would automate the necessary positioning operations at the
headrig to faithfully execute the chosen sawing pattern.

V. RESULTS

One segment from a red oak log and one segment from
a yellow poplar log were selected as the test set. This test
set consists of 2 sequences of yellow poplar images and 3
sequences of red oak images, with each sequence having 10
to 20 CT slices. They contains the following defects: four
bark regions, six knot regions and two decay regions. Since
there are three types of defects available in the test set, only
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Fig. 4. (clockwise from upper left comer) Four consecutive CT slices of a
red oak log.

four tests II,,1ls,If, and II 4 were used. However, when
additional image data becomes available, the remaining three
tests (or other new tests) can be added easily, making the scene
analysis module more reliable. Experimental results from one
of the image sequences in the test set are described below.

Figs. 4-7 illustrate the object recognition procedure on four
consecutive slices of a red oak log. The original CT imagery
appears in Fig. 4. Fig. 5 contains the segmentation results
for the corresponding images and Fig. 6 presents the results
of 3-D volume growing within 2-D images. Potential defect
objects are distinguished from clear wood and are represented
by different shading. Although the object near the log center
has been segmented into several pieces, connected component
labeling organizes the pieces into one object.

We will use this example to demonstrate how bpa’s are
combined to arrive at the labeling for the objects in Fig. 7.
Let us consider the three bpa’s my(-), m4(-) and mg(-) after
applying three tests II;,II4 and Ils to the object near the
center of the log segment in Fig. 4. First, this object was
categorized as a group [ object (knot or bark) by the focus
of attention mechanism, i.e., the Object_Intensity_Ave test I1,,.
Then three additional tests I, 114 and ITs were applied. The
three bpa’smy(-), m 4(-) and me(-) associated with these three
tests are implemented as discrete table look-up functions that
are listed in Table I, where letters K, B, and R represent
knot, bark, and decay (rot) respectively. Thresholding values
associated with these three tests are ty,f4 and ts. Using
log images available from the data base, these thresholds
were determined to be ty = 100,t4 = 50, and e = 15,
respectively. For object recognition, the inference engine first
propagated the evidence by combining together the two bpa’s,
mr{-) and m4(-), into a new bpa denoted by mr.4(-), which
is listed in Table I.

Then, mra(-) was combined with me(-), resulting in a
new bpa function, myae(-), as shown in Table I. The final
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(© (@

Fig. 5. The segmentation results of the of the red oak images in Fig. 4,
showing the segmented version of the corresponding images in in Fig. 4.

Fig. 6. Results of 3-D volume growing applied to the images in Fig. 5,.
Note that each object assigned a distinct identification number, distinguished
by different shading. .

bpa for the hypothesis knot (K) has the maximum evidence
strength (0.838) which is greater than the preset threshold
value T = 0.5. This hypothesis is accepted and the vision
system correctly identifies the object near the log center as
a knot (K). Note that, if only partial evidence (from two
tests II; and I14) were used in the decision-making process,
the system would have incorrectly hypothesized the object to
be bark (B), since the hypothesis of bark has the maximum
evidence strength (0.48) in mj(-) given in Table 1. Because

slice g slice 2

slice 3 slice 4
Fig. 7. Object recognition results obtained from the data shown in Fig. 6.
TABLE 1
VALUES OF THE VARIOUS bpa FUNCTIONS THAT WERE
CALCULATED USING THE EXAMPLE IN THE TEXT
{B) (K} {R} {RB} {KB) {e}
m(.) 0.80 0.20
my(.) 0.60 0.40
me(.) 0.90 0.05 0.05
mul.) 0.48 0.12 0.32 0.08
Mol 0.057 0.838 0.024 0.014 0.038 0.009

the strength value of m4(-) would not surpass the threshold,
however, it would not lead to an incorrect identification in this
case. The same procedure of evidence pooling was applied to
the thin object on the boundary of the log segment (Fig. 6),
and this defect was correctly classified as bark (B). Complete
recognition results for this series of images appear in Fig. 7.

VI. CONCLUSIONS

This paper describes the software components of a prototype
vision system for hardwood log inspection that uses CT
imagery. To efficiently separate defects from clear wood, an
adaptive filter eliminates annual rings in CT images while
preserving important details. Images are segmented on a slice-
by-slice basis using a dynamic multi-thresholding scheme.
Connected volume growing generates 3-D connected volumes
from the 2-D segmented cross-sections. A knowledge-based
approach classifies 3-D objects using both domain-independe
t features and domain dependent heuristics. It uses a set of
basic features that are incorporated into hypothesis tests. To
cope with imprecision and uncertainty in representi g defect
information, the Dempster Shafer model was adopted for
inexact reasoning.
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Using a limited data set for two species of logs, the
proposed vision system seems able to recognize log defects
with irregular 3-D shapes. Experimental results indicate that
the image segmentation module can separate clear wood from
knots, splits, holes, decay, and bark. The scene analysis module
can recognize knots, decay, and bark. These methods seem to
be robust and species independent. Consequently, this work
demonstrates that a CT-based machine vision system can be
developed to locate and identify intemnal defects of hardwood
logs. 1t is possible that this general methodology could also
be used with other imaging modalities, such as MRI and
ultrasound, and in other industrial inspection applications by
modifying various features, thresholds, and tests.

It can be seen (Fig. 1) that the filtering operation eliminates
log pith in the imagery. Because the prototype vision system
does not use pith to extract any information about internal
defects, its elimination does not impact recognition perfor-
mance. In [32] a different approach was used for Australian
hardwoods, where pith location was detected on the image and
used to calculate the percentage of heartwood in sawn timber.
Our system does not use pith for recognition because pith is
not always at the center of North American hardwoods. In
the absence of pith, however, computational methods such as
moment-based algorithms could be used to find the center of
inertia of a log regardless of the performance of the image
segmentation module.

Nevertheless, this prototype system has a number of sig-
nificant limitations and, clearly, further research is needed to
fully address the log inspection problem. First, as is apparent
from Fig. 6 and Fig. 7, more work needs to be done to
improve circumscription of defect boundaries. In some cases
segmentation has been too liberal and in other cases it has been
too conservative. Second, in addition to accuracy increases
for those defect types for which some competence already
exists, we must expand the system’s capabilities to other defect
types. Third, the system also needs testing on other species,
on logs of varying moisture content, and with higher-quality
logs containing smaller defects. Fourth, the existing algorithms
are computationally demanding, benchmark tests can be used
to determine how viable they are for eventual, reai-time
implementation. Finally, wood texture models were developed
by [44] and could be incorporated into a wood texture test for
use in the scene analysis module. The expectation is that a
texture test would provide valuable additional knowledge for
better discernment of defect types.

This vision system, based on CT imagery, is a first attempt at
automating internal characterization of logs. As nondestructive
evaluation (NDE) methods become economically practical
for the forest products manufacturing industry, the problem
of what to do with NDE data will become very important.
Systems like the one presented here will become obligatory if
NDE data are to be useful and their expense justified.
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