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Forest land managers and public agencies are
often faced with the task of allocating limited
funds to a number of competing investments
such as precommercial thinning, type conversion,
or timber stand improvement. 1f the only con-
straint is the amount of money, project selection
is straightforward. The ratio of the present value
of money received to money spent is calculated
for each project, the ratios are ranked, and proj-
ects are chosen by moving down the rankings
until the funds are exhausted (Lorie and Savage
1955).

When multiple constraints exist, linear pro-
gramming is needed. Weingartner (1963) ap-
plied mathematical programming to capital
budgeting including allocation of a fixed sum.
Two other studies (Teeguarden and Von Sperber
1968, Buongiorno and Teeguarden 1973) showed
that Douglas-fir reforestation projects could
best be selected by linear programming.

However, linear programming by itself lacks
a useful feature of simple ranking. Ranking pro-
vides a solution for all levels of funding; linear
programming gives a solution for only one. Other
constraints such as manpower, equipment, and
nursery capacity are usually known in advance,
but funding is different. Annual budgets may
be allocated at a different organization level.
Consequently, the exact amount is not known
far in advance and may change. A ranking of
projects would circumscribe this problem, if it
could be done under multiple constraints.

This paper describes a procedure for ranking
forestry investments that are bound by multiple
constraints. This procedure—which uses para-
metric linear programming-—combines the
advantages of simple ranking and linear pro-
gramming.

Mcdel Fermulation

Parametric }inear programming is applied to
a problem only after an initial solution has been
found by the simplex method. The dual simplex
method—the algorithm used for parameteriza-
tion—is then applied to the primal problem. Both
methods use the same notation. For these rea-
sons, the simplex method will be outlined briefly,
and then parametric linear programming and
its application to ranking investments will be
discussed. The notation and development used
here are from Hadley (1962).
The typical linear programming problem is
max z = c'x,
subject to the restrictions,
Az =, (1)
z 2o, (2)
where A is an m x n matrix, x and barenx 1
column vectors, ¢’ is a 1 x n row vector, and o is
an n x 1 vector of zeroes.
1f the matrix B is composed of m linearly inde-
pendent columns of A, then any column a; of A
can be written as a linear combination of the
columns of B, .
a; = By;. (3)
This matrix B also provides a basic solution to
the simultaneous linear equations represented by
equation (1). This solution zp is determined as
follows:
zn = Bb.
Corresponding to a basic solution zy, there is
an associated price vector en, which is composed



of m elements from vector c.

A basic solution which satisfies restriction (2)
is called a basic feasible solution. Assuming there
is a basic feasible solution, the simplex method
provides a means of improving it—that is, in-
creasing the value of

Z = C3’Zp. (4)
Equation (3) may be rewritten as
m
a; = IVyb.
j==1
Any vector b, in the basis may be written in
terms of the remaining basis vectors and a
vector «; not in the basis.

3

b, = a;/¥r; - = Yijbi/Yrj-

] s
i=£r
By substituting «; for b,, a new basic solution is
obtained,

Viibi/¥s]
1

I 13

m
b== Xpibi + Xs: [@;/¥1s -
i=1 i
iz&r
For the new solution to be feacible,
Xpi = XpYi5/Vr; 20,1541
Xer 5> 0,1 = r.
Yri
To maintain feasibility, the vector b, to be re-
placed is determined by
Xp¥/Yry = Min{Xni/Vi;,¥1; > 0t
J
The vector to enter should improve the basic
feasible solution. Equation (4) may be rewritten
with a; substituted for by,

m
z= =z l[XB; —-an}’ij:] Cgi -+ Xn:Cy/ Vs (5)

J==

izer
Since

Cpe (Xpe — XniYis/¥Vii) = 0,
the i==r term can be included in the summation,
and equation (5) becomes

m m
= I XpiCpi— Xpr/¥ri . T ¥iiCei -+ Xs:Ci/ Vo,

1= je=

which is reduced to

N>

m
7 =1z -+ [Cj —. 3 ViiCril Xpr/Yrse (6)

1=

For there to be an increase in the objective
function,

m
¢;— I ¥ies >0.
=)
The usual criterion for selecting the vector to
enter is to pick the one with the maximum
(¢; —z;), where
m
Zy= I ViXni. (1)
J e

Given a basic feasible solution, a new basic
Teacible solution with an improved objective
function can be found by the simplex method.
The process can terminate in two ways:

(1) one or more z; — ¢; <0, and for each

z;—c¢; <0,yi; <0foralli=1,...,m

(2) all z; — ¢;> 0 for the columns of A not in

the basis.
If situation (2) occurs, there is an optimal basic
feasible solution.

Suppose there is an optimal basic feasible solu-
tion. We want to increase or decrease the con-
straints by changing the requirements vector b,

b* = b 4 or.
The vector r is specified, and © is a non-negative
scalar (Hadley 1962, p. 382). Changing b
changes the solution, which becomes
zp* =B (b+er),
= Zp -+ BV.

Even though the solution zz* changes, opti-
mality is maintained as long as the solution re-
mains feasible because the values of the z; — ¢;’s
are affected only by the basis vectors and not by
the solution vector. If any of the vi’s in vector v
are negative, the point where the first xa be-
comes less than or equal to zero is

6 = min {-Xgi/vi,v; < 0}, (3)
r i

The dual simplex algorithm can be applied in
this situation. Given a solution that is infeasible
but where all z,—¢;’s >0 for vectors not in the
basis, the dual simplex can be used to obtain a
basic feasible solution while preserving z;—¢;> 0
for all nonbasis vectors. Once a basic feasible
solution is reached, it is also optimal.

The vector to leave the basis is already known
by equation (8). Only the vector to enter the
basis remains to be determined.

Given the primal problem,
Az = b,x >0, max z = 'z,
the dual formulation is

Aw >c,minZ = b’w,
Aw >c, 9)



where the w;’s are unrestricted in sign.

11 the primal solution has all z;—¢; >0 for all
vectors not in the basis and one of the Xpi's is
negative, the corresponding solution to the dual
¢ is not optimal.

Consider a new vector i, which is given by

= w—0p",
where " is a vector of B (Hadley 1962, p. 245).
For all a; not in the primal basig,
-z/i!’aj = Y — Of, dy
= 0", — OV;

Sybstituting 70°q; into the inequality from (9),

we have
Wiy — Oy 2¢5.
Let us now consider ¢z 'B-? as a solution for w’,
or
w = ¢’ B
For it to be a solution, only the inequality A’w>c¢
need be satisfied.
cn 'BA >c.
¢y 'Bla; >c;.
Since y; = Ba;,
cn'Ys 2 C5-
From relation (7), it may be writien as
z;> ¢y, orz;—¢; >0,
which is a characteristic of the original problem.
Hence,
cw'Bla;— 0y, 265
Zj— Oyrj ..>.Cj
0yy; <25 — ;- (10)

Before we derive the criterion for the vector
{0 enter from expression (10), let us look again
at equation (6). For there to be an increase in
the objective function

Xne (€5 -25) /¥ 20.
1f %y, were just slightly negative, v.; would have
1o be less than zero for z > z, since ¢; -z;< 0.
Therefore y,; < 0 in expression (10), and it fol-
lows that 6<0.

For a maximum increase in the objective func-
{ion, the vecior «, to enter the basis is determined
by

B = (2 — C) /Y= MAX (2;—¢;) /Yuss
yi< 0. o (11)

As elements of the requirements vector are
changed by right-hand side parameterization, a
ceries of optimal bases develops. The vector to
leave and the vector to enter the basis at each
step are determined by expressions (8) and
(11), respectively.

Let us return to our original problem. We are
faced with deriving a set of priorities from a set
of investment projects under multiple con-
straints. Given a certain budget, linear program-
ming can select the set of projects that maxi-
mizes net present value. With parametric linear
programming, sets of investment projects can
be selected for different ranges of funding. A list
of priorities that is valid for any level of funding
can be derived in the following manner.

The funding level in the original requirements
vector is set equal to or less than the amount of
money required for the smallest project. This
procedure insures that no more than one project
enters into the initial solution. Then the simplex
method or other procedure is used to arrive at
an optimal basic feasible solution. Next the
budget level is varied—that is, increased—by
means of parametric linear programming. As
the budget Jevel is increased, projects enter the
solution one by one. The order in which the in-
vestments enter the solution determines their
priority for two reasons. A given solution re-
mains optimal over the region in which it
remaing feasible, and once a solution is no longer
feasible, the dual simplex procedure celects a
vector to enter the basis such that the new solu-
tion is both optimal and feasible.

Examples

Most linear programming systems now avail-
able can also do either right-hand side or objec-
tive row parameterization. The UNIVAC 1108
Linear Programming System was used for the
following examples. Ranking was first done with
the funding level as the only constraint to illu-
strate that ranking with parametric linear pro-
gramming is equivalent to simple ranking when
only one restriction exists. The second example
illustrates the effectiveness of ranking with
parametric linear programming when multiple
constraints exist. o L

As the result of succession often aided by
timber cutting practices, extensive acreages of
pine sites in the South are now dominated by
hardwood forest types. Converting these hard-
wood stands to pine offers one of the best ways
of increasing the region’s pine timber supply. In
southern Alabama alone, over 3 million acres of
private, nonindustrial forest land could be con-
verted to pine (table 1). To set priorities these
lands were clascified according to the size of the
hardwood stand now occupying the site, the pine
species to be regenerated, the site index of the



Table 1.-—Type conversion opportinitics on pine sites in southern Alabama, 6 percent interest rate, miscellancons
private owners, 1972

Number Present P Type of. Site Ar Net present Conversion
sumber stand size wpecies regeneration index rea value cost
Thousand
Feet acres — — Dollars/acre — —
1 sawtimber shortleaf! natural 92 22.7 104.36 39.70
2 “ ‘“ “ 80 34.7 68.38 39.70
3 all other ¢ “ 89 18.5 96.07 38.60
4 ‘ “ “ 79 34.8 66.78 38.50
5 “ “ “ 65 21.6 30.40 38.80
6 “ slash® “ 76 25.6 11.58 38.90
7 sawtimber “ ‘“ 72 23.6 1.17 38.50
8 all other o planting 81 135.6 55.60 56.62
9 “ ‘“ “ 74 170.2 12.92 56.42
10 “ longleaf” natural 78 87.2 —14.32 38.60
11 . “ “ 61 58.7 —26.00 38.40
12 sawtimber “ “ 79 35.2 --13.25 38.40
13 all other loblolly+ ‘“ 100 44.3 218.08 38.80
14 ¢ “ “ 86 304.8 140.90 38.60
15 ‘ ¢ “ T2 232.5 91.04 38.70
16 sawtimber “ “ 101 102.2 226.66 40.60
17 ¢ ) } 87 164.9 146.80 40.00
18 “ « “ 75 111.3 101.09 39.90
19 all other “ p]anting 100 57.0 341.12 57.92
20 “ L “ 84 618.4 132.01 57.02
21 “ “ “ 73 529.0 42.56 57.12
29 «“ “ b 56 34.9 —28.41 56.32
23 sawtimber “ H 106 28.5 445.57 59.82
24 “ “ “ 86 187.1 150.57 59.22
25 “ “ « 5 67.1 53.32 59.72
3,150.4

' Pinus echinata Mill.

¥ Pinus elliottii Engelm,
4 Pinus palustris Mill.

t Pinus taeda L.

pine species, and the type of regeneration. In-
formation for formulating the linear program-
ming problem included the acreage, net present
value, and conversion cost for each class.

Net present value was calculated assuming a
perpetual series of rotations to insure compara-
bility among the classes. 1f only one rotation
were considered, the net present value of one
conversion class would not be directly com-
parable to that of another class with a different
rotationlength. To further assure comparability,
classes with artificial regeneration were as-
sumed to be followed by a sequence of natural
stands rather than plantations.

The problem is

n

max =
1=1

])axn

subject to the constraints
0<x;<a,i=1,n
n
I oexigd,
i=1

where x; is the acreage in the ith opportunity
class to be converted, a; is the amount of land
in the ith class available for type conversion, p, is
the net present value of converting 1 acre of the
ith class to pine, ¢, is the cost of converting 1 acre
of the ith c¢lass to pine, and d is the amount of
funds available for tvpe conversion. Initially, d
is set at-a level such that

d<min{c,a,}
For this problem, the third type conversion op-
portunity in table 1 has the minimum c¢;a,, which
is §714,100. Hence, the initial value of d should
be less than this amount; I set it at $1,000.



An optimal basic feasible solution to the prob-
lem wag found. Right-hand side parameteriza-
tion was then applied to the problem. A column
vector » was specified so that the value of d was
increased through right-hand side parameteriza-
tion.

The priorities that resulted (table 2) are the
same as those oblained by simple ranking of the
ratios of net present value to conversion cost.

A more realistic approach would be to include
nursery capacity constraints in the problem.

The total acreage that could be planted to slash
(Pinus elliottii Engelm.) or loblolly (P. tuedu L.)
pine is 1.8 million acres. If planting density is
& x 8 feet or 680 trees per acre, the total number
of seedlings required would be 1.2 billion.

Let ¢ and T be the maximum acreages that can
be planted to slash and loblolly pines, respec-
tively. The following constraints are then andded
to the problem,

Ex;<s, i=289
Sx<f, k=19.20,..... 25

The maximum acreage that can be planted to

slash pine will be 83,000 acres; the maximum for

Toblolly pine will be 67,000 acres. The remaining
variables are unchanged.

When the nursery constraints are added, only
three classes with artificial regeneration are in
the rankings, (1able 3); there were eight in table
2. The maximum aggregate cost is reduced by
two-thirds as the result of the imposition of these
additional restrictions.

Of course, the type conversion classes could
have been ranked under nursery capacity re-
strictions without parametric linear program-
ming. By totaling the acreages of each class that
utilized planting, one could determine the point
in the rankings where nursery capacity would
be exhausted. All classes below this point that
used planting would be deleted from the list.
However, the problems presented in tables 2 and
3 are simple. More complex problems would be
exceedingly difficult, if not impossible, to solve
in this manner.

This technique should prove useful in two
ways. It Jessens the necessity to resolve problems
because of unanticipated changes in constraint
levels, and it increases the capability of linear

Table 2.—Ranking of typc conversion opportunities for southern Alabama

Rank Number

Net present value [Cumulative

Cumulative area planted

Conversion cost cost Slash Loblolly
Thousand
dollars — — Thousand acres — —

1 23 7.44 1,705 28.5
2 19 5.89 5,006 85.b
3 13 5.62 6,725 85.5
4 16 5.58 10,874 85.5
5 117 3.67 17,470 85.5
6 14 3.65 29,236 85.56
7 1 2.63 30,13% 85.5
8 24 2.54 41,217 272.6
9 18 2.53 45,657 272.6
10 3 2.49 46,372 272.6
11 15 2.35 55,370 272.6
12 20 2.32 90,631 891.0
13 4 1.73 91,971 891.0
14 2 1.72 93,348 0.0 891.0
15 8 98 101,026 135.6 891.0
16 25 .89 105,033 135.6 958.1
17 5 .78 105,871 135.6 1,487.1
18 21 .76 136,087 135.6 1,487.1
19 6 .30 137,083 135.6 1,487.1
20 9 .23 146,686 305.8 1,487.1
21 7 03 147,595 305.8 1,487.1




Table 3.— Ranking of type conuversion opportunities for
southern Alabama with wursciry capacity as
a constraint

) . Cumulative o .
Rank | No. Cumulative area planted ko.hmon
cost value
Slash Loblolly‘
Thousand

dollars — — Thousand ucres — —

1 23 1,705 28.5 285
2 19 3,935 28.5 38.5
3 13 5,654 67.0 44.3
4 16 4,803 67.0 102.2
5 17 16,399 67.0 164.9
§ 14 28,164 67.0 304.8
7 1 29,065 67.0 22.7
8 18 33,506 67.0 111.8
9 3 34,220 67.0 1R.5
10 15 43,217 67.0 232.5
11 4 44,558 67.0 34.8
12 2 45,936 0.0 67.0 34.7
13 8 47,804 33.0 67.0 33.0
14 5 48,642 33.0 67.0 21.6
15 6 49,638 33.0 67.0 25.6
16 7 50,547 33.0 67.0 23.6

programming as an investigative and planning
tool. In addition, using parametric linear pro-
gramming to rank projects under multiple con-

straints has other uses. For example, one can
investigate the sensitivity of the rankings to dif-
ferent interest rates or stumpage prices.
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