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ABSTRACT

Building upon the work of Roesch and McWilliams (2007), this paper discusses additional examples of an 
auxiliary sampling strategy that allows National Forest Inventory (NFI) practitioners to efficiently estimate 
the attributes of rare events or species. When the rare event is immediately identifiable in the field, such 
as the tree species itself, a trivial simplification of theory is evident, that being that clusters of networks of 
trees (of that species) are being sampled by the area-based plot, rather than clusters of individual trees. When 
this is the case one does not have to think of the design as adaptive but rather as simply auxiliary. This can 
be of some help in the presentation of a large, multi-objective inventory. This paper focuses on a practical 
examination of network search distances for this special case of an auxiliary mechanism for NFIs such as the 
Forest Inventory and Analysis (FIA) sample design in the United States.
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INTRODUCTION

National Forest Inventories (NFIs) are designed to 
address small-scale problems such as estimating the 
level of an attribute over a very large area such as a State 
or province. However, rare, large-scale events are also 
of interest, which highlights the need for an efficient 
auxiliary mechanism for adapting these inventories to 
large-scale problems. Roesch and McWilliams (2007), 
partially following theory found in Roesch (1993, 1994), 
investigated a few alternative approaches to detecting 
and estimating rare events. They found adaptive cluster 
sampling to be useful for the extremely rare distribution 
of American chestnut (Castanea dentata). The networks 
of rare trees were formed by their proximity to each 
other, defined by a fixed limiting distance to the 
nearest member. In adaptive cluster sampling, auxiliary 
observations are made when a predefined rare event is 
encountered. In the earlier work, Roesch (1993, 1994) 
showed how to do this for unequal-probability samples, in 
which unique networks of trees are sampled rather than 
individual trees.

Adaptive designs are usually described as having two 
stages, the first being a probability sample of units 
in a population, and the second being the selection of 
additional units near those units that display a specific 
condition of interest during the first stage. In this paper, 
as was explained in previous work, we view the same 
procedure as a single stage. That is, each rare event of 
interest (such as the presence of a particular species) 
defines its own population of networks. These populations 
are then sampled simultaneously with the remaining 
population of trees by the inventory’s first stage, 
un-adapted sample design. In field practice, if a sample 
tree is a member of one of these special populations, a 
predefined area is searched for other trees in its network. 
This is repeated for every new network tree found. 
The practical goal is to choose a search area that would 
define a population of reasonably-sized networks. These 
networks would be large enough to increase the support 
for sample estimates at a reasonable cost and small enough 
to not become unmanageable. In this work, we show 
how adequate existing data can be used to find the range 
of search areas (or distances) that could be used for any 
species (or subspecies), and then we apply the method in 
an attempt to find practical search distances for 43 species 
(and 1 subspecies). 

To review the theory, assume that there are N trees with 
labels 1,2,...,N. Associated with the N trees are values of 
interest y = {y1 ,y2 , ...,yN } and characteristics of interest 
C = {C1 ,C2,...,CN } (Roesch 1993). If the species itself is 
the characteristic of interest and tree i is a member of the 
rare species, Ci = 1, otherwise Ci = 0. Let xi = Ci yi , so if 
tree i is the rare species, xi = Ci yi = 1*yi. If tree i is not a 
member of the rare species, then xi = 0. The selection of 
any tree within the network leads to the discovery of every 
other tree in the network. That is, only the trees for which 
Ci = 1 are sought as a result of the discovery of a network 
member. This simplified special case of adaptive cluster 
sampling can be viewed as a single stage, which we will 
call Auxiliary Network Sampling (ANS). 

ANS maps the population of N trees into a population 
of M networks, conditioned on the species S, and 
each network is sampled with known probability. The 
probability ( pi) of including a particular tree i is equal to 
the union of the selection areas of each tree in its network, 
divided by the area of the forest (LF). Thompson (1990) 
showed that an unbiased estimator can be formed for 
adaptive cluster sampling using the Horvitz-Thompson 
estimator (Horvitz and Thompson 1952). Unlike the 
more general case considered by Thompson (1990), in 
the special case being considered here, all probabilities 
of being included in the sample are known because only 
other members of the same network are included as a 
result of the first network member being discovered (as 
opposed to having to include and then examine every tree 
within the search area for the occurrence of a particular 
characteristic). Observations on trees of non-networked 
species are included only when they are sampled by the 
initial design. The probability of tree k, in network K, 
being included in the sample during ANS from at least one 
of m plots is equal to 1 minus its probability of not being 
included:
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where

LF = the total land area (usually of the forest)

ak = union of the initial sample’s inclusion areas for the 
trees in network K to which tree k belongs

αk = the probability of tree k being included in the sample, 
and

αK = the probability of network K being included in the 
sample.
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The network inclusion probabilities can then be used in 
any subsequent estimator. For instance, for species S, 
substitute S for C, and sum over the v distinct species trees 
in the sample to obtain the HT estimator of the population 
total:

The statistical properties of tS(HT) and other potential 
estimators are discussed in Roesch (1993).

METHODS

To illustrate the factors that must be considered when 
choosing a search distance, a population was built from 
data obtained by the USDA Forest Service’s Forest 
Inventory and Analysis (FIA) Program. The simulated 
population was constructed using the measured plot data 
from the Eastern United States collected through the 
years 1998 to 2016, available in the Forest Inventory and 
Analysis Database (FIADB) at https://apps.fs.usda.gov/fia/
datamart/CSV/datamart_csv.html. The stem-mapped data 
from each FIA cluster plot observation were expanded 
to create a square population element of approximately 
1.075926 hectares (2.65867 acres). This population 
element was intended to represent the area immediately 
surrounding the ground plot using the information 
observed on the plot while minimizing the assumptions 
made about how what was not observed might be different 
from what was observed. We accomplish this in two steps. 

In step 1, each circular subplot is reshaped into a square of 
the same size by randomly relocating observations (trees) 
occurring in the slivers of the circle outside of a centrally 
co-located square of the same size into the corners of the 
co-located square (outside of the circle) by each of the 
four quadrants (see fig. 1), while keeping all observations 
that were common to both the circle and the square in 
their original locations. This method preserved all of the 
tree information available on the subplots, while also 
preserving most of the spatial location information. We 
did not restrict the random relocation of the trees from 
the slivers into the corners with respect to the location of 
any other trees for a number of reasons. First, our analysis 
considers one rare species at a time and there would be a 
very low probability of two trees of the rare species being 
relocated into the same corner of a particular subplot 
square, in excessively close proximity to each other. Each 
corner (and sliver) is approximately 0.0226 of the subplot 
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area. Therefore, each subplot would have to have about 
44 rare trees before you would expect 1 in each sliver. 
Second, trees being located very close to each other do 
occur in nature, so it is unclear what restriction, if any, 
would be appropriate. Third, a restriction of < 5 feet would 
have no effect on the current investigation, because the 
minimum search distance that we consider for network 
inclusion is 5 feet. 

In step 2, the four subplot squares for each plot are grown 
into the larger (1.075926 hectare) square population 
element (16× larger than the informing plot cluster), 
arranged in the pattern shown in figure 2. The goal 
was to create a population element that maintained 
most of the spatial relationships observed between and 
within subplots. Therefore, we did not effect further 
randomization of tree locations within subplot squares or 
between subplot squares. We chose this pattern because 
it is simple and comes close to mimicking the pattern of 
observation of the original subplots, as shown in figure 3, 
thereby closely maintaining the spatial relationships 
between subplots. Many other choices might have been 
made, although most others would have lost more of 
the observed spatial relationships between subplots. We 
note that this deterministic pattern, as well as any other, 

Figure 1—Converting each circular subplot from figure 3 
into a square of the same size. Each subplot has a radius 
of 24 feet, while the square of an equal area has a side 
length of approximately 42.54 feet. Trees located in the area 
common to both the circle and square are left in place. Trees 
located in the slivers of the circle outside of the square, 
of each quadrant, are randomly relocated into the same 
quadrant’s corner of the square.

https://apps.fs.usda.gov/fia/datamart/CSV/datamart_csv.html
https://apps.fs.usda.gov/fia/datamart/CSV/datamart_csv.html
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Figure 2—The square subplot pattern arrangement for each “plot” 
square. Sixteen copies of each of the four (squared) subplots 
(1 to 4) are placed into an 8 × 8 grid in the pattern above.

Figure 3—The FIA plot design. All trees > 5.0 inches in d.b.h. are 
measured on the subplot. Although not used in this paper, trees 
>1.0 inch in d.b.h. are measured on the microplot. The macroplot is an 
optional feature currently used in the Pacific Northwest as an auxillary 
sample for large trees (Bechtold and Patterson 2005).

will have an obvious potential for chaining together tree 
locations from neighboring squares. A one-tree example 
will show the reader that this could occur all at once 
between the 16 adjacent squares at search distances 
exceeding the length of the side of a square (42.5 feet). 
Note that if only one tree is present on a subplot, then 
no actual within-subplot spatial distribution has been 
observed. This is one reason that we didn’t consider search 
distances that large in this study. When more than one tree 
occurs on a subplot square, this threshold distance will 
be lower; however, it will also be highly dependent on the 
spatial relationships between the trees observed on the 
subplots. If we had rather randomized the spatial locations 
of trees on each of the 16 subplot squares, different 
connections between the squares would be made; however 
they would no longer depend on the spatial relationships 
observed on the subplots.

In order to create the simulated population, the 
population elements described above were ordered 
by latitude, longitude, and then measurement year 
(when multiple measurement years were available) in 
a list. There were enough population elements to fill a 
square of 497 elements on a side. Therefore, the first 
(4972 = 247,009) of these population elements were used 
to build the square population tree map. Each cell of the 
population square was filled with a population element 
square starting from the bottom left, across each row and 
then up to the top right of the square. The intent was to 
create a population that would have local qualities very 
much like those that would be present in a temporally 
collapsed realization of the collection of annually 
sampled populations. One major assumption is that the 
resulting simulated population reasonably represents a 
wide diversity of local spatial distributions. This leads 
to another major assumption, which is that an auxiliary 
sampling scenario that works well in this simulated 
population (and species-specific subsets of it), and can be 
argued to be practical, should work well for any NFI over 
a wide range of existing species distributions. 

In this paper we focus on one of the most practical 
problems mentioned in Roesch (1994). That paper points 
out the additional monetary cost of the adaptive strategy 
for a particular application depends on relative network 
sizes and their spatial distribution in the sample—
factors that can be predicted given adequate previous 
knowledge of the populations of interest. In the example in 
Roesch (1994), the additional cost of including extra trees 



Francis A. Roesch and Todd A. Schroeder 5

was shown to be controllable by the distance examined. 
As search distance increases, the probability of creating 
excessively large networks also increases. For any specific 
attribute, such as species or subspecies, we want to select 
a minimally sized search area relative to the local spatial 
distribution of the target trees. Here we attempt to find 
a set of practical search distances for 44 tree species and 
subspecies. These search distances should serve as useful 

starting points for FIA and many other NFIs. This list of 
interesting species is not exhaustive but rather is intended 
to represent local distributions of many special interest 
species including rare, semi-rare, invasive, and high-value 
species. To give the reader an idea of the relative coarse-
scale distributions of each of the 44 (sub) species within 
the overall population, each is plotted over the population 
in figure 4.

Figure 4—The global distribution map of each of the 43 species and 1 subspecies over the population space.
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We proceed in this investigation by building the networks 
for each species at a series of search distances and then 
examining the maximum size of network for each search 
distance. Once an excessively large network was found, 
larger search distances were dropped from consideration. 

Although we cannot fully judge how large of a network 
would be impractical without giving some consideration 
to the initial sample design, we do build the networks 
independently of any specific sample design. With the FIA 
cluster plot (fig. 3) in mind as an initial design, certainly 
if the maximum network size exceeded 30 trees, the 
search distance is becoming too large to be advantageous, 
because the networks have a higher probability of being 
observed by multiple subplots. A maximum network size 
of <10 trees may indicate a network size distribution that 
would not have an advantage over the FIA cluster plot, 
unless perhaps for a very rare and valuable species that 
requires a search distance which is quite large. Search 
distances that are too small would form many networks of 
trees that would have already been observed on the initial 
cluster plot and may not be helpful. 

RESULTS

Table 1 is intended to show the reader the practical limits 
of possible search distances (in feet) for each species. 
Some impractical results are included when they help 
define the limit. For example, the first species listed 
in the table (Abies fraseri, species code 16) has results 
listed for search distances of 8, 9, and 10 feet. Clearly, the 
maximum network size of 230 found for a search distance 
of 10 feet is far too high, while the results for 8 and 
9 feet both show promise. Although not the focus here, a 
simulation as described in Roesch (1993) could be used to 
determine which one is best under any given initial sample 
design. The table also shows that as declared in previous 
publications, different species can have quite different 
optimal search distances. For instance, Tsuga caroliniana, 
Acer spicatum, and Acer leucoderme (species codes 262, 
319, and 323, respectively) all appear to have quite high 
optimal search distances relative to Abies fraseri (species 
code 16) and Chamaecyparis thyoides (species code 43). 
Very often in the table we see a difference of only 1 foot 
between a reasonable maximum network size result and a 
very unreasonable result. 

Species 
code Species (or subspecies) Common name

Number 
of trees

Search 
distance (ft.)

Maximum 
network size

8 11
16 Abies fraseri Fraser fir 5,504 9 25

10 230
5 12

43 Chamaecyparis thyoides Atlantic white-cedar 53,584 6 19
7 29
5 6

96 Picea pungens Blue spruce 8,944 6 11
7 31

123 Pinus pungens Table Mountain pine 43,216
8 12
9 125
6 5

136 Pinus nigra Austrian pine 9,552 7 45
8 45
6 6

202 Pseudotsuga menziesii Douglas-fir 6,336 7 19
8 51

20 5
22 5

262 Tsuga caroliniana Carolina hemlock 1,776 23 21
24 21
25 50
10 6
12 6

314 Acer nigrum Black maple 11,312 13 6
14 8
15 28
16 28

Table 1—The maximum network sizes resulting from a selection of search distances for each species 
(or subspecies) in the study

(continued)
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Table 1 (continued)—The maximum network sizes resulting from a selection of search distances for 
each species (or subspecies) in the study

(continued)

Species 
code Species (or subspecies) Common name

Number 
of trees

Search 
distance (ft.)

Maximum 
network size

27 16
319 Acer spicatum Mountain maple 1,440 35 19

36 32
10 13

320 Acer platanoides Norway maple 6,960 11 13
12 149
24 12

323 Acer leucoderme Chalk maple 1,056 30 12
31 12
32 24
15 14

331 Aesculus glabra Ohio buckeye 23,248 17 19
18 73
12 16
15 16
18 16

345 Albizia julibrissin Mimosa 8,032 19 20
20 20
21 20
22 20
23 64
24 8

367 Asimina triloba Pawpaw 1,552 25 8
26 8
27 64
15 9

405 Carya laciniosa Shellbark hickory 25,088 16 21
17 30
15 7

408 Carya texana Black hickory 4,016 16 15
17 116

410 Carya pallida Sand hickory 14,496 17 7
18 144

412 Carya ovalis Red hickory 4,272 16 8
17 32
19 6

421 Castanea dentata American chestnut 4,512 20 20
21 80

451 Catalpa bignonioides Southern catalpa 1,936 18 8
19 24
8 15

452 Catalpa speciosa Northern catalpa 4,032 9 30
10 34
20 4

481 Cladrastis kentukea Yellowwood 496 21 24
22 24
25 24
11 14

545 Fraxinus profunda Pumpkin ash 21,984 12 20
13 110
12 15

546 Fraxinus quadrangulata Blue ash 16,816 13 20
14 20
15 40
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Table 1 (continued)—The maximum network sizes resulting from a selection of search distances for 
each species (or subspecies) in the study

(continued)

Species 
code Species (or subspecies) Common name

Number 
of trees

Search 
distance (ft.)

Maximum 
network size

9 11
548 Fraxinus caroliniana Carolina ash 17,040 10 13

11 28

571 Gymnocladus dioicus Kentucky coffeetree 2368 14 10
15 76
10 6
11 6

601 Juglans cinerea Butternut 25,104 12 6
13 6
14 28
12 13
18 13
20 13

808 Quercus sinuata Durand oak 2,112 22 13
23 24
24 24
25 48
9 9

828 Quercus texana Texas red oak 24,896 10 9
11 28
14 11

840 Quercus margarettiae Dwarf post oak 25,008 15 19
16 28
8 26

841 Quercus minima Dwarf live oak 21,584 9 27
10 27
15 12
16 13

842 Quercus incana Bluejack oak 8,688 17 13
18 15
19 40
12 13

935 Sorbus americana American mountain-ash 13,232 13 14
14 28
15 28
14 9
15 20

952 Tilia americana (heterophylla) White basswood 6,864 16 20
17 20
18 48
19 8

953 Tilia americana (caroliniana) Carolina basswood 7,312 20 24
21 24
16 16

973 Ulmus crassifolia Cedar elm 4,144 18 16
19 48
12 15

974 Ulmus pumila Siberian elm 8,768 13 15
14 219
15 16

977 Ulmus thomasii Rock elm 5,888 17 16
19 21
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Table 1 (continued)—The maximum network sizes resulting from a selection of search distances for 
each species (or subspecies) in the study

Species 
code Species (or subspecies) Common name

Number 
of trees

Search 
distance (ft.)

Maximum 
network size

10 13
11 18

986 Avicennia germinans Black mangrove 2,768 12 20
13 20
14 43
7 13

987 Conocarpus erectus Buttonwood mangrove 1,568 8 22
9 33

988 Laguncularia racemosa White mangrove 2,720 11 7
12 65

989 Rhizophora mangle American mangrove 1,792 15 9
16 37
5 18

992 Melaleuca quinquenervia Melaleuca 9,328 6 25
7 28

993 Melia azedarach Chinaberry 29,376 5 56

Sometimes there is only a 1-foot difference between a 
result that is probably too low to be useful and one that is 
unreasonably high, such as shown in the results for four 
species (species codes 136, 367, 410, and 988). In these 
cases, although less practical, one might consider a search 
distance between the two integer values, after further 
investigation. 

The final species on the list (Melia azedarach, species 
code 993) shows that at a search distance of only 5 feet, at 
least one network with 56 member trees was formed. The 
conclusion we would draw from this observation is that 
the estimation of this species’ attributes would not benefit 
from this type of auxiliary sample design.

Subsequent to a filtering of search distances by maximum 
network size, further examination of the network size 
distributions could be helpful, especially when multiple 
search distances yield the same maximum network size, 
as is the case for species code 481 (Cladrastis kentukea) 
in table 1. While a search distance of 20 feet yields a 
maximum network size of only 4, the search distances 
of 21, 22, and 25 feet all yield a maximum network size 
of 24. We show the distributions of these three search 

distances in table 2 and note that there is an advantage 
to each increase of search distance in this range for this 
species. At a search distance of 22 feet, 12 networks of 
size 1, and 12 networks of size 3 found at a search distance 
of 21 feet have been replaced by 12 networks of size 4. A 
further, reasonable consolidation of networks is seen as 
the search distance is increased from 22 to 25 feet.

Table 2—The number of networks 
for each network size for three 
search distances for species 
code 481 (Cladrastis kentukea)

Search distance

Network 
size  21 ft. 22 ft. 25 ft.

1 212 200 192
2 52 52 32
3 12 — —
4 24 36 —

16 — — 12
24 2 2 2

Sum 302 290 238

— = No networks of that size for the 
specified search distance. 
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DISCUSSION

Systematic areal-based designs ensure a thorough 
dispersion of the sample plots through the population. 
This special case of an adaptive sampling design used in 
conjunction with an areal-based design could improve 
the estimation of a rare event (or species) subsequent to 
the mapping of the individual tree species distribution 
into a distribution of networks of those same trees. In 
most inventory efforts, relative cost is the major concern 
when choosing between sampling strategies. Much of 
this cost comes in the form of planning and travel to the 
observation sites. The additional cost of this auxiliary 
design depends on the relative network sizes. This paper 
shows that this factor can be predicted given adequate 
previous knowledge of a population of interest. The 
existing data in the FIADB can be used to gain that 
knowledge. In the example in Roesch (1994), using a small 
dataset, the additional cost of including extra trees was 
shown to be controllable by the distance examined. The 
size of the search area determines the size of the networks 
of interest found. ANS provides a way for NFI efforts 
to monitor rare events at a relatively small cost. Here, 
we have provided the practical guidance left for further 
research in previous publications. Table 1 gives guidance 
to those who are interested in the species listed, in the 
Eastern United States, and elsewhere, if that species has 
a similar local spatial distribution to that of the Eastern 
United States. 

The way that this simulated population was built did have 
some effect on the results because we assumed that what 
was not observed in the vicinity of the observed subplots 
was like what was observed on the subplots. There are 
many other ways this might have been accomplished, 
and each would have resulted in somewhat different sets 
of networks being formed; however they should have 
not been substantially different. In cases in which our 

approach formed a very large network, at a particular 
search distance, any other approach that relies on the 
same assumption of local similarity should also form a 
very large network. Therefore, the same conclusions about 
optimal search distances would most likely be drawn 
from any one of those other approaches. The approach 
to finding reasonable search distances that we used 
here could also be used to make a similar determination 
anywhere, for any rare species, especially when a similar 
preponderance of data is available.
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