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Abstract constructed from poor Weibull estimates will produce biased 
volume estimates. Thus, general applicability of a procedure 

Artificial neural networks (NN) are becoming a popular estimation 
tool. Because they require no assumptions about the form of a fitting does not mean that the procedure is always best, as growth- 
function, they can free the modeler from reliance on parametric and-yield modelers are always searching for procedures to 
approximating functions that may or may not satisfactorily fit the improve d.b.h. distribution estimates. Artificial neural 
obierved data. T o  date there have been few applications in forestry networks (NN) may provide better estimates of d.b.h. 
science, but as better NN software and fitting algorithms become 
available, they may be used to solve a wide variety of problems- distributions that do not rely on assuming an imperfect 
particularly problems where the underlying relationship between underlying probability model. 
predicted and predictors is unknown. We benchmark tested an 
glternative to the traditional Weibull probability distribution function, 
diameter-at-breast-height moment, and direct parameter prediction 
models for approximating stand-diameter distributions. Using a 
feedforward backpropagation network, we demonstrated that NN are a 
somewhat better option. Unlike Weibull approximations, NN 
solutions cannot easily be mathematically constrained to match 
known reality constraints, but this difficulty is easy to overcome in 
practice. 

Keywords: Connectionist models, parallel distributed processing 
systems, parameter recovery, Weibull distribution. 

The thee-parameter Weibull probability distribution 
function (Weibull 195 1) can take on a wide variety of shapes, 
and has been found to be an applicable model for 
approximating tree diameter-at-breast-height (d. b. h.) 
distributions (Bailey and Dell 1973). Because of its plasticity, 
many stand-level, diameter-distribution growth-and-yield 
models in use today rely on the Weibull probability 
distribution fbnction (Bailey and Aleixo da Silva 1988, 
Matney and Sullivan 1982b, Zmoch  and others 199 1). 
However, the Weibull distribution does not span the entire 
function space, and its perfomance as a d.b.h. distribution 
estimator varies widely among data sets. In some d.b.h. 
distribution modeling cases, the Weibull function tends to 
produce poor estimates in the tails of the distribution. In 
other situations, it may lock down the tails and 
overcompensate by missing badly in the middle part of the 
distribution. Because any small miss in the middle and upper 
d.b.h. ranges o f  a distribution can have a large impact on 
derived volume estimates, growth-and-yield models 

In general, artificial NN are approp~ate in modeling 
situations: (1) where the application is data intensive and 
dependent on multiple, interacting pameters; (2) where the 
problem area is rich in historical data or examples; ( 3 )  where 
the available data are incomplete, contain errors, and 
describe specific examples, and (4) when the function to 
determine solutions is unknown or expensive to discover 
(Bailey and Thompson 1990). All these conditions are to 
some degree met by the typical growth-and-yield database. 
Theorems by Cybenko (1 989), Sun and Cheney (1 992), and 
Light (1992) show that a single output, single hidden-layer, 
feedforward network employing continuous sigmoid and 
other more general activation functions with a sufficient 
number of hidden units can approximate any continuous 
function to any desired accuracy. This makes them ideal for 
d.b.h. distributions of an unknown form. Some researchers, 
e.g. Josh 1987, point to Kolmogorov's (1 957) theorem on the 
realization of real-valued functions as strong, albeit not 
conclusive, evidence that NN models can learn to 
approximate any continuous real-valued multivariate 
function. They minimize error in the least-mean-square sense 
based only on example mapping. Hassoun (1995) gives an 
excellent discussion on the real-value function 
approximation capabilities of feedfomad neworks. 

Given the advertised great promise of neural methodology, 
we decided that a preliminary investigative benchmak 
comparison of this technique with the traditional methods of 
diameter-distribution modeling was wmanted. The model 
selected for this comparison is a simple, fully connected, 
feedfoward, backpropagation delta-learning-rule network. 
The two traditional Weibull probability function-based 
benchmark test models selected were a diameter-moment 



parameter recovery system and a direct-parameter prediction 
model. Each of these tecbaiques was then used to predict 
the dimeter distributions of three distinctly different, 
unthinned, planted longleaf pine (Pinus palustrr's Mil 1.) 
databases from stands originating under three different 
conditions. The preliminay results will help us to detemine 
the mount  of additional work that will be necessary to refine 
the unthinned stand model and construct network models 
for predicting thinned stand-diameter distributions. 

We report the analysis and results of the multitude of 
evaluation criteria selected for the preliminary benchmark 
testing of the NN mode. 

Data 

The three diameter-distribution NN trainingitest data sets 
selected for study were from longleaf pine plantations on (1) 
abandoned agricultural land (old fields), (2) land that had 
received some form of site preparation, and (3) recently 
cutover sites. The three data sets were plot data assembled 
from several experiments designed to represent the growth 
response of planted longleaf pine across the Southern 
United States. The sites were considered problem free, in 
terms of having low levels of competing vegetation as well 
as good initial and subsequent survival of planted trees. 
Table 1 presents the basic descriptive statistics for each of 
the three data sets. 

The input variables selected for modeling d.b.h. distributions 
were stand age, base-age-25 site index, average height of 
dominant and codominant trees, and trees per acre. The 
output units selected for benchmark testing were trees per 
acre in each 1-inch (in.) d.b.h. class up to 20 in. In effect, by 
selecting these outputs we had the NN approximate the 
probability density function of d.b.h. at points spaced 1 in. 
apart. There are many other output formats that could be 
used, but this one fits well within the limitations of a 
backpropagation PJN. 

In regression model-building work, there is little to be gained 
by separating a data set into parts for fitting and testing 
(Nursch 1991). The only good way to test a regression model 
is to obtain independent test samples from the same 
population. However, because NN contain a large number of 
nodes, and thus many parameters, there is a good chance of 
ovedtting the training data set and capturing not just 
general patterns but smpling variation as well (Leahy 1994). 
Therefore, it is important to have both fittingitraining and 
testing data sets as insurance against overfitting. In this 
study, we randomly partitioned each of the three data sets 

into training md  test data sets, designating a training data 
set approximately twice the size of the test data set. 

Model Development 

The type of W-4 we selected for evaluation is known as a 
hetero-associative, fully connected, feedfornard network. 
This means that the network is composed of an input layer, 
one or more hidden layers, and a multiple unit output layer; 
and that all of the nodes in every layer are connected to all 
of the nodes in each successive layer. It is also called a 
backpropagation network because, during training, errors are 
backpropagated from the output layer to the inner 
connections using the delta rule. While there is a large 
number of possible network models to choose from, we 
selected the backpropagation network because it is 
recognized as being best suited to function approximations 
(Hassoun l 995)- Attempting to evaluate all possible 
networks for a particular problem would be an ovenvhelming 
task. 

Figure 1 shows the general, single hidden-layer NN 
backpropagation model structure adopted for each data set. 
Between data sets, the number of nodes was varied to obtain 
the lowest mean-squared error on the outputs. Otherwise, no 
changes in the structure were necessary to obtain a 
satisfactory fit for each data set. The bias term connected to 
both the hidden layer and the output layer is a constant 
value (typically equal to one) that is analogous to the 
intercept term in a linear regression equation. 

An article by Freeman (1992) and a book by Hassoun (1995) 
include descriptive summaries and sufficient mathematics to 
explain the actual backpropagation training process. An 
abbreviated explanation of this process is shown in figure 2. 

In the course of deciding to use a single hidden-layer 
network, we tested numerous network structures to 
detemine the optimum number of hidden layers and the 
numbers of nodes in each. In a typical t\3N, there can be one 
or more hidden layers. Recent research into backpropagation 
networks shows that almost any function can be 
synthesized using a sufficiently complex network with a 
single hidden layer (Neuralware 199 1 d). We made several 
attempts to use more than a single hidden layer but 
observed no noticeable improvements in precision or 
accuracy. Thus the single hidden-layer NN was constructed 
and trained for each data set. 



Table I-Descriptive statistics for the training and testing data sets used in the comparison of neural network 
methodology to traditional Weibull models 

Old field Site prepared Gutover 

Variable Training Testing Training Testing Training Testing 

Observations (no.) 292 122 200 108 636 333 

Age (years) 
Average 14.8 14.8 15.6 15.8 18.2 18.7 
Range 8 - 30 9 - 30 8 - 2 5  1 0 - 2 5  9 - 48 9 - 48 

Trees per acre 
Average 715.4 71 1.7 609.9 584.3 590.7 593.3 
Range 74 -1,185 284 -1,160 123 -1,036 133 -1,089 133 -1,210 133 -1,136 

Trees per acre 
> 1 in. d.b.h. 

Average 704.7 699.7 559.2 542.8 538.6 552.2 
Range 74 -1,185 284 -1,160 123 -1,000 133 - 988 133 -1,210 133 -1,136 

Total height of 
trees with d.b.h. 
> 1 in. (ft) 

Average 32.2 32.5 20.2 20.1 34.4 35.5 
Range 15 - 62 16 - 62 7 - 38 8 - 37 8 - 80 9 - 82 

Total height of 
dominants and 
codominants (ft) 

Average 36.7 36.8 23.7 23.5 38.6 39.7 
Range 14 - 67 1 5 -  69 9 - 41 10 - 41 8 - 86 8 - 88 

Basal area (sq. ft.) 
Average 96.4 94.9 34.2 32.8 74.5 80.1 
Range 8 - 2 3 0  28 - 194 5 - 113 6 - 104 5 - 221 5 - 229 

Quadratic mean 
diameter (in.) 

Average 4.94 4.98 3.18 3.20 4.83 5.02 
Range 2.3 - 8.4 2.7 - 7.9 1.3 - 5.7 1.6 - 6.4 1.6 - 12.7 1.5 - 12.9 

Site index 
(baa. 25) (ft) 

Average 56.8 57.5 38.7 37.9 56.5 56.7 
R a g e  34 - 80 36 - 76 20 - 77 20 - 77 20 - 103 26 - 104 

The number of nodes in a hidden layer is another parameter 
that can be changed in a NN (fig. I). The number used for 
each data set was determined by experimentally finding the 
optimum (based on the minimum mean-squared error 
criterion) fit of the training data set using different numbers 
of nodes. These optimums were three nodes for old-field 
sites, four nodes for cutover sites, and six nodes for 
prepared sites. 

Matching the attributes of a NN to the requirement that a 
diameter distribution must have exactly as many trees as 
there are in the stand required some additional calculations. 
First, rather than work with the actual number of trees, the 
output of this network was designed to be the percentage of 
trees in each l -in. diameter class from 1 to 20 in. Thus, in 
effect, output for any d.b.h. class is the probability of a 
given tree belonging to that class. For a network to be 
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Figure 1-Diagram of the basic structure used for neural networks tested in this paper. They are all similar in structure except for a variable number 
of nodes in the hidden layer. Each square block is a node. Nodes can be input like age, output like the proportion of trees in any diameter class, or 
hidden, which are just internal summation and transformation points. Each line is a connection where variable weights are applied. 

logically consistent with a probability function, all diameter- 
class probabilities must be nonnegative and sum to one. 
These constraints cannot be imposed on a NN of the type 
used here, but they can be obtained with minor 
postprocessing. This is done simply by (1) setting any 
output less than zero to zero, and (2) dividing each output 
by the sum of the outputs. 

While there are many computer packages that could be used 
to train a NN, most of the work for this paper was done with 
NeuralWorks Professional IIiPlus (NeuralWare 199 lc). This 
is significant because there are many assumptions and 
choices that vary among different software packages. All of 
the assumptions will not be explained here, but specific 
variations from the defaults are detailed. 

NeuralWorks allows the network developer to choose from 
among several transfer or squashing functions. We used the 
hyperbolic tangent function with a range of -1 to 1 along a 
smooth, sigmoidal curve to train all of the networks in this 
study. NeuralWare (1 99 I b) recommends the function as very 
effective in backpropagation networks. 

NeuralWorks automatically scales all inputs and outputs into 
a subset of the range of the transfer function chosen. For the 

hyperbolic tangent, this range is from -0.8 to 0.8. Guan and 
Gertner (199 1) chose to use a logistic function in their 
survival-probability network model partly because it has a 
range of 0 to 1. It is desirable to have the network outputs 
already in the correct range, but NeuralWare's automatic 
scaling eliminates the need for preliminary data scaling and 
makes the choice dependent only upon the slope properties 
of the transfer function. Extensive testing showed that the 
hyperbolic tangent worked best with the NN we used. 

Standard backpropagation uses the delta error correction 
rule, which adjusts the node weights after each example is 
presented. We used the normalized, cumulative delta rule for 
all the networks trained. The cumulative delta rule 
accumulates the error for each output and does not adjust 
weights until all of the observations in an epoch are 
presented. It also avoids learning rate changes by dividing 
the sum of the errors by the square root of the number of 
observations in an epoch. An epoch may constitute the 
entire data set or any subset thereof. We used an epoch size 
of 100 observations. 

Multiplying the backpropagated error by a learning 
coefficient and adding the result to the current weight makes 
weight adjustments in standard backpropagation. Two 



Mu1;;iply input v h e s  
by current 

connection weights 

Sum up weighted 
connection values for 4 
each node of the layer 

Transform sums by 
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Figure 2-A flowchart of the training and use of a backpropagation neural network. A squashing function is 
a function such as the hyperbolic tangent, which transforms its input into a number between -1 and 1. 



common modifications to this technique were used in the 
training. The first is the addition of momentum that adds 
some portion of the previous weight adjustment to the 
cunent weight adjustment. The second, developed by Tariq 
Samad (19881, is called fast learning. This technique adds a 
multiple of the error from the next lower layer to the 
activation value before the weight update. Equations (1) 
though (3) show the change in weight for smdard 
backpropagation, backpropagation with momentum, and 
backpropagation for fast learning with momentum, 
respectively . 

AW jirsl = lcoef* ejrsl * Xi[.-11 (1) 

.Aw jilSl = Icoef* ejlSj * xifs-ll + momentum* .Aw jic,l (2) 

w jirsl = lcoef* e jlsl * (xic-, + fastlm* eirs-11) 
+momentum* A w jirsl (3) 

where 

Aw - the change in weight to be applied to the 
connection between the ith node in layer s- 1 to the jth node 
in layer s; 

ejrsl = the error at node j of layer s; 

XI[S-II == the current output of the ith node in layer s- 1 ; and 
lcoef, momentum, and fastlrn = the coefficients for learning, 
momentum, and the fast-learning adjustment, respectively 
(Neural Ware 1 99 1 a). 

A final characteristic that needs to be considered in training 
these networks is how many iterations are necessary. We did 
not set a fixed number of iterations, nor did we set a fixed 
level of error that we considered small enough. Rather, we 
observed trends in the reduction of the root-mean-squared 
error ( M S )  during the training process. During training, 
M S  usually drops quickly in the begiming then slows and 
may even climb again, For each structure that we tested, we 
selected parmeters providing the lowest value for RMS. 
Observing the trend as well as the lowest value, helped us to 
avoid some of the spurious, apparently optimum results that 
can occur in any nonlinear iterative fitting process. When 
results appeared spurious, we reinitialized the network to see 
if similar or different optimum values would be generated. 

Weibull with Parameters Recovered from Stand 
Distribution Characteristics 

statistics such as arithmetic mean d.b.h,, quadratic mean 
d.b.h., minimum d.b.h,, and percentiles. Second, the resulting 
system of equations is used to solve for the u h o w n  
parameters of the dishbution (Matney and Sullivan 1982a, 
Zmoch and others 199 1). 

Matney and Farrar (1 1992) and Fmar and Matney (1 994) 
successfully used the three-parmeter Weibull distribution 
parameter recovery system selected for the benchmark test 
to simulate the unthimed stand yields of cutover, site- 
prepared loblolly pine (P. taeda L.) plantations and natural 
longleaf pine, respectively. The steps used to construct the 
parmeter recovery system are: 

1. Develop equations for predicting stand minimum d.b.h., 
arithmetic mean d.b.h., and quadratic mean d.b.h. from age, 
surviving trees per acre, and average height of dominants 
and codominants. The arithmetic mean d.b.h. is the first- 
order moment of d.b. h., and the quadratic mean d.b.h. is 
the square root of the second-order moment of d.b.h.. 

2. Set the location parameter (a) of the Weibull probability 
distribution equal to one-half the estimated minimum stand 
d.b.h. 

3. Equate the first-order and second-order d.b.h. moments to 
their expected values. That is 

where 

E(dbh) = z, is the expected value of d.b.h., and the 
arithmetic mean d.b.h. (first-order moment of d.b.h.); 

Qdbh '1 = dbhq2 is the expected value of d.b.h.', and the 
square of the quadratic mean d.b.h. (second-order moment of 
d.b,h,); 
b = the scale parameter of the Weibull; 
c -. the shape pmmeter of the Weibull; and 
r =. the value of the gamma function with argument a. 

4. Solve equation (5) for the b parameter and substitute the 
result for the b parameter in equation (6). This yields a 
nonlinear equation involving only the u h o w n  parmeter 
c and the known parameter a that is solvable for c. From 
equation (5), 

Parameter recovery systems for probability distribution 
functions have two parts. First, equations are developed to 
predict the expected values of d.b.h. moments &or order 



b =  dbh, - a 
T(l+ lic) 

On substitution of equation (7 )  for parameter b in equation (6), 
the equation involving only parameters a and c that is in a 
convenient, nonlinear equations solution form is: 

5. Solve equation (8) for the value of c satisfying the 
condition f (c) .= 0 using an algorithm, such as the 
bisection or secant methods, for finding the roots (zeros) 
of nonlinear equations (Burden and others 198 1). 

Weibuli with Regression Predicted Parameters- 
Direct Prediction 

To obtain regression equations to directly predict the 
parameters of the Weibull distribution, we fitted the 
cumulative disbibution function of the Weiberll to the sample 
plot empirical cumulative d.b.h, distributions using the SAS 
Gaussian NONLIN procedure (SAS Institute Inc. 1990). We 
then calculated regression equations to predict the estimated 
parameters from age, surviving trees per acre, and average 
height of dominant and codominant trees. Dell and others 
(198 1) as well as other researchers, used the direct prediction 
method to build unthinned stand-yield models. 

Methods of Model Testing and Comparison 

A NN, as used in this modeling effort, is highly nonlinear; 
and no assumptions about the residual error structure were 
made. Because of this, the NN models are compared to the 
two Weibull models using mathematical measures of 
difference that resemble standard goodness-of-fit statistics, 
but which cannot be used in actual hypothesis testing 
because the probability distributions remain u b o m .  
Simply, the numbers calculated are observed to be higher or 
lower than those of competing models. In these calculations, 
the degrees of freedom used is assumed to equal the number 
of obsewations, which is equal to the number of 
distributions compared multiplied by a fixed value of 20, the 
assumed number of classes in each distribution. Each of the 
test observations was estimated with the appropriate site- 
specific model using each of the three methods. Then these 
individual results were combined for an overall view of 
model quality. 

The first set of comparators calculated is based on the 
goodness-of-fit statistics that are usually presented for fitted 
models. While none of these calculations adequately 
describes model quality, as a set they provide a 
comprehensive description. Included in this set are mean- 
squared error, fit index (Schlaegel198 l), generalized RZ 
compared to the null model (Anderson-Sprecher 1994), a 
count of the number of times the model diameter class was 
predicted correctly, the number of times the probability of a 
tree falling in the model class was closest to the actual 
probability, the number of times the predicted probability of 
a tree falling in the upper or lower quartile was closest to the 
actual probability, the number of times the calculated x2 was 
lowest, the number of times the calculated Kolmogorov- 
Smirnov statistic was lowest, the number of times the 
predicted arithmetic and quadratic means were closest to 
those of the actual distribution, and the number of times that 
the standard deviation of the predicted distribution was 
closest to that of the actual distribution. For the x%nd 
Kolmogorov-Smhov calculations, each check was done for 
the entire distribution and also for the upper and lower 
quartiles. 

It is easy to pick one's favorite test statistic and then 
comparatively rank one model above or below another based 
on it, Unfortunately, this does not tell the whole story of 
how the model performs on various segments of the data. To 
better grasp this, we calculated three indicators of 
performance along the entire diameter distribution. In each of 
the following indicators, error is calculated as the predicted 
value minus the actual value (a positive error indicates 
overprediction). The first is average error for each diameter 
class. It is an indicator of bias. The second is the average 
absolute value of errors. It provides an indicator of the 
typical misfits of the model when positive and negative 
values are not allowed to cancel. Lastly, the maximum 
absolute value of an error allows one to see how poorly the 
model can perform in extreme cases. 

Beyond these tests of prediction quality, we subjected each 
methodology to a sensitivity analysis. This was done by 
comparing the predicted probabilities for each diameter class 
to the same prediction when the input values for age, height 
of dominant trees > 1 in. in diameter, and number of trees per 
acre > 1 in. in diameter were each individually varied by a 10- 
percent increase and a I O-percent decrease. These 
differences were observed by diameter class. The effect this 
procedure had on basal area, arithmetic mean d.b.h., and 
quadratic mean d.b.h. was also examined for each site type 
and for all sites combined. 



Results and Discussion The Weibull distribution with pameters  recovered from 
stand-distribution characteristics relies on prediction 

The results of the trained NN are contained in FORTRAN equations of various stand pmameters. These prediction 
subroutines not shown in this paper because of their large equations are presented in figure 3 for each of the three data 
size involving one parameter for every comection. There are sets. 

eters for old-field sites, 120 parmeters for cutover 
sites, and 170 parameters for prepared sites. The Weibull dist~bution with regression predicted 

parameters produces actual prediction equations for the 

~ ~ ~ _ _ ~ _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  Old Field .......................... ..................... 

+ 0.0461age -- 

+ 0.0097age -- 

+ 0.008 1 age - - 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ U _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  Site Prepared ....................... ...................... 

0.027 1 age - - 

+ 0.0007 age + --- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Cutover ...................................... ------- 

+ 0.0 17 1 age + ------- 

+ 0.0 165 age + ---- 

+ 0.0175age +------- 

Figure 3-Equation sets for predicting the minimum, arithmetic, and quadratic mean d.b.h. in inches from age, surviving trees 
per acre (tpa), and average height in feet of dominant and codominant trees (h,) for the three longleaf pine plantation data 
sets. 



___--------------------------------------------- (')Id Field ----- - ------ --- ---- ----------------------------- 

a = 0.46, R' = 0.00, sy = 0.45 

b = 8.7143 + 0.2343age - 0.0289age(ln tpa) - 

lnc =1.7780------ 

__------------------------------------------- Site Prepared --------------------------------------------- 
a =  0 . 2 4 , ~ ~ =  O.OO,sy =0.53 

_---------------------------------------------- Gutover ............................................... 
a = 0.33, R* = 0.00, s, = 0.86 

b = 8.939 + 0.4232 age - 0.0439age(ln tpa) - 

In c = 1.3879 -- 

Figure 4-Equation sets for predicting the a, b, and c parameters of the Weibull distribution from age, surviving trees per acre (tpa), and 
average height in feet of dominant and codominant trees (hd) for the three longleaf pine plantation data sets. 

Weibull parameters. Figure 4 presents the prediction 
equation sets for each of the three data sets. 

The first comparison of note is a graphical examination of the 
performance of various diameter-distribution recovery 
methods. Figures 5 and 6 show the three predicted 
distributions a s  lines against a gray backdrop of actual 
example distribution. Figure 5 shows a unimodel distribution 
and simply illustrates that all of the examined methods 
produce a smooth curve that does a fair job of modeling the 
intended distribution. Figure 6 shows a multimodel 
distribution that no method fits very well, but it illustrates 
the flexibility of the NN to fit multimodel distributions. In 
each, the NN provided the best fit based on the x-est 
statistic. 

Mathematical measures of difference are shown in table 2. 
All of the models provided very good fits to the actual 
distributions, but the NN was best by almost all measures. 

Figure 7 is a plot of the average error (or bias) by diameter 
class for each of the tested methodologies. All of the models 
are least accurate in the smaller diameter classes and most 
accurate in the larger. It can also be seen that the regression 
method has the greatest deviation and the NN the smallest. 

Figure 8 shows the average absolute deviations that result 
from each of the three methods. When the positive and 
negative deviations are not allowed to cancel each other out, 
the average errors are much greater, but still the largest 
deviations occur in the smaller diameter classes where they 
have the least influence on volume and value. By this 
measure, all of the metkods are about equal. 

Both figures 7 and 8 show average performance of the 
presented methodologies. Figure 9 shows the worst-case 
performance of them. Once again, the lowest accuracy is in 
the smallest diameter classes and the methods are all about 
the same. The maximum deviations are strongly negative and 
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Figure 5-Three methods of predicting a diameter distribution compared to an actual unimodel distribution fkom a cutover 
site at age 2 1, with a height of dominant trees equal to 48 feet and 790 trees per acre. 
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Figure &Three methods of predicting a diameter dislribution compared to a complex multimodel distribution from a cutover 
site at age 43, with a height of dominant trees equal to 8 1 feet and 334 trees per acre. 



Table 2Corne  mathematical. measures of difference for artificial neural networks and two methods 
of fitting Weibull distributions 

Comparator 
Neural Parameter Regression 
network recovery Weibull W&bu11 

M ean-squared error 
Fit index 
Generalized R2 
Model class same as actual 
Percentage of trees in model class closest to actual 
Percentage of trees in lower quartile closest to actual 
Percentage of trees in upper quartile closest to actual 
Lowest x2 
Lowest x' in lower quartile 
Lowest x2 in upper quartile 
Lowest Kolmogorov-Smirnov statistic 
Lowest Kolmogorov-Smirnov statistic in lower quartile 
Lowest Kolmogorov-Smirnov statistic in upper quartile 
Arithmetic mean d.b.h. closest to actual 
Quadratic mean d.b.h. closest to actual 
Standard deviation of d.b.h. closest to actual 

disturbingly large. The strong negative bias shows that one 
large error encountered is the presence of trees in a diameter 
class when none is predicted. One cause of this is that, in 
general, smaller diameter trees grow or die out over time, but 
there are several cases where a small diameter tree will 
stagnate and neither grow nor die. The ability to predict this 
phenomenon would greatly enhance our ability to model the 
diameter distributions of longleaf pine stands. 

Our results show that NN can perform at least as well as 
traditional methods and often better. They may be reducible 
to nonlinear models (Sarle 1994), however unwieldy, but their 
strength is that the model form does not have to be specified 
in advance. This is a great advantage because, in spite of 
many efforts in process modeling, we still do not understand 
the processes of growth that would allow us to create 
models not tied to empirical data. Even the Weibull function 
has no biological meaning. It is simply a mathematically 
handy fknction with the ability to assume a variety of 
appropriate shapes (Weibull 195 I). 

There are three principal weaknesses in NN as used in this 
paper. The first is that although a model does not have to be 
specified, the number of hidden nodes and layers and the 
transfer function to be used still must be determined. A 
correct choice of options can make a great difference in a 
modeling effort's success. Also, there are many rules of 

thumb for selecting variables, but it really comes down to a 
matter of trial and error. 

The second limitation is that one cannot count on some of 
the desired constraints that can easily be imposed by 
mathematical model selection. Constrained least squares 
d.b.h. moment-recovery algorithms such as those presented 
in Matney and others (1 990) and in Matney and Belli (1995) 
provide for the calculation of logically constrained residual 
and future d.b.h. distributions. On the other hand, natural 
constraints built into the data sets may allow for 
development of NN models that are almost logically 
constrained without imposing formal constraints. For many 
data sets, the strength of the data should generate NN 
solutions that are naturally constrained. In general, an 
unconstrained solution to a problem will have lower mean- 
square error than a constrained solution to the same 
problem. In linear space, a constrained model with one or 
more parameter constraints imposed always has a higher 
mean-square error than the same model with no parameter 
constraints. Hence, unnecessary constraints should not be 
imposed on a solution to a problem. However, NN are 
nonlinear and the theory for linear systems is not directly 
applicable. It is possible to have a constrained nonlinear 
estimator with lower mean-square error than the same model 
without parameter constraints. 
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Figure 7-Average error in probability estimates (predicted to actual) in each diameter class for each of three 
methods of estimating diameter distributions. 
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Figure 8-Average absolute value of the error in probability estimates in each diameter class for each of three 
methods of estimating diameter distributions. 
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Figure 9-Maximum absolute value of error in probability estimates (predicted to actual) in each diameter class for 
each of three methods of estimating diameter distributions. Absolute values were used to determine magnitude, but 
signs were kept to indicate direction. 



If constraints are necessary, they can be difficult to apply to 
the output of a NN model when using commercial software. 
Users of grourth-and- yield models require that the residual 
stand after-thinning and before-thinning diameter 
distributions be logical in relation to each other. Likewise, 
they insist that projected diameter distributions be logically 
related to the initial diameter distribution. For thinned stands 
this means, for example, that the estimated diameter 
distribution should not have more trees in a diameter class 
after thiming than before thinning, and that the after- 
thinning stand should have the desired basal area or trees 
per acre. For growth projections, users expect the future 
distribution to shift to the right and have a nondecreasing 
mean diameter. The NN methods already are strictly 
empirical; and achieving these kinds of constraints is easy if 
one is willing to use additional programming in computer 
models when necessary, or to combine neural methodologies 
with other, more traditional statistical approaches. 

The third limitation is that the network that results from a 
training program appears to be a black box. You can see the 
inputs and the outputs, but the process of moving from one 
to the other is not obvious. In this case, it is implemented as 
a C or FORTRAN program, but an examination of this 
program just reveals so many interacting equations that clear 
relationships are hard to determine. Fortunately, this latter 

difficulty can be easily addressed through the use of 
sensitivity analysis (Klimasauskas 199 1 ). 

We conducted a sensitivity analysis on the input parmeters 
of age, height of dominant trees, and number of trees per 
acre to see what effect changes in these parameters would 
have upon stand basal area, arithmetic mean d.b.h., and 
quadratic mean d.b.h. These results for all site types 
combined are shorn in table 3. This table shows that all of 
the methods are very similar in their sensitivity to input, with 
only the age influence on basal area showing a change that 
exceeded the change in input. Also it shows that trees-per- 
acre has a moderate influence, and the height of dominant 
trees has almost none. These results are rather similar across 
all three site types (not expanded here) with old-field sites 
being the least sensitive and prepared sites the most. 

Conclusion 

Artificial NN are an excellent alternative to the traditional 
method of predicting unthinned stand-diameter distributions 
with estimated Weibull probability functions. The superiority 
of the NN arises because the Weibull is not the correct 
model for the data in this study. On other data sets, when the 
Weibull distribution fits better, either the NN or Weibull 

Table 3-Percentage deviations in some key outputs caused by 10-percent changes in the input 
variables for each of the three examined models 

Result changed 

Age Height of dominant trees Trees per acre 

Increase Decrease Increase Decrease Increase Decrease 

Basal area 
Arithmetic mean d.b.h. 
Quadratic mean d.b.h. 

Basal area 
Arithmetic mean d.b.h. 
Quadratic mean d.b.h. 

Basal area 
Arithmetic mean d.b.h. 
Quadratic mean d.b.h. 

Artificial neural network 

Parameter recovery Weibull 

Regression Wei bull 



probability distribution approaches will perfbrm well. The 
clear advantage of the NN over the parametric function 
modeling techniques is that in almost all cases a solution 
will minhize the RMS error. If the Weibull dishbution or 
other ssumed probability function do not fit the data, the 
modeler is left with the very difficult task of piecing together 
and/or finding a new parametric model form for the problem. 

The next evolutionary step for applying NN in growth-and- 
yield modeling is to find network models for estimating 
diameter distributions after thinning and for estimating 
future diameter distributions using the current distribution. 

Feedforward networks, as used in this paper, are just one of 
many kinds of NN; and investigation of other forms may lead 
to even better results. The NN theory is a rapidly expanding 
arena of study that will find application in many fields. The 
field of forestry is an area ripe with potential for NN 
exploration. 
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Artificial neural networks (NN) are becoming a popular estimation tool. Because they require no 
assumptions about the form of a fitting function, they can free the modeler from reliance on 
parametric approximating functions that may or may not satisfactorily fit the observed data. To 
date there have been few applications in forestry science, but as better MN software and fitting 
algorithms become available, they may be used to solve a wide variety of problems-particularly 
problems where the underlying relationship between predicted and predictors is unknown. We 
benchmark tested an alternative to the traditional Weibull probability distribution function, 
diameter-at-breast-height moment, and direct parameter prediction models for approximating 
stand-diameter distributions. Using a feedforward backpropagation network, we demonstrated that 
NN are a somewhat better option. Unlike Weibull approximations, NN solutions cannot easily be 
mathematically constrained to match known reality constraints, but this difficulty is easy to 
overcome in practice. 

Keywords: Connectionist models, parallel distributed processing systems, parameter recovery, 
Weibull distribution. 
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