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Abstract 

Due to logistical and cost constraints, acidic deposition is rarely measured 
at forest research or sampling locations. A crucial first step to assessing 
the effects of acid rain on forests is an accurate estimate of acidic 
deposition at forest sample sites. We examine two methods (direct and 
indirect) for estimating sulfate deposition at atmospherically unmonitored 
forest sites. The direct method only uses directly measured deposition 
data, while the indirect method additionally incorporates precipitation 
measurements &om a spatially denser network of monitoring sites. Sulfate 
deposition values were estimated by point kriging using both the direct and 
indirect methods. By using the supplemental data from the precipitation 
monitoring network, estimates of sulfate deposition improved substantially, 
particularly at sites that are relatively isolated to the acid deposition 
monitoring network. Cross-validation procedures indicate that by using 
the indirect method, a reduction of approximately 20 to 25 percent in the 
predicted error sum of squares occurred, 

Keywords: Acid deposition, geostatistics, interpolation, monitoring, 
variogrms. 

Introduction 

In many studies that involve sampling within a given area, 
sample independence fbndamental to much of classic 
statistical analysis cannot be assumed because the observed 
variables are spatially correlated. Regionalized variable 
theory and geostatistical analysis (Matheron 197 1) provide a 
way to use spatial correlation to derive unbiased estimates 
of the observed variable at unmeasured points. The 
techniques involved have been applied in a wide range of 
disciplines, from toxic waste management to population 
biology, and the unifying theme was spatially correlated 
variables. 

Acidic deposition is rarely measured at forest research or 
sample locations because monitoring remote forest sites is 
difficult, time-consuming, and expensive. These logistical 
problems push the costs over budgets. An accurate estimate 
of acidic deposition at these sites is critical to assessing the 
effects of acid rain on forests. 1n this paper, we examine 
two methods (direct and indirect) for estirnating sulfate 
deposition and develop contour maps of sulfate deposition 
for Pennsylvania. These estimates can then be used to 
estimate sulfate deposition at unmonitored forest research 
sites within the State. 

The two methods presented are not the only procedures 
capable of producing valid deposition estimates. For 
example, cokriging could be used. Cokriging is most useful 
when a highly correlated covariable is sampled intensely. 
However, available software is limited and cokriging is 
poorly understood by potential users because the statistical 
notation is complex (Stein and Corsten 1991). We present 
the indirect method as an alternative to cokriging. The 
indirect method can be implemented using the univariate 
kriging procedures more readily understood by potential 
users, and user-friendly software for implementing 
univariate kriging is available from numerous sources. 

Estimation Procedures 

Geostatistical analysis involves two basic steps: 
(1) modeling the degree of similarity among measured 
points as a function of their separating distance, and 
(2) interpolating values among measured points using 
the knowledge of their spatial correlation in the estimation 
procedure. The degree of similarity between points is 
evaluated by using the semi-variance statistic, y(h), which 
is defined as half the expected squared difference between 
values a given distance, h, apart: 

where 

z(.J = measured sample value at point x, (x, can be 
multidimensional), 
z(x, + h) = sample value at a point a distance of h from x,, 
and 
N(h) = total number of pairs of points within an interval h of 
each other. 

The plot of y @) against h is the semi-variogram, and a 
model of the semi-variance is fit to this set of points. 



Figure 1-Theoretical semi-variogram defined as a linear model, 
illustrating (a) the range, (c,) the nugget variance, and (c,) the sill. The 
sill c,=c,+c, c is the slope term of the linear model. 

A theoretical semi-variogram (fig. 1) has three parameters, 
the nugget (c,), sill (c,), and range (a). In most cases, y (h) 
increases with increasing h up to some maximum; this 
maximum is approximately the variance of the variable of 
interest. The distance at which the semi-variance levels off 
is the range (a), the separation distance at which sample 
values appear to be spatially unconelated. Although y(0) = 

0 by definition, some finite positive value occurs for y (h), 
as h approaches 0. This value is the nugget or intercept (c,) 
and embraces the variance that occurs at distances smaller 
than the sampling intervals. The height above the nugget at 
which the semi-variance is considered constant is the sill 
(~1)- 

Several variogrm models, such as the spherical, Gaussian, 
and exponential, guarantee a positive definite covariance 
matrix for any set of lags (Journel and Huijbregts 1978). 
We selected a spherical model based on its previous success 
in fitting variogram models to deposition data (Haas 1990). 
This model was used for all semi-variograms in this 
analysis: 

Modeling the semi-variogram is a critical step towards 
interpolation by kriging-an algorithm for determining the 
weigh@ to be assimed to each point in the interpolation 
procedure, If variable Z has been measured at locations x,, 
x ,,,.., x,, resulting in a set of sample values z(x,), z(x,) ,,.,, 
z(x3, the estimate of the value of Z at some unmeasured 
point x,, is a linear combination or weighted average of all 
the observed variables: 

i(xo) = AIz(xI) + A&) +... + A&xn) , (3) 

where 

Ai = coefficients or weights associated with each of the 
observed values. 

In kriging, the weights (A,) are chosen so the estimator is 
unbiased and the error associated with the estimate is less 
than that of any other linear sum (i.e., minimum variance). 
An unbiased estimate P(xJ must equal E[z(xJ], therefore, 
the weights A, must sum to 1. The variance is minimized 
subject to this constraint (i.e., ni = I)  by using a 
Lagrangian multiplier p. A solution is found when 

The allocation of the weights among points is determined by 
the semi-variogram model. Higher weights are assigned to 
samples closer to the point interpolated. Kriging is a 
minimum variance, unbiased estimator, and an exact 
interpolator because if the point being estimated has been 
sampled, the weight (A,) for all other points will be set to 
zero and the kriging algorithm will return the sample value. 

In determining which semi-variogram model to use, two 
factors must be remembered: (1) lag distances h must 
provide a sufficient number of points to produce reliable 
estimates of y(h), particularly at small lags (in small data 
sets this requirement often forces the use of fairly large lag 
intervals); and (2) because only the few nearest points are 
generally used for kriging estimates, the semi-variogram 
needs to be accurate only at the shortest lag distances, and 
the fit of the model at distances greater than half the 
maximum separation of points in the data set is usually 
inconsequential (Burgess and Webster 1980). 

Direct and Indirect Methods tllf Deposition Estimation 

The obvious and most common method of estimating acid 
deposition values at unmonitored sites involves 



Figure 2-Sample locations of the pollutant monitoring network (24 sites) 
and the precipitation monitoring network of the National Weather Service 
(54 locations). 

interpolating values between existing deposition monitoring 
sites. This direct method only uses directly measured 
deposition data. Several different methods for calculating 
the weights have been developed including inverse squared 
distance weighted averaging, Thiessen polygons, least 
squares polynomials, optimal interpolation, multiquadratic 
interpolation, and various forms of kriging (Vong and others 
1989). Using specific criteria, Tabios and Salas (1985) 
compared these and other methods and found that kriging 
and optimal interpolation were better than other techniques, 
but no technique was unifomly the best. 

One of the major constraints to kriging (and many 
interpolation techniques) is the paucity of acid deposition 
data in any given area. This scarcity of data makes it 
difficdt to adequately detemine which model describes the 
spatial variability in the data, and subsequently, to 
accurately estimate deposition at umonitored sites. 
Developing a means of estimating deposition that would 
also use precipitation measurements would be advantageous 
for two reasons. First, these measurements are more easily 
obtained than deposition measurements. Second, the 
sampling network for precipitation measurements is much 
denser than that for deposition measurements. First 
proposed by Granat (1988) and discussed by Vong and 
others (1989), the indirect method uses both measurements. 
This method is based on the observation that the acid 
concentration field over a region tends to be much smoother 

(less variable) than the precipitation field, and that 
concenbation and precipitation are apparently not correlated 
(Graslat 1988). Because deposition is calculated as the 
product of volume weighted mean concentration (V 
of an ion and precipitation, the variability in deposition 
values over a region should be closely associated with 
precipitation. The indirect approach, then, is to estimate 
concentration at sites where only precipitation has been 
measured, then calculate deposition as the product of the 
estimated V W G  and the known precipitation, The 
resulting data set represents a denser sample, facilitating the 
use of interpolation techniques such as kriging. In this 
paper we estimate deposition values at 24 National Acid 
Deposition Program (NADP) monitoring sites in and around 
Pennsylvania using both methods and compare the results. 

Methods 

Volume weighted mean concentration of sulfate and mean 
annual precipitation values averaged over 3 years (1985-87) 
for 24 sites in and around Pennsylvania were obtained from 
the NADP data bank and fiom the Pennsylvania State 
Environmental Resources Research Institute (Lynch and 
others 1987). Additional mean annual precipitation values 
for the same 3 years were obtained from the National 
Weather Service (NWS) for 54 other sites in the same 
region (fig. 2). The longitude and latitude coordinates of 
each point were converted to Alber's conic, equal area 
projection coordinates (Pearson 1990) to accurately 
calculate distances between sample points. 

Sulfate deposition values were estimated by point kriging 
using both the direct and indirect methods. The validity of 
each technique was evaluated by cross-validation. To cross- 
validate, each sample point from the data set was 
successively dropped and its value was estimated from the 
remaining (n- 1) points. The predictive ability of the two 
interpolation techniques can then be evaluated by comparing 
the estimated with the observed value using the Predicted 
Error Sum of Squares (PRESS) statistic (Green 1983): 

n 

PRESS = C [z(xJ - .f(x)j2 . 
r = I  

(5) 

The percent improvement (PI) using the indirect method 
versus the direct method can be estimated: 



(4 sample correlation afz(x),?(x) near 1, and 

(e) sample correlation ofZ(x),[z(x) - Z(x)] 1 ai near 0 . 

Distance (h) 

Figure 3-Variogram for the direct method. Model is based on the 24-site 
pollutant monitoring network. 

The direct versus indirect estimation methods were 
evaluated by the following two criteria: (1) comparison of 
the mean and variance of the observed and interpolated 
values, and (2) the sum of squared errors between observed 
and interpolated values (PILESS statistic). 

The semi-variance for sulfate deposition at the 24 monitored 
sites was calculated and a model for the semi-variogram was 
determined (fig. 3): 

3 h 1 h 
(h) = 0.05 + 0.5[-(-) - -(-)'I, 0<h5400 

2 400 2 400 
(h) = 0.55 . 

(7) 
h>400 

Each point was then estimated by ordinary point kriging 
using the cross-validation procedure described, and the 
squared diRerence between the predicted and observed 
value was calculated. 

The sample correlation between concentration and 
precipitation was calculated and was not found significant 
(p = 0.43, n = 24). The semi-variogrm model for sulfate 
concentration was determined using the same five criteria 
(fig. 4): 

From this, kriged estimates of sulfate concentration at each 
of the 54 NWS sites were made (Fig. 5). Estimates of 
sulfate concentration were multiplied by mean annual 
precipitation values at the 54 NWS sites to estimate 
deposition. The semi-variogram for sulfate deposition was 
calculated from the resulting data set of 78 (24 NADP sites 
and 54 NWS sites) deposition values, with each of the 78 
sites treated as an observed value (Fig. 6):  

Choosing this semi-variogram model was based on the five 
criteria outlined by Myers and others (1982) for semi- 
variogram selection: 

1 "  (a) -z [z(x,) - i(x,)] should be 0, 
n i=1 

(6) [z(xi) - i(xj)I2 should be small, 

Distance (h) 

i(Xi)12 should be 1, 
Figure 4-Variograrn for sulfate concentration. Model is based on the 24- 
site pollutant monitoring network. 



Figure 5-Kriged estimates of sulfate concentration. Response surface is based on the 24-site pollutant monitoring network. 

This semi-variogm model was used to point krige 
deposition estimates for each of the 24 measwed sites. The 
cross-validation procedure and the squared difference 

Distonce (h) 
between the predicted and observed values were calculated. 

Figure CVariogram for the indirect method. Model is based on a 
network of 78 locations. 



Table 14omparison of the mean and standard deviation of the observed and kriged estimates of sulfate 
deposition and the predicted error sum of squares of the kriged estimates using both the direct and indirect 
approach 

Observed Estimated PlZl2SS 
Method Semi-variogrm Mean SdO Mean SdO PRESS  PA^ 

Direct Equation (2) 3.25 1 0.608 3.244 0.422 4.353 1.870 
Indirect Equation (4) 3.251 .608 3.373 -423 3.33 1 1.426 

Percent improvement, equation (1) 23.5 23.7 

'sd is abbreviation for standard deviation. 
"A is standard abbreviation for Pennsylvania. 

Table 24omparison of the mean and standard deviation of the observed and kriged estimates of sulfate 
deposition and the prediction error sum of squares of the kriged estimates using both the direct and indirect 
approach 

Observed Estimated PREiSS 
Method Semi-variogram Mean Sda Mean Sda PRESS  PA^ 

Direct Equation (4) 3.25 1 0.608 3.253 0.408 4.324 1.767 
Indirect Equation (2) 3.25 1 ,608 3.353 .42 1 3.35 1 1,477 

Percent improvement, equation (1) 23 .O 2 1 .O 

" Sd is abbreviation for standard deviation. 
PA is standard abbreviation for Pennsylvania. 

Results and Discussion 

Table 1 compares the cross-validation results. The mean of 
the estimates using the direct method more closely 
approximates the true mean of the data and the standard 
errors of the estimates from the two different methods are 
essentially equal. However, the difference in the predicted 
error sum of squares indicates that while for most 
observations the two methods are practically equivalent, for 
a few extreme or unusual cases the indirect method more 
closely predicts the true deposition value. 

The difference between the two methods does not lie simply 
in the choice of variogram models, because the difference in 
predicted error sum of squares remains when the semi- 
variogram model derived from the indirect approach is 
applied in the direct method and vice versa (table 2). The 
difference seems to lie in how the indirect method utilizes 
additional data, shifting the weighting scheme for points 

neighboring certain extreme or unusual data (precipibtion) 
values. Because the indirect method uses a denser network 
of deposition values to make estimates, it provides more 
accuracy, particularly at unique or relatively isolated sites. 
By using the denser precipitation network, the number of 
sample points within a certain distance of any given point 
will either increase or remain unchanged. 

If the assumption that sample points close together tend to 
be more alike than points father apart holds (i.e., the data 
are spatially correlated), as the semi-variograms indicate, 
increasing the number of points at a close range can 
improve the estimates of deposition. 

Contour maps drawn using the two methods show a similar 
pattern of deposition in the western and central part of the 
region (fig. 7). Insufficient data are available to predict 
values for the far northeast corner using the direct method; 



Figure 7-44] sulfate deposition estimates using the direct method, and (B) sulfate deposition estimates using the 
indirect method. 



therefore, the deposition maps differ radically in the east. 
Deposition estimates are greater and the deposition field 
less smooth using the denser network of data available 
through the indirect method. 

Conclusion 

The indirect method of estimating acid deposition was frrst 
proposed several years ago (Granat 1988) but has never 
been formally tested with actual data. This study shows that 
using supplemental data from a precipitation monitoring 
network to improve estimates of acid deposition can be 
effective, particularly at sites relatively isolated from the 
acid deposition monitoring network. Although the data 
used to supplement the deposition data in the indirect 
approach are not precise measurements, the increase in 
sampling density they provide appears to outweigh the 
uncertainty involved in using them. 
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Due to logistical and cost constraints, acidic deposition is rarely measured at forest research or 
sampling locations. A crucial first step to assessing the effects of acid rain on forests is an 
accurate estimate of acidic deposition at forest sample sites. We examine two methods (direct 
and indirect) for estimating sulfate deposition at atmospherically unmonitored forest sites. The 
direct method only uses directly measured deposition data, while the indirect method 
additionally incorporates precipitation measurements from a spatially denser network of 
monitoring sites. Sulfate deposition values were estimated by point kriging using both the 
direct and indirect methods. By using the supplemental data from the precipitation monitoring 
network, estimates of sulfate deposition improved substifntislly, particulaply at sites that are 
relatively isolated to the acid deposition monitoring network. Cross-validation procedures 
indicate that by using the indirect method, a reduction of approximately 20 to 25 percent in the 
predicted error sum of squares occurred. 
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