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The general linear model (GLM) is often used to test 
for differences between means, as for example when the 
analysis of variance is used in data analysis for designed 
studies. However, the GLM has a much wider application 
and can also be used to compare regression lines. The 
GLM allows for the use of both qualitative and quantitative 
predictor variables. Quantitative variables are continuous 
values such as diameter at breast height, tree height, 
age, or temperature. However, many predictor variables 
in the natural resources field are qualitative. Examples 
of qualitative variables include tree class (dominant, 
codominant); species (loblolly, slash, longleaf); and cover 
type (clearcut, shelterwood, seed tree).	

Fraedrich and others (1994) compared linear regressions 
of slash pine cone specific gravity and moisture content 
on collection date between families of slash pine grown 
in a seed orchard. Multiple comparison tests were applied 
to the slopes to examine specific differences between the 
families. Murthy and others (1997) compared the intercepts 
and slopes of light-saturated net photosynthesis response 
functions over time for loblolly pine grown under various 
combinations of moisture, nutrient, and CO

2
 treatments. 

 
The exact form of the regression model used in testing 
depends on the specific hypothesis under consideration. 
There are five alternative hypotheses to be considered in this 
kind of work, each based on a specific formulation of the 
regression model (table 1). The researcher must be careful to 
select the hypothesis that is pertinent to the question under 
study. The objectives of this paper are to: (1) present the 
underlying statistical methodology for developing the full 
and reduced models for testing simple linear regressions, 
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Introduction
 
Researchers who compare regression lines and 
corresponding model parameters are often not fully aware 
of the specific hypothesis being tested. Similarly, problems 
may arise in the formulation of the correct model or 
hypothesis test in the statistical software package being 
used by the researcher. Most statistical references such as 
Draper and Smith (1981) and Milliken and Johnson (1984) 
formulate the problem as a test of conditional error based on 
full and reduced models and specify an F-test upon which 
rejection of the hypothesis is based. In this approach, the 
populations for the regressions are considered classes of an 
independent variable, dummy variables are then defined, 
and a regression is developed with the dummy variables and 
their interactions with the independent variable.
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where
 

	 iy  = the ith observation for the dependent variable y,

	          1,2,3,...,i n= ,
	 ix  = the ith observation for the independent variable x,

	          1,2,3,...,i n= ,
	 n  = number of ( ,i ix y ) paired observations,

	 1iZ  = 1 if iy  and ix  are from treatment 1

		          0 if iy  and ix  are not from treatment 1,

	 2iZ  = 1 if iy  and ix  are from treatment 2

		           0 if iy  and ix  are not from treatment 2, and 

	 ε i = the residual error for observation i (assumed normal 	

	 with homogeneous variance for all regressions where
cov ,ε εi j( ) = 0  0 for i j )≠  .  

(2) define the five hypotheses for testing differences between 
regression lines, (3) present three alternative methods for 
performing the analysis while controlling experimentwise 
type I error by means of the Bonferroni approach, and 
(4) provide SAS code that shows in detail how these five 
hypotheses are formulated.

Full and Reduced Models

The methodology for testing hypotheses for differences 
between simple linear regressions will be illustrated 
assuming 3r =  regression lines are to be compared, with 
extensions to higher or lower dimensions of r relatively 
straightforward. Suppose a researcher is interested in 
comparing regression lines between three treatments ( 3r = ).
The general model can be defined as
 
y x Z Z Z x Z xi i i i i i i i i= + + + + + +α α β β γ γ ε

0 1 1 1 2 2 1 1 2 2
    (1)

Table 1— The fi ve hypotheses used for testing differences between regression lines (all hypotheses assume the usual 
regression assumptions of normality, independence and homogeneity of variances)

Hypothesis    Assumptions Model (full and reduced)       H0         H1

1. All slopes are 
equal

All intercepts are 
equal but unknown y x Z x Z xi i i i i i i= + + + +α α γ γ ε

0 1 1 1 2 2

y xi i i= + +α α ε
0 1

γ γ
1 2

0= = At least one
γ γ

1 2
0  or  ≠ 

2. All slopes 
are equal

All intercepts are 
not necessarily 
equal but unknown

y x Z Z
Z x Z x

i i i i

i i i i i

= + + + +
+ +

α α β β
γ γ ε

0 1 1 1 2 2

1 1 2 2

y x Z Zi i i i i= + + + +α α β β ε
0 1 1 1 2 2

γ γ
1 2

0= = At least one
γ γ

1 2
0  or  ≠ 

3. All intercepts 
are equal

All slopes are 
equal but unknown y x Z Zi i i i i= + + + +α α β β ε

0 1 1 1 2 2

y xi i i= + +α α ε
0 1

β β
1 2

0= = At least one
β β

1 2
0  or ≠ 

4. All intercepts 
are equal

All slopes are not 
necessarily equal 
but unknown

y x Z Z
Z x Z x

i i i i

i i i i i

= + + + +
+ +

α α β β
γ γ ε

0 1 1 1 2 2

1 1 2 2

y x Z x Z xi i i i i i i= + + + +α α γ γ ε
0 1 1 1 2 2

β β
1 2

0= = At least one
β β

1 2
0  or ≠ 

5. All intercepts 
are equal and all 
slopes are equal

None y x Z Z
Z x Z x

i i i i

i i i i i

= + + + +
+ +

α α β β
γ γ ε

0 1 1 1 2 2

1 1 2 2

y xi i i= + +α α ε
0 1

γ γ
1 2

0= =

β β
1 2

0= =

At least one
β β γ γ

1 2 1 2
0,  or  ≠ ,   
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The regression parameters to be estimated from the data 
are α α β β γ γ

0 1 1 2 1 2
, , , , ,  and . The dummy variables are 

Z Zi i1 2
  and . Equation 1 defines all three treatment regression 

lines in terms of the third treatment regression line which 
serves as a baseline for the other treatment regressions. 
The parameters α α

0 1
 and are known as the intercept and 

slope parameters, respectively, and correspond to the third 
treatment regression. The parameters β β

1 2
  and correspond 

to deviations from the intercept (α0
) for treatments 1 and 2, 

respectively. Similarly, the parameters γ γ
1 2
  and correspond 

to deviations from the slope (α1 ) for treatments 1 and 2, 
respectively. Thus, for treatment = 3, Z Zi i1 2

0 0    = =and , 
and the regression equation is given as

                         y xi i i= + +α α ε
0 1

                           (2)

 
For treatment = 1, Z Zi i1 2

1 0      = =and , and the regression 
equation is given as 
 
y x x xi i i i i i= + + + + = +( ) + +( ) +α α β γ ε α β α γ ε

0 1 1 1 0 1 1 1    (3)

where  
 
(α β

0 1
+ ) and (α γ1 1+ ) correspond to the intercept 

and slope for treatment = 1. Thus,
 
β γ

1 1
  and  are the 

deviations (increase or decrease) in the intercept and slope, 
respectively, for treatment = 1 as compared to treatment = 3. 
Similarly, treatment = 2 is defined where Z Zi i1 2

0 1      ,= =and

yielding
	

y x x xi i i i i i= + + + + = +( ) + +( ) +α α β γ ε α β α γ ε
0 1 2 2 0 2 1 2

 (4)

where 

(α β
0 2
+ ) and (α γ

1 2
+ ) correspond to the intercept 

and slope for treatment = 2. Thus, β γ
2 2
 and  are the 

deviations (increase or decrease) in the intercept and slope, 
respectively, for treatment = 2 as compared to treatment = 3. 

The extension to the general case of r treatment regression 
lines results in a general model consisting of r − 1 dummy 
variables structured analogously to those in equation 1. If 
this is extended to the multiple linear regression where there 
are p independent x variables, there would be a total of
 

p r p r p+( ) + −( ) +( ) = +( )1 1 1 1
                   

(5)

parameters in the multiple linear regression model.

Hypotheses

The exact methodology for comparing regression lines 
depends on the specific hypothesis that the researcher is 
testing. The hypotheses under consideration in this paper 
can be developed from equation 1 by comparing full and 
reduced models. The hypotheses and a priori assumptions 
about the intercepts or slopes, or both, will define the full 
model. All appropriate parameters and associated dummy 
variables must be in the full model. Depending on the 
assumptions, some parameters of model (1) may not be in 
the full model. In contrast, the reduced model is formed 
by allowing the parameters in question to take the values 
specified in the null hypothesis H

0
. Table 1 lists the five 

hypotheses to be tested, corresponding a priori assumptions 
and the full and reduced models used to test the hypotheses 
under consideration. A more thorough review of the 
hypotheses to be tested is now presented. 

Hypothesis 1: all slopes are equal 

Assumptions: all intercepts are equal and all are unknown 
(implies a single common intercept ( )α

0
 and, thus, 

β β
1 2

0= = )

Full model: y x Z x Z xi i i i i i i= + + + +α α γ γ ε
0 1 1 1 2 2

Reduced model: y xi i i= + +α α ε
0 1

Statistical hypothesis: H
0
: γ γ

1 2
0= =

		         H
1
: at least one γ γ

1 2
0 or ≠     

Example: To investigate the effect of three fertilizers 
(qualitative variable) on the total biomass growth ( )yi  of 
young loblolly pine, 1-year-old, uniform, nursery grown 
seedlings were randomly assigned to the three fertilizers. 
Each month ( )xi , for a year, a tree was removed from each 
treatment and its biomass measured. It was desired to test 
the hypothesis that the three rates of height growth (slopes) 
associated with the fertilizers were equal, assuming that  
the initial biomasses (intercepts) were identical for the  
three fertilizers. 

Hypothesis 2: all slopes are equal

Assumptions: all intercepts are not necessarily equal and  
all are unknown

Full model: y x Z Z Z x Z xi i i i i i i i i= + + + + + +α α β β γ γ ε
0 1 1 1 2 2 1 1 2 2

Reduced model: y x Z Zi i i i i= + + + +α α β β ε
0 1 1 1 2 2

  
Statistical hypothesis: H

0
: γ γ

1 2
0= =

		         H
1
: at least one γ γ

1 2
0 or ≠    
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Example: To investigate the effect of three fertilizers on 
the growth rate of young loblolly pine, 1-year-old, nursery 
grown seedlings were randomly assigned to the three 
fertilizers. However, the uniformity of the seedlings was in 
doubt, so it was believed that at least one of the fertilizer 
treatments might be favored by having larger size seedlings 
assigned to it. Each month over the course of the growing 
season a tree was removed from each treatment and 
measured for biomass. It was desired to test the hypothesis 
that the three rates of height growth (slopes) were equal, 
assuming that the initial biomasses (intercepts) were not 
necessarily identical.

Hypothesis 3: all intercepts are equal

Assumptions: all slopes are equal and all are unknown 
(implies a common slope ( )α

1
 and, thus, γ γ

1 2
0= = )

Full model: y x Z Zi i i i i= + + + +α α β β ε
0 1 1 1 2 2

Reduced model: y xi i i= + +α α ε
0 1

Statistical hypothesis:  H
0
: β β

1 2
0    = =  

		          H
1
: at least one β β

1 2
0   or ≠ 

Example: This is analogous to the typical analysis of 
covariance model (ANCOVA) where the treatment effect 
is analyzed after adjusting for a covariate. To study the 
effect of fertilization on loblolly pine growth, researchers 
randomly assigned seedlings to one of three fertilizers 
(qualitative variable). The study called for growing 
the seedlings for 2 years, at which point they would 
be harvested and weighed for final total biomass ( ).yi   
However, it was believed that initial seedling biomass 
might affect final seedling biomass in addition to any 
fertilizer effect. Before planting, the seedlings were weighed 
for initial biomass, which was treated as a covariate 
corresponding to ( )xi and used to adjust the treatment 
estimates of final total biomass. In the classical ANCOVA 
it is assumed that the slopes are equal across the treatments, 
and this assumption leads to a test of the treatment 
intercepts. Conclusions about the intercepts can be extended 
to the treatment effects because the slopes are assumed 
equal. However, when the slopes are not necessarily equal, 
as in hypothesis 4, a much more complex situation occurs 
which requires caution when extending conclusions about 
the intercepts to the treatment effects. 
 

Hypothesis 4: all intercepts are equal

Assumptions: all slopes are not necessarily equal and all  
are unknown

Full model: 
y x Z Z Z x Z xi i i i i i i i i= + + + + + +α α β β γ γ ε

0 1 1 1 2 2 1 1 2 2

Reduced model: y x Z x Z xi i i i i i i= + + + +α α γ γ ε
0 1 1 1 2 2

Statistical hypothesis: H
0
: β β

1 2
0= =  

		         H
1
: at least one β β

1 2
0 or ≠     

Example: Hypothesis 4 is similar to hypothesis 3 except 
hypothesis 4 does not assume that the slopes of the three 
treatments are equal. Thus, as explained previously, any 
conclusions about the intercepts cannot be extended to the 
treatment effects because the slopes are not assumed equal. 
This is analogous to an ANCOVA problem with unequal 
slopes and requires comparing the treatments at a minimum 
of three values of the covariate which is beyond the scope 
of this paper. Interested readers are referred to Milliken and 
Johnson (2002). 

Hypothesis 5: all intercepts are equal and all slopes  
are equal

Assumptions: none (except for the usual normality, 
independence and homogeneity of variances)

Full model: 

y x Z Z Z x Z xi i i i i i i i i= + + + + + +α α β β γ γ ε
0 1 1 1 2 2 1 1 2 2

Reduced model: y xi i i= + +α α ε
0 1

Statistical hypothesis: H
0
:  β β γ γ

1 2 1 2
0= = = =

		         H
1
: at least one β β γ γ

1 2 1 2
0, ,   or ≠  

Example: This hypothesis tests the entire regression line 
simultaneously to determine if either the intercepts or 
slopes, or both, are different. This is a joint test for both 
intercept and slope parameters as opposed to separate tests 
as defined in the previous four hypotheses. Forest inventory 
often uses a regression model to predict height ( )yi  from 
diameter at breast height ( ).xi  For example, a height model 
for loblolly pine is to be developed for different regions of 
the Southeastern United States. It is often advantageous to 
determine whether regional differences exist or whether the 
data should be pooled, with one common model fitted across 
all regions. In this situation, both the intercept and slope 
should be tested simultaneously (the entire regression line). 
Note that this is not equivalent to testing the hypothesis 
of equal intercepts (hypothesis 3 or 4) and then testing the 
hypothesis of equal slopes (hypothesis 1 or 2).

Methodology

As with most statistical analyses, there are alternative 
methods for testing regression lines that give identical 
results, although they may vary in their complexity and 
completeness in addressing the desired hypothesis test. 
Three methods that are presented here include the test of 
conditional error, Type III F-tests, and contrasts. The test of 
conditional error is very informative because it explains the 
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foundations underlying the hypotheses tests, but it is quite 
cumbersome if many sets of regression lines are to be tested. 
The Type III tests are simple to perform using a statistical 
software package but give little insight into what is actually 
being tested and are quite limited for some hypotheses 
when they do not yield the full range of comparison tests. 
Due to the limitations of these two methods, contrasts are 
proposed as the method of choice for testing hypotheses 
about differences between regression lines. They are simple 
to perform, can test all possible combinations of regression 
lines and parameters, and make it clearer as to what is 
actually being tested. 

Test of Conditional Error

Textbooks about regression usually present the test of 
conditional error to test these hypotheses (Draper and Smith 
1981, Milliken and Johnson 1984). This test is based on 
the full and reduced models’ sum of squares error (SSE) 
and degrees of freedom for error (DFE). These are given 
as SSEF  and DFEF  and SSER  and DFER , for the full and 
reduced model, respectively. The reduced model contains 
fewer parameters; hence, SSER  will always be greater than 
SSEF  andDFERwill be greater than DFEF .  The F-test is 
used to compare the sum of squares error for the full and 
reduced models and is given as

F

SSE SSE
DFE DFE

SSE
DFE

R F

R F

F

F

=

−( )
−( )

                     

(6)

This F-statistic is then compared to F*, known as the upper 
critical F-value of the F-distribution with significance level 
α and numerator and denominator degrees of freedom of  
DFE DFER F−  and DFEF , respectively. Two decision rules 
may be used for rejecting the null hypothesis (H

0
): (1) if F 

> F* then reject H
0 
or (2) if the p-value of the test ≤ α  then 

reject H
0
. All hypotheses for differences between regression 

lines can be tested using this approach because it is fairly 
general.
 
A limitation of this approach is that although the test of 
conditional error tests if there is a difference between 
the regression lines, it will not indicate which pairwise 
differences, if any, exist between the treatments. Given r
regression lines (treatments), the total number of pairwise 
comparisons is

   
s =

r
2

=
−( ) =

−( ) −( ) ( )
−( ) −( )

r
r

r r r

r r
!

! !

...

...2 2

1 2 1

2 2 3 11

1

2( ) =
−( )r r

          

(7)

One option is to fit all possible ( )s full and reduced 
models, rejecting each null hypothesis using a Bonferroni-
corrected alpha level. The Bonferroni correction is 
a multiple-comparison correction used when several 
statistical tests are being performed simultaneously. While 
a given significance level (α) may be appropriate for 
each individual comparison, it is not appropriate for the 
set of all comparisons. The significance level needs to be 
lowered to account for the number of comparisons being 
performed. The Bonferroni significance level is defined 
as α / s, and this controls the experimentwise type I error 
rate at α. However, the size of s  increases rapidly as r
increases in equation 7, and it may become too burdensome 
to implement the Bonferroni correction. In addition, this 
may not be equivalent to testing the desired hypotheses. For 
instance, if the slopes are being tested for equality assuming 
a common intercept (hypothesis 1), then each pairwise 
test will consist of a common intercept for that pair, not a 
common intercept for the entire set of r regression lines, 
which is not the original hypothesis.

Type III F-Tests
 
Instead of specifying the full and reduced models directly 
and using the test of conditional error [equation 6] to test 
a hypothesis, it is often more convenient to simply use 
the typical Type III F-tests obtained by fitting the full 
model (SAS Institute Inc. 2004). The F-tests obtained are 
equivalent to the test of conditional error but caution must 
be used because the appropriate F-test must be selected on 
the basis of the hypothesis being tested. In addition, the 
approach is inadequate when one wants to test the entire 
regression line simultaneously (hypothesis 5), because 
it tests the intercepts and the slopes separately. Pairwise 
comparisons between the first r − 1 and last regression lines 
can easily be obtained from the t-tests of the full regression 
model parameter estimates, if one bears in mind that the 
equivalent F-test is simply the t statistic squared. However, 
the other pairwise comparisons, e.g., between the first 
and second regression lines, are not readily available. The 
Bonferroni adjustment explained previously can be applied 
to the pairwise comparisons to control the experimentwise 
type I error rate at α . 

Contrasts

To avoid the complexity and limitations of the test of 
conditional error and the Type III F-tests, the approach 
advocated in this paper is to form contrasts that will give 
correct F-tests for any of the five hypotheses. Multiple 
degrees of freedom contrasts are used to test the overall 
hypotheses that there are differences between the intercepts 
or slopes, or both. In addition, single and multiple degrees 
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of freedom contrasts can be used to test all pairwise 
comparisons and an experimentwise type I error rate can be 
established by using a Bonferroni corrected alpha level. 

If one wishes to test the overall effect for slope differences 
in hypotheses 1 and 2, one uses the following contrast, 
which has two degrees of freedom, to specify the null 
hypothesis (H

0
)

[1 0 1 0

0 1 1 0

1 2 3

1 2 3

γ γ γ
γ γ γ
+ − =
+ − =











 [

                                                  

(8)

The parameter γ 3 in equation 8 represents the slope for 
treatment 3 and, when combined with γ γ

1 2
 and which were 

introduced in equation 1, allows one to specifically define 
the desired contrast in terms of all three treatments. This 
is of particular importance for defining contrasts in SAS, 
which overparameterizes the model (see next section for 
more details on SAS). Similarly, to test the overall effect 
for intercept differences in hypotheses 3 and 4, one uses the 
following two degrees of freedom contrast to specify the 
null hypotheses (H

0
)

[1 0 1 0

0 1 1 0

1 2 3

1 2 3

β β β
β β β
+ − =
+ − =











 [                            (9)

Note that the parameter β3  is included to represent the 
intercept for treatment 3. The testing of the entire regression 
line in hypothesis 5 requires that the null hypothesis (H

0
)

 
be 

tested by combining contrasts (8) and (9) into a four degrees 
of freedom contrast defined as

1 0 1 0

0 1 1 0

1 0 1 0

0

1 2 3

1 2 3

1 2 3

1

γ γ γ
γ γ γ
β β β
β

+ − =
+ − =
+ − =
+11 1 0

2 3
β β− =





















                         

(10)

 
It should be noted that contrasts (8), (9), and (10) are not 
unique and could be formulated differently to yield the same 
results. Also, it must be emphasized that contrast (10) is 
a simultaneous test of the slopes and intercepts and is not 
equivalent to the two separate contrasts (8) and (9). It is 
quite possible in some situations that contrast (10) may be 
significant, implying that the regressions are different, while 
neither contrast (8) nor (9) is significant. This may be due 
to subtle differences in the slopes and intercepts that are not 
large enough to be detected by the separate two degrees of 
freedom contrasts (8) and (9) but are detectable by the more 
powerful four degrees of freedom contrast (10).

If the contrast for an overall test is significant, the next 
logical step is to determine which regressions (treatments) 
are different. This is analogous to the typical analysis of 
variance problem where a significant treatment effect is 
followed by a set of multiple comparisons. To determine 
which regressions have different slopes for hypotheses 1 and 
2, the s = 3  single degree of freedom contrasts are

	 1 versus 2: [    1 1 0 0
1 2 3

γ γ γ− + = [                   (11a)

	 1 versus 3: [    1 0 1 0
1 2 3

γ γ γ+ − = [                   (11b)

	 2 versus 3: [    0 1 1 0
1 2 3

γ γ γ+ − = [                   (11c)

To determine which regressions have different intercepts 

for hypotheses 3 and 4, the 3s =  single degree of freedom 
contrasts are	

	 1 versus 2: [1 1 0 0
1 2 3

β β β− + =  [                   (12a)

	 1 versus 3: [    1 0 1 0
1 2 3

β β β+ − = [                   (12b)

	 2 versus 3: [    0 1 1 0
1 2 3

β β β+ − = [                   (12c)

Although hypothesis 5 appears more complex, it is merely a 
combination of the previous sets of contrasts (11) and (12). 
To determine which regression lines (intercept and slope 
simultaneously) are different, the s = 3  two degrees of 
freedom contrasts are
 

                  1 versus 2: [1 1 0 0

1 1 0 0

1 2 3

1 2 3

β β β

γ γ γ

− + =

− + =











[                   (13a)

                  1 versus 3: [1 0 1 0

1 0 1 0

1 2 3

1 2 3

β β β
γ γ γ

+ − =

+ − =













 [                   (13b)

	 2 versus 3: [0 1 1 0

0 1 1 0

1 2 3

1 2 3

β β β
γ γ γ

+ − =
+ − =











 [                   (13c)

Also, it must be emphasized that contrasts (13) are 
simultaneous tests of the slopes and intercepts and are not 
equivalent to the two separate contrasts (11) and (12). It is 
quite possible in some situations that contrast (13) may be 
significant, implying that the regressions are different, while 
neither contrast (11) nor (12) is significant. This may be due 
to subtle differences in the slopes and intercepts that are not 
large enough to be detected by the separate one degree of 
freedom contrasts (11) and (12) but are detectable by the 
more powerful two degrees of freedom contrast (13).

Constructing contrasts may at first seem complex, but it is 
really very easy and gives more complete results than doing 
the test of conditional error or the Type III F-tests, especially 
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when contrasts are constructed with the help of a statistical 
software package. Contrasts (8) through (13) can easily be 
extended to any number of r regressions. For more specific 
information on how to construct contrasts, see Milliken and 
Johnson (1984).

Implementation Using SAS

Although most of the above hypotheses may be tested by 
comparing the full and reduced models and using the Type 
III F-tests, the simplest and most complete method is to 
fit the full model and then specify contrasts that test the 
appropriate hypotheses. This can be done with procedures 
available in various statistical packages. Here, for purposes 
of illustration, we use the SAS PROC GLM (SAS Institute 
Inc. 2004). Instead of specifying the dummy variables 
Z Z

1 2
 and , one only needs to define a class variable that 

contains integer or character variables that are unique to 
each population. For instance, one can define a variable trt
 
where

	 trt = 1 if ix  is from regression 1    

	 trt = 2 if ix  is from regression 2

	 trt = 3 if ix  is from regression 3

SAS will automatically set up the two dummy variables 
along with a third one, which overparameterizes the model. 
The variable trt is then treated like any other class variable 
in PROC GLM. It is imperative that one understands the 
parameterization used in PROC GLM, particularly the 
ordering of the parameters, or else erroneous results may 
occur. The “e” option on the contrast statement displays 
the coefficients used in the contrast and is quite helpful for 
confirming the ordering of the parameters in the contrast. 
Although this option is given in the following SAS code,  
to conserve space, the output it yields is not presented in  
the appendix. 

To illustrate how SAS can be used to specify the models 
and contrasts, an artificial dataset was simulated for 
the three regressions (appendix). The data consisted 
of observations generated at the independent variable 

xi = 1 2 3 10, , ,...,  for three regression models defined as 

treatment 1: y xi i i= + +1 1 ε , treatment 2: y xi i i= + +2 2 ε , 

and treatment 3: y xi i i= + +2 2 ε  where   
ε

i
N 0,1( ) and 

cov ,ε εi j( ) = 0  for i j ≠ . Note that treatments 2 and 3 

represent the identical regression model with the same 
intercepts and slopes while treatment 1 is substantially 
different with respect to both parameters. The simulated 

data contained stochastic variation, so all observations are 
realistic in that they represent data that vary from their 
respective models to a certain degree as shown in figure 1. 
The SAS model for each hypothesis and the appropriate 
contrasts were formulated in PROC GLM as shown in the 
following SAS code. Additional information on PROC GLM 
can be found in the “SAS/STATR 9.1 User’s Guide” (SAS 
Institute Inc. 2004) which explains the statements used in 
the following code as well as parameterization of the model 
and construction of contrasts. The first contrast for each 
hypothesis is a multiple degrees of freedom test for the 
general hypothesis. The other contrasts perform all possible 
pairwise comparison tests between the three regression 
lines and to ensure an α  = 0.05 experimentwise error, each 
should use a Bonferroni corrected alpha level of 0.05/3 = 
0.0167. 
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Figure 1—Plot of yi (dependent variable) versus xi (independent 
variable) by treatment for the simulated dataset.

Hypothesis 1: 
title1 ‘Comparing Regression Lines’;
title2 ‘Hypothesis 1:  Test whether slopes are equal’; 
title3 ‘Assume:  Intercepts are equal’;
proc glm data=a;
class trt;
model y=x trt*x/ss3 solution;
contrast ‘Slope_Only’ trt*x 1 0 -1, 
	 trt*x 0 1 -1/e; 
contrast ‘Slope1 vs. Slope2’ trt*x 1 -1 0/e; 
contrast ‘Slope1 vs. Slope3’ trt*x 1 0 -1/e; 
contrast ‘Slope2 vs. Slope3’ trt*x 0 1 -1/e; 
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Hypothesis 2: 
title1 ‘Comparing Regression Lines’;
title2 ‘Hypothesis 2:  Test whether slopes are equal’; 
title3 ‘Assume:  Intercepts are not necessarily equal’;
proc glm data=a; 
class trt; 
model y=x trt trt*x/ss3 solution;
contrast ‘Slope_Only’ trt*x 1 0 -1, 
	   trt*x 0 1 -1/e; 
contrast ‘Slope1 vs. Slope2’ trt*x 1 -1 0/e;
contrast ‘Slope1 vs. Slope3’ trt*x 1 0 -1/e;
contrast ‘Slope2 vs. Slope3’ trt*x 0 1 -1/e; 

Hypothesis 3: 
title1 ‘Comparing Regression Lines’;
title2 ‘Hypothesis 3: Test whether intercepts are equal’; 
title3 ‘Assume: Slopes are equal’;
proc glm data=a; 
class trt; 
model y=x trt/ss3 solution; 
contrast ‘Int_Only’ trt 1 0 -1, 
	 trt 0 1 -1/e;
contrast ‘Int1 vs. Int2’ trt 1 -1 0/e; 
contrast ‘Int1 vs. Int3’ trt 1 0 -1/e;
contrast ‘Int2 vs. Int3’ trt 0 1 -1/e;

Hypothesis 4: 
title1 ‘Comparing Regression Lines’;
title2 ‘Hypothesis 4:  Test whether intercepts are equal’; 
title3 ‘Assume:  Slopes are not necessarily equal’;
proc glm data=a;
class trt; 
model y=x trt trt*x/ss3 solution; 
contrast ‘Int_Only’ trt 1 0 -1,
	 trt 0 1 -1/e;
contrast ‘Int1 vs. Int2’ trt 1 -1 0/e; 
contrast ‘Int1 vs. Int3’ trt 1 0 -1/e; 
contrast ‘Int2 vs. Int3’ trt 0 1 -1/e; 

Hypothesis 5: 
title1 ‘Comparing Regression Lines’;
title2 ‘Hypothesis 5: Test whether intercepts are equal and 
slopes are equal simultaneously’;
proc glm data=a; 
class trt; 
model y=x trt trt*x/ss3 solution; 
contrast ‘Int_Slope’ trt 1 0 -1, 
	 trt 0 1 -1,
	 trt*x 1 0 -1, 
	 trt*x 0 1 -1/e; 
contrast ‘IntSlope1 vs. IntSlope2’ trt 1 -1 0,
	 trt*x 1 -1 0/e; 
contrast ‘IntSlope1 vs. IntSlope3’ trt 1 0 -1,
	 trt*x 1 0 -1/e; 
contrast ‘IntSlope2 vs. IntSlope3’ trt 0 1 -1,
	 trt*x 0 1 -1/e;	  
 
Output from each of the five hypotheses based on the 
traditional test of conditional error using the full and 
reduced model is shown in table 2. In addition, the appendix 
shows (in bold type) output based on the contrast approach 
along with the Type III F-tests and parameter t-tests. Note 
that the tests of conditional error are equivalent to the Type 
III F-tests and the first contrast of each hypothesis which 
is a test of the generalized hypothesis. In addition, some 
of the parameter t-tests are equivalent to some of the other 
specific contrasts, keeping in mind that the square of the 
t-statistic is equal to the F-statistic. Remember that these 
specific tests should be used with the Bonferroni adjustment, 
which for this example would imply significance only if the 
p-value is ≤ 0.05/3 = 0.0167 for an experimentwise error 
rate of 0.05. It is interesting to note that all specific tests are 
not available from the parameter t-tests, for instance, the 
Slope 1 versus Slope 2 contrast for Hypothesis 1. Moreover, 
neither the general test nor the specific tests for Hypothesis 
5 are available from the Type III F-test or the parameter 
t-tests. The general test can be accomplished by obtaining 
sequential Type I F-tests of the trt and x*trt effects, 
combining their sum of squares and degrees of freedom 
and then forming an appropriate F-test. Although this is not 
complex, it is labor intensive and is beyond the scope of this 
paper. It appears evident that the use of contrasts enables 
the complete set of tests to be performed in an easy and 
consistent manner.
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Table 2—Results from testing for differences between regression lines (artifi cial simulated dataa) 
using the test of conditional error based on the full and reduced models

Components
Hypothesis 

1b
Hypothesis 

2c
Hypothesis 

3d
Hypothesis 

4e
Hypothesis 

5f

SSER 349.71 88.42 349.71 17.69 349.71

SSEF 17.69 16.81 88.42 16.81 16.81

SSE SSER F− 332.02 71.61 261.29 0.88 332.90

DFER 28 26 28 26 28

DFEF 26 24 26 24 24

DFE DFER F− 2 2 2 2 4

F-test 243.99 51.12 38.42 0.63 118.82

F*(0.05) 3.37 3.40 3.37 3.40 2.78

p-value <0.0001 <0.0001 <0.0001 0.5412 <0.0001

Conclusion Reject H0 Reject H0 Reject H0

Fail to 
reject H0 Reject H0

a The artifi cial simulated data consisted of observations generated at the independent variable xi = 1 2 3 10, , ,...,  for three regression 
models defi ned as treatment 1: y xi i i= + +1 1 ε ; treatment 2: y xi i i= + +2 2 ε ; and treatment 3: y xi i i= + +2 2 ε  where   ε i

N 0,1( )  
and  cov ,ε εi j( ) = 0  for  i j ≠ .
b  Hypothesis 1: all slopes are equal; assumptions: all intercepts are equal and all are unknown.
c  Hypothesis 2: all slopes are equal; assumptions: all intercepts are not necessarily equal and all are unknown.
d  Hypothesis 3: all intercepts are equal; assumptions: all slopes are equal and all are unknown.
e  Hypothesis 4: all intercepts are equal; assumptions: all slopes are not necessarily equal and all are unknown. 
f Hypothesis 5: all intercepts are equal and all slopes are equal; assumptions: none.
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Conclusion

Researchers who compare regression lines quite often are 
not aware of the hypothesis being testing. This can result 
in invalid inferences or less than optimal power for testing 
the hypothesis. The author identifies five hypotheses for 
testing differences between several regression lines. The 
distinctions between these hypotheses were based on a 
priori assumptions and illustrated by means of the test of 
conditional error based on the full and reduced model, Type 
III F-tests, and multiple contrasts. The contrast approach 
was shown to be the easiest and most complete method 
for testing for overall and pairwise differences between 
regression lines.

Acknowledgments

I would like to express my appreciation to Lewis Jordan 
from the University of Georgia, and William A. Bechtold 
and KaDonna C. Randolph, both from the Forest Service, 
for their reviews of an earlier version of this manuscript.

Literature Cited  

Draper, N.R.; Smith, H. 1981. Applied regression analysis. 
2d ed. New York: John Wiley. 709 p.

Fraedrich, S.W.; Miller, T.; Zarnoch, S.J. 1994. Factors 
affecting the incidence of black seed rot in slash pine. 
Canadian Journal of Forest Research. 24: 1717−1725.

Milliken, G.A.; and Johnson, D.E. 1984. Analysis of 
messy data. Volume I: Designed experiments. Van 
Nostrand Reinhold Co. New York. 473 p.

Milliken, G.A.; and Johnson, D.E. 2002. Analysis of 
messy data. Volume III:  Analysis of covariance. Chapman 
& Hall/CRC. New York. 605 p.

Murthy, R.; Zarnoch, S.J.; Dougherty, P.M. 1997. 
Seasonal tends of light-saturated net photosynthesis and 
stomatal conductance of loblolly pine trees grown in 
contrasting environments of nutrition, water and carbon 
dioxide. Plant, Cell and Environment. 20: 558−568.

SAS Institute Inc. 2004. SAS/STATR 9.1 user’s guide. Cary, 
NC: SAS Institute Inc. 5121 p.



11



12



13



14



15



16









The Forest Service, United States Department of 
Agriculture (USDA), is dedicated to the principle 
of multiple use management of the Nation’s forest 
resources for sustained yields of wood, water, 

forage, wildlife, and recreation. Through forestry research, 
cooperation with the States and private forest owners, and 
management of the National Forests and National Grasslands, 
it strives—as directed by Congress—to provide increasingly 
greater service to a growing Nation.

The USDA prohibits discrimination in all its programs and 
activities on the basis of race, color, national origin, age, 
disability, and where applicable, sex, marital status, familial 
status, parental status, religion, sexual orientation, genetic 
information, political beliefs, reprisal, or because all or part of 
an individual’s income is derived from any public assistance 
program. (Not all prohibited bases apply to all programs.) 
Persons with disabilities who require alternative means for 
communication of program information (Braille, large print, 
audiotape, etc.) should contact USDA’s TARGET Center at 
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