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ABSTRACT

Power companies in the United States consume millions of solid wood poles every year. These poles are
from high-valued trees that are becoming more expensive and less available. Wood laminated composite
poles (L.CP) are 2 novel alternative to solid wood poles. LCP consist of trapezoid wood strips that are
bonded by a synthetic resin. The wood strips can be made from low-valued wood and residues. This study
evaluated the mechanical performance of small-scale LCP as affected by strip thickness and number of
strips in a pole. The maximum bending stress of composite poles was comparable to that of solid poles of
the same sizes. Thicker wood strips lead to stronger glue-line shear but poorer crushing stress. Number of
strips in a pole was positively correlated to modulus of elasticity (MOE) and shear stress but negatively
correlated to crushing stress. The results suggest that LCP with shell thickness greater than 50% of its di-
ameier could be a possible substitute for solid wood poles. Thinner shells can be used by filling partially or

totally the hallow core with other materials such as processing wastes.
Keywords:  Composite poles, wood composites, LCP, shear strength, crushing strength, utility poles.

INTRODUCTION

Trees suitzble for production of solid wood
poles have long, straight, full-rounded boles
with little taper. Southern pine (Pinus sp) is the
main species for pole production in the U.S.
About 72 to 80% of poles are from this species
(Koch 1972; Micklewright 1989; USDA 1999).

+ Member of SWST.

1This paper (03-40-1494) is published with the approval
of the Director of the Louisiana Agricultural Experiment
Station. v
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Due to the emphasis of thg 60-year rotation in
timber management practice, southern pine
poles with lengths longer than 15.2 m have be-
come less available in recent years. Therefore,
such slow-grown species as Douglas-fir, pon-
derosa pine, and western larch are used to meet
the demand for larger size utility poles (USDA
1999).

In the last decades, several approaches have
been made to find alternatives to solid wood
poles or reinforce solid poles to extend their ser-
vice life. Marzouk et al. (1978) used four design
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schemes to make shorter solid wood poles longer

"by splicing or strapping two to four shorter poles
using sieel connectors. They presented three
types of splicing and frame poles that are struc-
turally suitzble substitutes for power distribution
poles. Tang and Adams (19732) showed that
fiberglass-reinforced plastic could increase the
strength and improve the durability of utility
poles. The stetic and dynamic bending stiffness
of the poles jacketed with fiberglass-reinforced
plastic increased 17-21% and 14-19%, respec-
tively.

Adams et al. (1981) show that wood compos-
ite poles can be fabricated using wood flakes,
synthetic adhesives, and preservatives, and
termed the composite poles COMPCLE. The
COMPOLE series were 40-foot-long hollow
poles with square, hexagonal, or octagonal cross
sections. The poles were tapered according to
the typical range found in solid wood poles. A
computer program was also developed to design
the poles and the optimal design resulted in poles
that had a 7.5-cm wall thickness at a 33.8-cm
ground-line diameter with an octagonal cross
section. Shell thickness was reduced to 2.5 cm at
the top.

Hollow poles have advantages over solid
poles in cost, shipment, and installation. From a
mechanical analysis standpoint, when a pole is
subjected to a bending test, the bending stress is
highest on the surface layer and zero in the cen-
ter part due to the effect of moment of inertia. It
is reported that 90% of a pole’s bending strength
is attributable to 22% of its diameter on both
sides of the cross-section (Erickson 1995). Thus,
taking some material from the center part will
not markedly affect the service strength of utility
poles. A conventional inspection method for
poles in service also involves drilling to deter-
mine the shell thickness. A distribution pole is
designated a reject if the pole shell thickness is 5
cm or less (Wilson 1992). Examples like these
can be found in the poles made of other materi-
als. Poles made of steel, concrete, or fiberglass
are mostly hollow inside.

Mechanical properties and weathering proper-
ties are obviously the two important factors that
decided the application potential of COMPOLE.
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Kroeger et al. (1982) reported that the average
modulus of repture (MOR) and modulus of elas-
ticity (MOE) of aligned composite wood materi-
zls (CWM) that are used to make COMPOLE
were 110.8 and 16,250 MPa, respectively, which
is comparzable to those of southern yellow pine.
The weight of COMPOLE, however, is 50% less
than that of solid wood poles of the same class
and length (Adams et al. 1981). COMPOLE
were made of flakes and isocyanate adhesive
under temperature and pressure. Preservatives
were added to increase the resistance of COM-
POLE to the biological attack.

Erickson (1994, 1995) proposed and patented
another design of composite poles. The hollow
veneered pole (HVP) consists of a truncated strip
cone with three or more overwraps of veneer
layers. Number of strips (NOS) in the cone could
be 8 or whatever number is most appropriate for
the manufacture of a given sized pole. Each strip
can be made from either random or standardized
lengths of lumber, and can be finger-jointed to
pole length. The overwraps are from a high
strength softwood veneer species. Veneer grain
direction was parallel to the pole axis. The func-
tion of veneer layers was to improve the bending
strength and protect the glued surfaces from
weathering.

The alternatives to solid wood poles should
have sufficient strength and stability for many
years in adverse environments. The wood lami-
nated composite poles developed in this study
have these properties. In addition to the advan-
tages that both COMPOLE and HVP have, wood
laminated composite poles are more cost-
effective, easier to make and treat, and more
flexible in size and shape than COMPOLE and
HVP. The objective of this study was to assess
the mechanical properties of small-scale wood
laminated composite poles.

STRIP SIZE DETERMINATION

Wood laminated composite poles consist of
trapezoid wood strips that are bonded with syn-
thetic adhesives. Strip sizes can be determined
by mathematical calculation based on the param-
eters given. The known parameters are NOS in a
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pole n, strip thickness at bottom 7, radius (or di-
ameter) of the circle surrounding the bottom of a
pole K, epering angle 5, and pole height H. Then
the central angle a can be calculated as

360°
n

§))

o=

Other size measures can be determined by the re-
Jationship between sides and angles in triangles.
Figure 1 shows a schematic diagram about a
truncated composite pole from a cone and one of
its strips. The formulas of other sizes are as fol-
lowings:

Width of the larger size at pole bottom AB

AB=2Rsin> @

Width of the smaller size at pole botiom CD.

3 .o a
CD= Z(Rsm—z-’ftan—é—) 3)
Width of the larger size at pole top A'B
v . a
A’B’=2(R Htan f)sin5 (4)
Width of the smaller size at pole top C'D’
= _ H T ) 1. @
C'D —2(1—-EtanﬁXR—m%)sm—i- )
Strip thickness at the top T
, { H
r =( —itanﬁ)T 6

Formulas 1 to 6 can be used to calculate the
dimension of strips for a specific design of com-
posite poles. If taper angle 8 equals 0, i.e., there
is no taper in the pole, Eqgs. (4) and (5) are the
same as Egs. (2) and (3), respectively, and T’
equals T in Equation 6.

EXPERIMENTAL PROCEDURE
Experimental variables and design

Poles made in this study were small-scale
:omposite poles. Table 1 shows the experimental

WOOD AND FIBER SCIENCE. OCTOBER 2004, V. 36(4)

variables and their levels. The length of compos-
ite poles wes 122 cm and outside diameter 7.6
cm. These small-scale poles were used to assess
basic factors thet have effects on the mechanical
properties of composite poles. Two variables
were selected. They were strip thickness and
NOS in & pole. The four levels of strip thickness
were 1.0 ¢cm, 1.5 om, 2.0 cm, and 2.5 cm, which
account for 26, 39, 52, and 66% of the pole ra-
dius, respectively. Strip thickness covers one-
quarier to threc-quarters of pole radius and all
poles were hollow. There were 3 levels of NOS,
which were 6, 9, and 12. Solid poles with the
same length and outside diameter were fabri-
cated to work as controls. All poles had no taper
(i.e., in Fig. 1). ‘

Table 2 presents the parameters for each NOS
level of the strips with thickness 2.5 cm. The
width of the larger side of other thickness levels
is the same.

The experimental design was a factorial. The
number of experiments was 12. Thirty-six poles
were made with 3 replications for each combina-
tion of NOS and strip thickness levels. Three
spruce (Picea glauca) and southern yellow pine
solid poles were made for each of the 6-, 9-, 12-
sided configurations. Nine spruce and nine
southern yellow pine poles were used as controls
of composite poles.

Fic. 1. A schematic diagram of a wood strip composite
pole and one of its strips.
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TavLi 6. Modulus of elasticity of wood laminated composite poles and solid poles.

MOE {107

Sirip thickness!
Pole types SRCies O-s11ip G-sirip §2-strip

1.0 em) 5.77(0.59)) 4.73¢031) 6.49 (1.02)

Composite 1.5 (e 5.32(2.3%) 6.49 (0.82) 6.45 (1.4
poles 2.0 (cmy 5.71{0.58) S58{0.73) 6.38(0.17)
2.3 (cm) 6.21 (0.89) 0.10(0.67) 6.66 (0.33)

Solid pole Spruce 5.35(0.74) 6.42 (0.76) 6.24 (0.79)
Solid poies Syp: 8.12 (0.59) 7.95 (0.06) 7.65 (0.46)

Values in p h are dard deviati
Southern yellow pine.

less than that of SYP solid and most composite
poles in three NOS levels.

Modulus of elasticity

Modulus of elasticity (MOE) of composite
and solid poles is presented in Table 6. Varia-
tions existed among MOE values for different
NOE and strip thickness levels. In general, MOE
of composite poles was lower than those of solid
poles within the same species. The maximum
cifference was 60%. Strip thickness was not cor-
related to the MOE of composite poles (p =
(.3028). There were no significant differences
among the MOE valves of different strip thick-
ness levels in the LSD test. ‘

NOS had a significant effect on MOE of the
composite poles (p = 0.0002). The average
MOE values were 5.3, 5.6, and 7.4 GPa for NOS
of 6, 9, and 12, respectively. The MOE of 12-
sided poles was significantly higher than that of
6- or 9-sided poles. This may be due to one or
both of the following two reasons: (1) 12-sided
poles have more glue-layers, MOE of which is
higher then wood, and (2) 12-sided poles, are
closer to round poles and receive more uniform
load from the mold.

Glue-line shear

Glue-line shear strength and wood failure in
both dry and wet conditions are listed in Tables 7
and 8. In the dry condition, thinner strips had
higher glue-line shear strength than the thicker
strips. One exception to this finding was the 12-
strip poles with strip of 1.5 cm in thickness, the

shear strength of which was much higher than
those in other groups. The percentage of wood
failure of this group is lower than the others in
the same thickness level (Table 8). Statistic
analyses (ANOVA) shows that strip thickness
was a significant source of variation for shear
strength and wood failure in both wet and dry
conditicns. In the dry condition, average glue-
line shear strength values were 9.54, 8.80, 7.98,
and 7.56 MPa for thickness levels of 1.0, 1.5,
2.0, and 2.5 cm, respectively. The corresponding
wood failure values were 50, 63, 69, and 72%
for the four thickness levels, respectively.

The greater glue-line shear strength of poles
with thinner strips may be due to the fact that
thinner shells received more pressure than
thicker shells. During the making of the poles,
the same force was added to the molds. Thinner
strips may receive greater pressure in the glue-
line and have better bonding conditions because
of their lower contact area between them. This
indicates that proper pressure is necessary when
mezking composite poles. Excessive pressure
may cause the problem of squeezing glue out of
the glue-line and lowering the bonding strength.
However, that was not the case in this study.
Among the four thickness levels, LSD results
showed that glue-line shear strength of each
level was significantly different from the others,

meaning that shear strength increased with the

decrease of strip thickness.

After the 2-hour boiling test, glue-line shear
strength was reduced to 5.11, 4.84, 5.30, and
5.77 MPa, and the wood failure was 41, 39, 55,
and 62% for the thickness levels of 1.0, 1.5, 2.0,
and 2.5 cm, respectively. Poles with strip thick-
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TapLe 7. Glue-line shear strength values before and after water soaking of composite poles.
Strip
thickness Dry condition (MPa) ‘Wet condition (MPa) .
(cm) 6-strip 9-sirip 12-strip 6-strip 9-strip 12-strip
1.0 1008 (0.79) 10,15 (0.63) §.39(1.08) 7.00 (1.8 4.97 (0.31) 5.33 (0.20)
1.5 784 10.88) 971 0.03) 885 ¢1.45) 3.3810.22) 5.34 (0.69) 4.96 (0.99)
2.0 3.96 (0.54) 7.68 10.49) T0.29 (2.08) 4,61 10.26) 5.20 (0.20) 4.81 (0.26)
25 733033y KAS LS 6,30 (1.08) 53004 5.36 (0.33) 4.85(1.05)
Valucs in p are dard de
Tanle 8 Percentuge of wood failure in the glue-line shear test of wood composiie poles.
Strip
thivkness Dry comlnion (MPay Wet condition {9
(LSBT [T Catrip P2 sy frestrip Yostrip [EENTT
1.0 5297 {3522y 5406 (9.67) 5442 (3.88) 48.4224.12) 38.75 (5.73) 3514 (45T
1.5 63611021 7022 (3010 5450 (8.01 4750 (12507 24.03(13.18) 4625 (8.33}
2.0 7281 (14.35) 7592 (7.30)  57.72012.80)  72.284 18.51)  34.89 (8.60)  4492(1381)
2.5 7381 (7.530y 6875 (1237 7200 (717 6717 (6760 TO83(15.28) 46.67 (13.33)

Vaiues in parentheses are standard deviation.

ness from 1 10 2.5-cm lost 46, 45, 34, and 24% of
the original strength, respectively. Thinner poles
Jost more strength after the treatment. In the wet
condition, poles with 2.5-cm strip thickness had
the highest glue-line shear velue and was signif-
icantly different from the others. There were no
significant differences for the shear stength be-
tween the poles with thickness valves of 2.0 and
1.0 cm, but both were higher than the ones at the
1.5-cm thickness level. Poles with thicker strips
still had higher wood failure. ,

Another factor that affects shear stength and
wood failure is the grain direction of the strips
that form the glue-line. For the species used in
this stady, southern pine, earlywood and late-
wood alternatively appear on the cross section.
The best scheme for the glue-bond consideration
is that the grein planes on both surfaces are par-
alle] to the glue-line plane. Under this condition,
the materials on the two bonding surfaces are
uniform, end good bonding guality may be ex-
pected. In this case, the tangential direction of a
wood strip coincides with the radial direction of
the pole and the radial direction of a wood piece
becores tzngential in the pole. Anpother advan-
tage of this arrangement is that the tangential
movement of the pole will be minimized due to
less shrinkage and swelling in the redial direc-

tion of the wood. The worst case for the glue
bond is when the annual rings on both sides of
the glue-line are perpendicular to the glue-line
planes. If two latewood rings match up in a glue-
line, they will adversely affect the bonding of the
earlywood rings next to the latewood rings. Also
if the tangential direction of the wood strips co-
incides with that of the pole, more shrinkage and
swelling in the pole are expected. The effects of
wood growth ring direction and the gluability of
earlywood znd latewood had a great effect on the
physical and mechanical properties of the com-
posite poles and will be further investigated in
future studies.

Crushing strength

All samples fziled at glue-lines that were par-
zllel to the loading direction. Table 9 presents the
maximum stress values of the pole samples. As
expected, the crushing stress decreased with the
increase of NOS. Figure 6 shows the breakdown
of load vector P into two vectors P, and P, that
are parallel to the directions of the two shell
strips next to the glue-line being tested. P, and P,
can be further broken down into two vectors. For
example, P, can be broken down into two vec-
tors, which are horizontal vector P, and vertical



