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Modeling Multiplicative Error
Variance: An Example Predicting
Tree Diameter from Stump
Dimensions m Baldcypress

BERNARD R. PARRESOL

ABSTRACT. In the context of forest modeling, it is often reasonable to assume a multiplicative
heteroscedastic error structure to the data. Under such circumstances ordinary least
squares no longer provides minimum variance estimates of the model parameters.
Through study of the error structure, a suitable error variance model can be specified and
its parameters estimated. This error model is used to construct a covariance matrix
which in turn is used to form an estimated generalized least squares estimator of the
forest model parameters. The theory is illustrated with data on baldcypress (Taxodium
distichum [L.] Rich.). A multiple linear regression equation is developed for predicting
diameter at 3 m from solid-wood stump diameter (i.e., diameter inside the fluting) and
stump height. By modeling the error structure, standard errors on three of the four
coefficients from the tree diameter-stump dimensions regression were reduced by 13 to
50%. The effect on prediction confidence intervals is graphically illustrated. For. ScI.
39(4):670-679.

ADDITIONAL KEY WORDS. Heteroscedasticity, consistency, estimated generalized least
squares, prediction confidence intervals.

is well known, under ordinary least squares (OLS) parameter estimates are

no longer minimum variance, though they are still unbiased (Draper and
Smith 1981, Neter et al. 1985). Further, prediction confidence intervals are no
longer reliable. The solution to the problem is to weight each observation by the
inverse of its variance. This then achieves homogeneity of variance. But what if
the variance of each observation is unknown? The problem then becomes one of
estimating the proper weight for each observation. In instances where there are
replicated observations across the independent variable(s) the Minimum Norm
Quadratic Unbiased Estimation (MINQUE) theory of Rao (1970, 1971a, 1971b)
can be applied to estimate each ¢2. In many allometric relationships, errors are
inherently lognormally distributed; hence a logarithmic transformation properly
weights the observations and corrects for heteroscedasticity as well as nonnor-
mality (Baskerville 1972, Beauchamp and Olson 1973, Flewelling and Pienar
1981).

It is often the case that the error variance (or disturbance) is functionally related
to the predictor variable in a simple linear regression. Under multiple regression,
it is possible for the disturbance to be functionally related with two or more
predictor variables. Harvey (1976) and Judge et al. (1988) have shown that if the

I \OREST MODELERS ARE OFTEN FACED WITH heteroscedasticity in their data. As
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error variance is a function of a small number of unknown parameters, and these
parameters can be consistently estimated, then estimated generalized least
squares (EGLS) estimation will provide asymptotically efficient estimates of the
model parameters. In this paper I use a method suggested by Harvey (1976) for
obtaining consistent estimates of the parameters of a variance model. In particular
I derive a functional form for the error variance from a tree diameter-stump
dimensions regression for baldcypress, fit the variance model as suggested by
Harvey, then use EGLS to determine the coefficients for the baldcypress regres-
sion model.

THE MULTIPLICATIVE ERROR MODEL

Consider the general linear statistical model
y=Xp + e

where X'is a (T X K) observable nonstochastic matrix, g is a (K X 1) vector of
parameters to be estimated, yis a (T X 1) observable random vector, and eis a
(T x 1) unobservable random vector with properties

Ele] = 0 and E[e€'] = ® = ¢*W¥

and ¥ is a (T x T) diagonal matrix. Heteroscedasticity exits when the diagonal
elements of ¥ are not all identical. In the general heteroscedastic specification ®
= diag(o?, 03, . . . , 0%), where T unknown variances must be estimated with
only T observations. Reasonable variance estimates cannot be obtained under
such circumstances unless some further assumption is made that reduces the
number of unknown parameters on which the variances depend. The assumption
that often arises is that the error variance is related to one or more of the
explanatory variables. Specifically, we assume that each o? is an exponential
function of P explanatory variables and hence

El¢!] = o = explzialt =1,2,..., T Q

where z; = (242, . . . 2,p) is a (1 X P) vector containing the {th observation on
P nonstochastic explanatory variables and @ = (a;05 . . . ap)’ is a (P X 1) vector
of unknown coefficients. The first element in 2, is taken as unity (z; = 1), and the
other z’s could be identical to, or functions of, the &’s.

This specification reduces the problem of estimating 7 o?’s to that of estimating
the P dimensional vector a. The modeler now must choose not only x, the
variables which explain changes in y, but also z, the variables that explain
changes in the variance of y,. The relevant z’s may be obvious, and experience or
past work may suggest the proper variables. Often graphical analyses of the data
and/or residuals will reveal the appropriate 2's.

Function (1) can be written as

o? = exploy] * explayzy] . . . explapzp] 2

which shows that the components of the variance are related in a multiplicative
fashion, hence the term multiplicative heteroscedasticity. A useful convention is the
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parameterization of the scale factor o as exp(ay), or a; = In o®. This means the
expression in (2) can be written as /

o? = oexplz* a*] &)

where z*' = (25, . . ., 2p) and @* = (ay, . . ., ap)’. This will prove useful
shortly. The covariance matrix can be written

exp(zja)
exp(zga)

exp(zia)

exp(z}' a*)
exp(z¥ a*)
= o’W = ¢? 200 @)

exp(zy’ a*)

ESTIMATING

We first take logarithms of Equation (1) to obtain
Ino? = zla (5)

Since the o7 are not known, we use instead the squares of the OLS residuals.
These residuals are likely to reflect the size of o7, that is, large when o? is large
and small when o2 is small. Adding In é2 to both sides of Equation (5) yields

Iné + Ino? = Zja + In &
or
Iné? = Zja + v, 6

where v, = In ¢ — In 67 = In(¢%/0?). In matrix notation Model (6) can be written
as ¢ = Za + vwhere the vector ¢ = (Iné2Iné%. . . In 62)’. One way to estimate
« is to apply OLS to model (6) which yields & = (Z’2)~1Z’q. What are the
properties of &. Since & = a + (Z’Z)~1Z'"v, the properties of & depend on those
of v. The finite sample properties of the elements in v are complicated. Using
asymptotic properties Harvey (1976) showed that if the ¢/s are normally distrib-
uted then

Elv] = —1.2704
var(v) = El(v, — E[v])?] = 4.9348
cov(v,v,) = 0 fort# =

Thus, the elements in v satisfy the OLS assumptions of homoscedasticity and no
autocorrelation, but the assumption of 0 mean is violated. Fortunately, the con-
sequences of having a disturbance with nonzero mean are not great. The conse-
quence is that the intercept o, will not be consistently estimated, but the remain-
ing elements in & will be consistent or unbiased.
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ESTIMATED GENERALIZED LEAST SQUARES

Substituting é& for a in expression (4) we obtain the estimated covariance matrix
& = &2W. The EGLS estimator is formed as

B = X 1)1 XD 1y = (X P 1x)"1Xx¥1y @)
Fortunately, B does not depend on &, which can be factored out as a propor-
tionality constant. Since &* = (&,, &3, . .". , &p)’, the estimator B only depends

on the con31stent.ly estimated elements of &. The covariance matnx of the pa-
rameter estimates is consistently estimated by &X' W1X)" !, where 6 = 67
- XB)’ ~Yy — XP)(T — K). The usual hypothesis tests and interval estimates
can be based on this result. For prediction intervals on some future value y, the
sampling error is estimated by §i,6%(1 + x3(X’ Polx)- Xolllo 1), where l!!o is the
scalar exp(z§'&*).

TESTING FOR MULTIPLICATIVE HETEROSCEDASTICITY

We have examined the model y, = xiB + ¢, where E[¢] = o? - exp(z¥' a*).
Treating this model as an alternative to one with homoscedastic errors is equiv-
alent to testing Hy:a* = 0 against H,:a* # 0. Let R be the matrix (Z'2) ~* with
its first row and first column removed. If the ¢,'s are normally distributed then &*
~ Nlo*, 4.9348R] and the following statistic (Judge et al. 1988), based on the
distribution of quadratic forms in normal variables, tests the above null hypothesis

&*’R'I&*

- - = .2
4.9348 X®P-1 (8)

Note that the numerator is the regression (or explained) sum of squares obtained
when estimating « and this test is asymptotically equivalent to the F test for
testing that all coefficients, except the intercept, are 0.

BALDCYPRESS MENSURATION AND
DATA COLLECTION

Recent publications (Hotvedt et al. 1985, Parresol et al. 1987, Parresol and
Hotvedt 1990) advocate the use of diameter measured at 3 m above the ground
(D3) as the reference diameter for second-growth baldcypress (Taxodium disti-
chum [L.] Rich.) because Dy is superior to the use of “normal diameter” (diameter
measured 50 cm above butt-swell) for estimating tree volume and stem profile.
Previous studies on the relationship of stump dimensions to tree diameter for
baldcypress (e.g., McClure 1968) have used normal diameter as the reference
diameter. The importance of the stump dimensions-reference diameter relation-
ship for trespass cases, tree removal studies, etc., indicate the need for defining
this relationship for the new reference diameter for baldcypress, namely D,.
Data were collected on 157 downed trees from 26 sites (25 sites with 6 trees
and 1 site with 7) located throughout the South Delta region of Louisiana. The
area in and around the Atchafalaya Basin was sampled more intensively due to its
proportionally higher concentration of baldcypress. Solid-wood stump diameter
(D,) was measured by inscribing with an expandable hoop the largest possible
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circle or ellipse (excluding bark) inside the flutes (Figure 1). If the shape was
elliptical then the length of the long and short axes were geometrically averaged.
D, was taken at stump heights (H,) of 0.30, 0.91, and 1.52 m on each tree. D; was
also measured on each tree. All diameters were measured to the nearest 0.25 cm.
Stump diameter ranged from 12.7 to 66.5 cm and D, ranged from 10.4 to 57.4 cm.

MODEL DEVELOPMENT

TREE DIAMETER-STUMP DIMENSIONS

After examining scatter plots of D4 over D by stump height, the following simple
linear model was hypothesized for the relationship at each stump height:

D3 = vy + viDs + ¢ ()]

This model was fitted to the 157 data points at each H, using OLS regression. The
coefficients and variances are given in Table 1. To ascertain the relationship of Dy
to D, and H,, the intercept and slope coefficients from Model (9) were examined
to see how they changed with height. The intercept and slope values from Table
1 are plotted over H in Figure 2. There is a sharp decline in the intercept value
as stump heights increase from 0.3 to 0.91 m then a gradual decline for stumps
of 0.91 to 1.52 m, finally the intercept becomes negative. A hyperbola models this
trend well, so in Model (9) v, is replaced by B, + B/H,. The slope values have

FIGURE 1. Top view of cypress stump showing inscribed circle containing solid-wood diameter.
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TABLE 1.

Coefficients and variance for regression of tree diameter on stump diameter by

stump height.

Hs '90 '91 62
0.30 m 2.994 0.788 52.224
091 m 0.013 0.835 26.124
1.52m —0.138 0.872 12.530

a near-perfect straight line relationship with H, so v, is replaced with B, + B5H..
The following model results:

1
D3 = By + Blﬁs + (B2 + BsHID; + e

or
1
D3 = By + 311_7 + B2Ds + B3DH; + e (10)

ERROR VARIANCE

An examination of the variances by stump height in Table 1 indicates a strong
decreasing heteroscedastic trend with increasing stump height. A plot of these
variances (Flgure 2¢) suggests a negative exponential trend with H,, that is, o2 =
a?expl — kH ). Scatter plots of the residuals over D for each of the three
regressions revealed a similar fan pattern of increasing error variance. This type
of heteroscedasticity is common and is usually modeled as a power function
(Draper and Smith 1981, Neter et al. 1985), that is, 07 = o2D*,. Combining
these two heteroscedastic trends into one multiplicative error model gives

&# = expla; + aylnD, — a3H] - explv]
or
lnéz = o, + OLZIIIDS - aaHs + v (11)

RESULTS

Model (10) was fitted with OLS and the resultant OLS residuals were used as the
dependent variable in the error vanance model. The results of applying OLS to
(11) are given in Table 2. Using the x? statistic in (8) we have 490.543/4.9348 =
99.4 (Prob < 0.001), and we can conclude that there is significant heteroscedas-
ticity in the OLS residuals. The same conclusion is obtained from the F test in
Table 2. The vector &* is significant and is used to construct ¥. Model (10) was
refitted using the EGLS estimator in (7). The parameter estimates and their
corresponding standard errors from OLS and EGLS are listed in Table 3. The
intercept term (BO) was affected most by applying the variance model. This is not
surprising due to the large weight applied to smaller diameter trees. Its standard
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FIGURE 2. Plots of (A) intercepts, (B) slopes, and (C) variances from the regressions of D3 on D, by H,.

error was halved and consequently its importance in Model (10) was established.
Under OLS this parameter would erroneously be removed from the model. Re-
ductions in standard errors of 14% and 13% occurred for the coefficients of the
1/H, and D H, terms in Model (10). These reductions, though not as dramatic as
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TABLE 2.

Error variance regression model.

Analysis of variance

Source df Sum of squares Mean square F value Prob > F
Model 2 490.543 245.271 58.96 <0.001
Error 468 1947.006 4.160
C Total 470 2437.549

Parameter estimates
Parameter Estimate Std err t value df Prob > [t|
o, -3.014 0.940 —-3.208 1 0.001
a, 1.794 0.260 6.895 1 <0.001
oy 1.564 0.189 —8.284 1 <0.001

for the intercept, still reflect considerable gains in efficiency and precision by
modeling the error structure and using EGLS.

Predicted values and their confidence intervals for Model (10} under OLS and
the multiplicative heteroscedastic specification fitted with EGLS are plotted in
Figure 3. As is readily seen, predicted values are nearly identical whether one
does or does not correct for heteroscedasticity. However, inferences are vastly
different on the predicted values. Under OLS the width of the intervals are very
uniform across the stump diameter-stump height combinations. This is counter-
intuitive based on the scatterplots of the data and the positive test for hetero-
scedasticity. By modeling the error structure, confidence intervals displayed in
Figure 3 under EGLS reflect the changing variances with stump diameter and
stump height.

DISCUSSION

Heterogeneity is a common phenomenon inherent in many types of biological
populations (Pielou 1977, Seber 1986). Thus, if we assume that E[ee’] = &I
when in fact E[ee’] = ¢®W¥ (a diagonal matrix), we will obtain a biased estimator
of the covariance matrix for @, which, through hypothesis tests and interval
estimation, could result in misleading inferences about B. The OLS and EGLS
results concerning the intercept parameter in Model (10) illustrates this point. By

TABLE 3.

Parameter estimates and their standard errors for baldcypress tree
diameter-stump dimensions regression using OLS and EGLS.

OLS EGLS
Std t- Prob Std t- Prob  Reduction
Parameter Estimate err  value > |t| Estimate err value >|t| instderr
Bo —1.242 1.142 ~-1.088 0.277 -1.169 0.574 -—2.036 0.042 50%
B; 1.321  0.477 2.768 0.006 0.816  0.412 1.981 0.048 14%
Ba 0.762  0.035 21.801 <0.001 0.799  0.035 22.603 <0.001 0%
B3 0.076  0.030 2.579 0.010 0.057  0.026 2.238 0.026 13%

NoOVEMBER 1993/ 677



0lS

Stump Height = 1.52 m

Tree Diameter (cm)

-

10 20 30 40 50 60 70
Stump Diameter (cm)

Tree Diameter {cm)

40

- N W
o O O

0

Stump Height = 0.91 m

Tree Diameter (cm)
-
S

10 20 30 40 S50 60 70
Stump Diameter (cm)

Tree Diameter (cm)

90
80

- N s
o 0O O 0O O © O

0

Stump Height = 0.30 m

Tree Diameter (cm)
»
]

10 20 30 40 50 60 70
Stump Diameter (cm)

FIGURE 3. Comparison of predicted values (solid lines) and their confidence intervals (dashed lines)

Tree Diameter (cm)

across D, by H for Model (10) under OLS and EGLS.

modeling the error variance and using estimated generalized least squares an
asymptotically efficient estimate of B can be obtained. Also, prediction confidence
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intervals will reflect the nonconstant nature of the error relation.

In applied work the functional form of multivariate data and the corresponding
error variance can often be ascertained by disaggregating the data, building sub-
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models, and graphing the results. This is the approach I used with the baldcypress
data. The graphs of the intercept, slope, and error variance values from the
simple linear functions aided in determining an appropriate model for baldcypress
tree diameter from stump dimensions.
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