FATE OF HEXAZINONE AND PICLORAM IN SOUTHERN FOREST WATERSHEDS. Daniel G. Neary, Parshall B. Bush, Jerry L. Michael; USDA Forest Service, Southeastern Forest Experiment Station, School of Forest Resources and Conservation, Gainesville, FL 32611; Extension Pesticide Residue Laboratory, University of Georgia, Athens, GA 30602; USDA Forest Service Southern Forest Experiment Station, Auburn, AL 36849.

ABSTRACT

Herbicides are being used more frequently in the intensively managed forest ecosystems of the southeastern United States. Most of this increased use occurs during site preparation prior to replanting cutover or converted stands. Herbicides provide a cost-effective tool for controlling herbaceous and woody weed competition which adversely affects pine establishment and early growth. Herbicides are also useful in minimizing erosion which can affect site productivity and water quality. Since forested watersheds throughout the South are sources for high quality municipal and domestic drinking water, there has been considerable concern over the potential for water contamination with herbicide residues.

Hexazinone fate and movement in forested watersheds has been evaluated in studies in Georgia, Tennessee, Florida, Kentucky, Arkansas, and Alabama. Direct fall of hexazinone granules into streams has produced short-term (<24 hr) concentrations of 2,500 μg/L. Application of granules to ephemeral watersheds in the Piedmont produced stormflow concentrations of 442 μg/L and subsurface baseflow concentrations of < 20 μg/L. Residue levels fell rapidly with subsequent storms. In Tennessee, aerial application of hexazinone granules produced no detectable herbicide residues in baseflow. A study in Arkansas using a liquid formulation did not detect any residues in stormflow but measured low level concentrations (<20 μg/L) in baseflow for over a year. Injection of hexazinone into hardwood stems has not resulted in any off-site movement of hexazinone residues on a variety of sites from Georgia to Kentucky.

A ground application of picloram in steep terrain of the Appalachian Mountains produced no significant off-site movement. Picloram residues were detected infrequently at low levels (< 10 μg/L) in streamflow from 10 and 30 ha watersheds. In the upper Coastal Plain, an aerial application of picloram pellets produced stream concentrations of 500 μg/L after treatment. Although concentrations fell rapidly, low levels were still detected over a year later. Use of picloram in combination with 2,4-D for injection of hardwoods did not result in any detectable off-site movement from a number of watersheds in Alabama, Georgia, Tennessee, and Kentucky.