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Preface

Jesse A. Logan! and Fred P. Hain2

Recent advances in applied mathematical analysis have uncovered a fascinating and unexpected
dynamical richness that underlies behavior of even the simplest non-linear mathematical models.
Due to the complexity of solutions to these non-linear equations, a new mathematical term, chaos,
has been coined to describe the resulting dynamics. This term captures the notion that in spite of
the fact that these equations are purely deterministic, the resulting time dynamics are for all
practical purposes indistinguishable from a purely random or stochastic process. A unique aspect
to this new revolution in the esoteric arena of non-linear mathematics is the fact that it has
captured the imagination of the public at large, and is even the subject of a New York Times
leading best seller (James Gleik, Chaos: Making a New Science). The popular interest in chaos is
at least in part due to the fact that solution sets are often represented as fractals, resulting in
complex and strangely beautiful geometric patterns (fractals are, themselves, the subject of
numerous popular books). Although the subject of chaos has its lighter side, it has also formed
the basis of serious science.

Since the accidental discovery of chaos in a simple atmospheric weather model by Edward
Lorenz in 1963, chaotic dynamics have been found to be pervasive in all of physics. Chaos has
been observed in phenomena ranging from the sub-atomic level of organization to cosmic
questions such as the orbit of planets in the solar system. The application of non-linear dynamics
in physiology has resulted in an impact similar to that in physics. Chaotic dynamics have been
found to underlie even those physiological processes that were previously thought to be strictly
periodic (e.g., the heart rhythm). Results, primarily from applications in the areas of physics and
physiology, have led to prominent review series in the major scientific journals, such as Science
(1989) and New Scientist (1989), and to numerous international conferences. As a result of
investigations in physics and physiology, the general characteristics of systems that promote
chaotic dynamics are well known.

~

.
Ecological systems typically exhibit characteristics that lead to chaos. Non-linearity is the

basis of chaotic dynamics. Very few unequivocal statements can be made in science; however, one
of the few is that ecological relationships are non-linear. Non-linearity in ecology is a result of
fundamental thermodynamics. Malthus recognized this fact in 1826 when he stated, in the sixth
edition of his famous essay, that, "... the power of the earth to produce subsistence is certainly not
unlimited " Any system that is based on a finite rate of energy input must at some time become

bounded by non-linear feedback. High order dimensionality is another characteristic that
predisposes systems to chaotic dynamics. One of the hallmarks of ecological structure is the large
number of interactions found in natural ecological associations. In fact, high order dimensionality

,

,

j
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has been proposed to be the most significant difference between physics and physical systems, and
ecology and ecological systems. Time-lags are notoriously de-stabilizing in mathematical models:'
The simplest non-linear difference equation (quadratic) produces well-known chaotic dynamics.
Once again, time-lags are a fundamental characteristic of ecological organization. One has to look
no further than reproductive time-delays to be convinced of the ubiquitous nature of time-lags in
ecology. The final common characteristic that predisposes systems to chaotic dynamics is periodic
forcing. The natural world abounds in cyclical patterns that act as periodic forcing variables to
ecological systems. Daily cycles function within seasonal cycles that are themselves embedded in
solar cycles. In summary, the attributes that lead to chaos are to be found everywhere in the
natural ecological world.

If the characteristics of chaotic systems are so ubiquitous in nature, why hasn't chaos been
recognized as a fundamental property of ecological structure? Well, in fact, the potential for chaos
has been demonstrated in almost all realistic models of ecological organization. However,
empirically demonstrating the existence and/or importance of chaos in ecology is quite another
story. The reason that this has been such a hard question to answer is the difficulty in empirically
differentiating chaotic dynamics from random dynamics. To convincingly separate the two, it is
necessary to have literally thousands of datum points. Such data are relatively easy to generate in
physics and physiology, but almost impossible for most ecological systems. Therefore, to date,
the debate has largely been waged on theoretical or hypothetical grounds. Convincing theoretical
arguments suggest that chaos should not be exhibited in surviving ecological associations.
Coincidentally, this conjecture does not mean that chaos is not important in ecology, just that it
should not be commonly found. Either way the debate is finally resolved, the answer will be
interesting and will have important ramifications.

Recognizing the importance of resolving the questions of where and how chaos fits into
ecological organization, a symposium was organized by F. P. Hain, North Carolina
University, and J. A. Logan, Virginia Polytechnic Institute and State University, at the -- - ~
International Congress of the International Union of Forestry Research Organizations in Montreal,
Canada. The topics discussed in this symposium, titled Does Chaos Exist in Ecological Systems,
address some of the most important issues facing ecology today. At this symposium, Logan
introduced the concept of chaos and described questions that are at issue in determining the
importance of chaos in ecology. Turchin and Ellner discussed the problems associated with

~

chaos from ecological time series. - . -
exhibited in naturally occurring ecological systems. He further discussed --- ~ - -- --
ecological disturbance, through intentional management or unintentional disruption, within the
context of chaos theory. Stone presented exciting new results from a model based on individual
prey and predator behavior in a spatially diffuse system.
that chaos should be expected in simple prey/predator systems, and that tightly ,

could easily be mistaken for "white noise" in populations that are controlled by natural enemies.

The topics of this symposium are timely and have
ecological issues of today. '

-' ~. ~-- ., ~.~

the atmospheric chemistry of anthropogenic pollutants). However, they are being
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Plate 1. (a) Gypsy moth defoliation in Shenandoah National Park, Virginia, USA (photo
courtesy M. Carter). Extensive defoliation caused by the advancing wave front of gypsy moth
populations. Significant tree mortality has occurred as the gypsy moth extends its range to the
south. (b) Southern pine beetle spot, Sam Houston National Forest, Texas, USA (photo courtesy
R. Billings). The red top and faded trees are all victims of the southern pine beetle. (c) Mortality
from mountain pine beetle, Targhee National Forest, Idaho, USA (photo courtesy G. Amman).
The extensive potential for tree mortality from attacks of aggressive bark beetles is well
demonstrated in this aerial photograph. (d) A "windrow" of range caterpillars, shortgrass steppe,
East of Raton, New Mexico, USA (photo courtesy New Mexico State University). The total
standing crop biomass is essentially eliminated by the advancing caterpillars.

x



Plate 2. (a) A toris viewed from above. The dynamics of the system result from
variables winding around the surface of the toris. . - - -- - --

(seasonality) acting on a herbivore/plant interaction (see Schaffer et al., 1988, pp 1.41
detailed description). The system is not phase locked for the chosen parameter values.

-

the entire surface of the attractor.
dynamics of a phased-locked system. Note the complex expression of cycles-within-cycles.
system results from a model of a host/pathogen system with seasonal transmission (see
1989). (c) The phase space plot of the toris that resulted in the time series shown in Plate 2B.

one predator and two prey species (Gilpin 1979). --- -- system on the surface of the attractor (see text for further discussion).
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Chaos: Much Ado About Something

J. A. Loganl

Introduction

The discovery of complex "chaotic" dynamics in simple mathematical models has resulted in
widespread interest from a diversity of scientific disciplines. These complex dynamics have been
observed in many real world systems, primarily in physics and physiology. As stated in the
Preface to this volume, and also indicated by this symposium title, the role that chaotic dynamics
may play in real-world ecological systems is less certain. A legitimate question is then, what is
the principal motivation for interest in chaos from an ecological point of view, and in particular
from that of a Forest Entomologist? The answer to this question, in my opinion, lies in the basic
nature of pest management problems in natural resource systems. In a previous publication
(Logan 1987), I contrasted the attributes of pest management in rangeland systems to those in
intensive agricultural systems. Most of the salient features of this characterization are true for
natural resource systems in general, and carry-over to insect pest management in forest systems.
The most important attribute with respect to chaos is the time frame of interest. In crop systems
management patterns are typically based on a annual rotation. The time frame of interest is
therefore short-term, and the important population dynamics of insect pests and their associated
biological control agents are of a proximate nature. The contrast to forest pest management is
obvious, and the necessity for adopting a long-term view is self apparent. Long-term dynamics
associated with forest insect pests are typically complex (see Fig. 1). Several attributes are
apparent from the time series shown in Fig. 1, the most obvious of which is the magnitude of
differences between endemic or latent phase and the outbreak or eruptive phase. Phase differences
for outbreak species of forest pests may be several orders of magnitude; in other words, outbreak
densities may be greater than one-million times those of latent phases. Another attribute of the
time-traces of Fig. I is the lack of true periodicity. The time series is temporally complex.

In addition to the complex nature of temporal patterns, outbreaks of insect pests in natural
resource systems are often spectacular events (plate 1). Outbreaks are both intensive (i.e., greater
than 80% mortality with some bark beetles and virtual total defoliation with many lepidopterans)
and extensive (thousands of contiguous hc. can be affected). Due to these characteristics, patterns
of density and outbreak are both dramatic and enigmatic.

Additional attributes of pest management in forest systems are based in economic rather than
ecological terms. Due to the lower per-unit monetary return from natural resource systems, the
management options available to Forest Entomologists are more restrictive than those that are
available.. to Crop Protection Entomologists. In many cases, Forest Pest Management must rely
on the augmentation of natural forces rather than the more simplistic approach of direct
intervention. Monetary constraints on the viability of heavy-handed control tactics necessitate that
managers have a more in-depth understanding of the system to be managed, and the nature of forest

1 Department of Entomology and Department of ForesLTy, Virginia Polytechnic Institute and State

University, Blacksburg, Virginia, 24061.
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rotation necessitates that this understanding include long-tenD population dynamics. The attributes
of pest management in natural resource systems undoubtedly poses a challenge to development of
effective management strategies and tactics, but it also provides for significant scientific
opportunities. The requirement for understanding basic ecological relationships combined with the
intrinsic and extrinsic value of forest systems provides both the motivation and the resources to
undertake ambitious scientific enterprise. Forest entomologists have a long and rich history of
contribution to basic insect ecology. Many of these contributions have been of a quantitative
nature. For reasons of necessity (time frames of interest that rival or exceed the professional life of
a scientist), economy, and intellectual return, mathematical reasoning and modeling have played a
prominent role in the scientific contributions of Forest Entomologists.

Application of computer modeling technology began to have a major impact on Forest
Entomology during the mid 1960s. Forest pests, in particular bark beetles, were one component
of the famous Huffaker Project This historically important research project was part of an even
more ambitious2 research program, the International Biological Program (IBP). The central
unifying theme of the IBP was development of detailed computer models that faithfully simulated
entire ecosystems or even biomes. The strong commitment to computer simulation models carried
through to the Huffaker Project; of twelve specific objectives, seven were directly related to
development of simulation models (Stone 1989). The Huffaker Project was largely responsible for
fonnulating the philosophy of pest management in North America as it continued to evolve during
the 1970s and 1980s. This philosophical basis continued to have a strong computer modeling
component, as illustrated by the central role of computer models in the "Big Bug" projects funded
by the U.S. Forest Service. The U.S. Forest Service during the past 20 years has provided
resources for accelerated research on several important North American forest insect pests,
including tussock moth, southern pine beetle, spruce budwonn, and gypsy moth. The central role
of modeling in these efforts has fulfilled expectations with respect to research organization and
synthesis (Brookes, et al. 1978, 1987), but has not resulted i~ improved power to predict outbreaks

(e.g. Berryman 1991).

In general terms, prediction of insect pest outbreaks in natural resource systems remains an
elusive goal. This statement is true in spite of efforts by some of the most talented entomologists
(including C. V. Riley, the "founding father" of Applied Entomology in North America),
expenditure of substantial dollars, and application of the most advanced computer technologies.
What is going on here? Perhaps the reason for our lack of predictive power lies in the prevailing
modeling paradigms, as suggested by Berryman (1991). However, it may also be due to
something much more basic. New mathematical discoveries in non-linear dynamics indicate that
this situation may not be entirely due to the maladroitness of those asking the questions, but rather
may result from the very nature of the problem itself. Results indicate the characteristics of
ecological organization and structure predispose these systems to the complex dynamics that have
become known as deterministic chaos. The continuing frustration in lack of predictive power,
then, is the reason for my interest in non-linear dynamics and chaos. The inability to predict
outbreaks in even seemingly straightforward systems has prevailed throughout my personal work
in natural resource systems, experience that includes grasshoppers in the short grass steppe, bark

2 Total U.S. funding for the mp was in excess of $55 million in 1970s US dollars; personal
communication, J. T. Callahan, Associate Director, NSF Ecosystems Studies

3



'.>.

beetles in the coniferous forests of the West. and gypsy moth in the deciduous forests of the East.
The chance that innate properties of Forest/Pest interactions negate prediction of outbreaks is
simply too important to ignore.

In the remainder of this Chapter, I will first attempt to introduce the somewhat esoteric notion
of dete~inistic chaos. Then I describe more fully the characteristics of chaotic systems, provide a
review of the search for chaos in insect population dynamics, and discuss contributions that other
authors in this volume make toward a more complete understanding of chaos in insect population
systems.

Non-linear dynamics and Chaos - What is Chaos?

Several recent reviews introduce the concept of chaos (Crutchfield et at. 1986, Gleick
Holden 1986, Jensen 1987, Krasner 1990, Stewart 1989). Treatment of the subject in
articles and books ranges from a popular New York Times best seller (Gleick 1987)mathematical developments (Devaney 1986). . .

than the popular accounts, but remain comprehensible to an interested insect ecologist
, . - -

and chaotic as, "in a complete confused or disordered condition." ~ -~- ~~-~-

that have been appropriated by mathematicians, the mathematical meaning of chaos is
obliquely related to the standard usage of the term.

- -
Perhaps the best way to gain an appreciation for ~- - --
series of progressively more complex dynamics, leading to what Schaffer and
termed a "taxonomy of motion."

Before I proceed with a "taxonomy of motion" for dynamical systems, --' ---, --

introduce the notion of a "phase space." Phase space is a graphical way of representing
. . - -

characterization of a system's long-tenn dynamics.
of the time series as a way to represent population dynamics (Fig. 2a).
straightforward, a time series plot is often of limited - -- - -- --i

and may in fact not provide much insight into the dynamical structure of the system.

independent axes (see Fig. 2b). --_c --" - -- space, and the graph of state variables in phase space is termed a phase plot.

. - - _.
behavior. More important, structure that is opaque in a time-dimensioned plot may
obvious in a phase plot. - ~ --- - '. - ---~ -- - -- - -.-
phase space is an essential step in dynamical systems analysis. Adopting the phase
- - - -
essential for assessing the impact of complex non-linear dynamics on ecological structure.

4
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The simplest dynamics in our classification scheme is that of a stable system. .

requirement for such a system is the existence of a steady-state that acts as an

The system will remain at steady-state indefinitely unless perturbed by an external force.

steady state. .
will always be back towards the steady-state value.
to steady-state may be either directly without cycling or as a damped cycle, the
being that the system always returns to its steady-state value.
2, which represents a stable prey-predator system. ~.. '.I'~ '..-"
of the basic tenets of ecology, such as Clementsian succession, and is reflected in the
concept of the "balance of nature" (Ellis et at. 1991).

The next, more complex dynamical behavior is that in which the
itself an attractor but rather serves as a focus for an attracting cycle. ~- - ~ - J - ~ -, -

state still exists, and if the system is initiated exactly at steady-state, then it will remain
indefinitely. However, even the slightest disturbance will result in
steady-state. .
attracting cycle. The cycle, -- ~--- -- c ~ J ~~~~-, --~ ~-- -~- -- ~~ --- --- - - ~~~- ---

space that are outside the cycle as well as for those that are inside the cycle (Fig. 3).
mathematical terminology for such dynamics is a stable limit cycle. ..

has been the subject of substantial ecological interest, in both theoretical (e.g.
1981) and applied terms (Noy-Meir 1975). Dynamics that cycle without damping,I'

.11

[II

. -- -
the natural ecological world (e.g. prey-predator cycles). -
non-linearity and, in fact, requires non-linearity to be expressed. ",
the effects of a state-variable upon a system that is non-proportional.

Dynamics that are similar, but potentially
that result from motion on a toris. . - -- - - ~- --- --" --- - -- -- ---

of at least three forces, and has been described as a doughnut-like surface (plate 2a).
- ~

the natural resonance of three (or more) trophic interactions. - - -.; ---~~ - -. ---~--- -
points in phase-space being attracted to, and winding around, the surface of the tons.
resulting from motion on a tons can range from relatively simple to exceedingly

-
state variables themselves.

integer
system .- ~~"- - --." - --- , " can be lengthy and complex (plates 2b and 2c). Conversely,

- ~ ~ J "

become periodic. The dynamics in this latter case are said to be quasiperiodic (plate 2a).

Toridal flow does not always result in simple doughnut-shaped figures, but can
complex and beautiful attractors such as that shown in Plate 2c. .

6
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result from motion on a toris are highly variable; in fact, perhaps all dynamics short of chaos may
be described as some manifestation of motion on a toris. The ecological implications are clear. It
has often been the case that population time-series superficially appear to be periodic, but upon
closer inspection are found to lack true periodicity. As an example, Uvavrov, in his classical

- .
locust numbers. ...

- - ~ - --
in a counb"y." The emphasis, by the way, is Uvavrov's. .

series is usually atb"ibuted to the effects of stochastic variation. Recognizing that - quasiperiodic dynamics can result from strictly deterministic interactions (endogenous rather

exogenous effects) should be more widely appreciated by ecologists.

As with the preceding examples,

~

simple shape such as a doughnut. Due to its geometric complexity, the name
been attached to the attracting surface of chaotic systems (plate 2d). - - -~

"the dynamics that result from motion on the surface of a strange attractor," although
strange attractors result in chaos. ~
occurs on the surface of the attractor.
consequence of this bending and folding.
indistinguishable from those of a random or stochastic process.

- -- -- --- -- -
~

together soon diverge, and in fact do so at an exponential rate. The characteristics;,
I't

.II!

lill

- ~ . .
bounded by motion on the surface of the attractor; (2) even

-- -, - point in time can be uniquely determined), the resulting time series is apparently

stochastic; (3) points that are initially close together rapidly diverge. ~ - , ---

factors results in the paradox of regularity existing in the midst of apparently random behavior.

The classification scheme of the preceding paragraphs is not inclusive; there are other,
subtle dynamical consequences of non-linearity that have not been described.
reason to believe that undiscovered dynamical -
models. It is also clear that I have characterized, but not defined, chaos.

- " ~ --
ergodic theory, and are therefore incomprehensible to most ecologists. While lacking

- . ~ -
dynamics is intended to provide an appreciation for the concept of chaos.

- - -

used for over a century to describe ecological associations (Verhulst 1845, Lotka 1925,
1926). In the natural evolution of theoretical ecology, it has been necessary to

potential for dynamical complexity. - possibilities of ecologically motivated models.

8



Characteristics of Chaotic Systems

In the previous section, the basic characteristics of chaotic systems were described. In this
section the consequences of those characteristics will be discussed in greater detail. Since chaos
results from motion on an attracting surface, chaotic systems are bounded by the limits of the .
attractor in phase space. Boundedness within ecologically reasonable limits is required for a
feasible ecological model. This ecological constraint mayor may not be violated by chaotic
systems, depending on the characteristics of the particular attractor in question. Therefore, the
ecological necessity of remaining within reasonable limits, i.e. neither growing without bounds
nor decaying to zero, is neither necessarily violated nor satisfied by chaotic systems.

The rapid divergence of points that are initially close together is illustrated by the two time
series that are plotted in Plate 3a. The time series in this figure are the result of numerical
solution to Lorenz's3 (1963) famous weather model. The two different numerical solutions were
obtained from initial starting values that differed by only 0.001. As is apparent in Plate 3a, the
time series are indistinguishable for a short period of time, but once they begin to diverge they
rapidly become totally out of synchrony, and in fact do so at an exponential rate. The exponential
magnification of small differences is one of the most characteristic attributes of chaotic systems,
and is directly responsible for the lack of long-range predictive power. A measure of the rate at
which close points diverge is known as the Lyapunoy exponent. For a n-dimensional system,
there will be n Lyapunov exponents, only one of which needs to be greater than zero for the
system to be chaotic. The condition of at least one positive Lyapunov is, therefore, necessary (but
not sufficient) for chaos. For a defined system of equations the complete Lyapunov spectrum can
be obtained. Techniques are also available for estimating the largest Lyapunov exponent from an
empirical time series, although the typical sparsity of ecological time-series data is a significant
limitation to the application of these techniques.

Motion that is restricted to the surface of a chaotic attractor is responsible for the order that
lies at the heart of "chaotic" randomness. Plate 3b offers an excellent example of the nature of this
order. Even though the two time series in Plate 3a are completely out of synchrony and appear to
be unrelated, the plots that result from their 2-dimensional projections in phase-space are
essentially indistinguishable. This is an important result for ecologists, because it clearly
illustrates that the "classical" way of viewing dynamical properties of a system result in an
misleading plot (plate 3a), while viewing the dynamics in a somewhat different light (the phase-
space of Plate 3b) result in the emergence of an underlying order.

Another attribute underlying deterministic chaos is the existence of a non-integer fractal
dimension. The statement that chaotic systems have fractal (or fractional) dimension is confusing
because of the standard use of the term dimension to describe the number of state-variables that

3 Lorenz's classical experiment with a simple weather model dates the beginning of the modem
(computer- assisted analysis) era of nonlinear dynamics. Through a series of simulation experiments
with a simple, non-linear model of the weather, Lorenz discovered never-repeating, aperiodic cycles in
which long-term prediction was not possible due to an exponential growth of initial error. An excellent
popular account of Lorenz's work can be found in Gleick (1987) and a mathematical account in Sparrow

(1982).
9
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define a system. For example, a prey-predator system has dimension 2, and a prey-predator-
pathogen system has dimension 3. Used in
system or, equivalently, the Euclidian dimension of the system.
such as fractal dimensions, defy such simple description. .
integer fractal dimension are, however, comprehensible. Self-similarity
systems with a non-integer fractal dimension, and refers to complexity that
related to the scale by which the system is observed (Gordon and Greenspan 1988).

-
resolution.

- - -
The fractal nature of chaotic systems also leads to complex and beautiful geometric patterns.
complexity and beauty of plots such
atb"action of chaos (i.e. Gleick 1987).
chaos, calculation of the fractal dimension provides a diagnostic tool for evidence
empirical time series. Additionally, for the ecologist, the fact that the complexity

detennine an "appropriate" scale to view various ecological phenomena.

Although I have yet to formally define chaos,

aperiodic behavior, sensitivity to initial -- J fractal dimension) provide criteria to evaluate the likelihood of chaos in a

- ~. ~

rather than obtaining unequivocal "proof' of chaos. This statement is particularly
empirical systems.

i
l'It

III

.l1!1
- -
(Ellner, these proceedings).

Chaos and Insect Population Ecology

May's (1974) discovery of chaotic dynamics in one of the simplest and most
. . ~ - -.

models for evidence of chaotic dynamics [see Logan and Allen (1992) for a recent review].
result of this work was that the potential for chaos existed in almost every case. -
words (these proceedings), "the seeds for chaos underlie all reasonable ecological models."
results have provided fertile grounds for both active empirical investigation and
conjecture.

The first, and until

-

Hassell et at. (1976). data for 24 insect species.

- -
parameters for each s~ies. ; -- - - --- -.; - -- --- --
found that almost all fell within a region of stability. In fact. only one gave

10



complex nonlinear behavior (a stable limit cycle) and none fell within the region of chaos.
Subsequent work (Bellows 1981, Thomas et at. 1980), which generally replicated Hassell et al.'s
approach, served to reinforce their results. Although Hassell et at. were careful to point out the
limits of their analysis, their results have been widely cited in support of the view that complex
dynamics, and in particular chaos, are seldom expressed in nature (e.g. Berryman and Millstein
1989).

The major limitation to Hassell et al.'s work, as they were careful to point out, was that their
model explicitly excluded trophic interactions with other populations. Naturally occurring
populations are invariably embedded within a matrix of nonlinear interactions with other
populations. It has long been recognized that analysis of a complex ecological system in reduced
dimensionality and a single time lag will tend to obscure complex dynamics (Guckenheimer et al.
1977). The problem, of course, is that it is typically difficult enough to accurately sample one
insect population, much less the complete community within which it is embedded. Fortunately,
due to a theorem of Takens (1981), which confirmed a previous conjecture by Packard et al.
(1980), the dynamic behavior of a complex system is often identical to that of the time-lagged
series in one of its state variables. Takens' theorem has been routinely applied in the analysis of
physical systems (Argoul et al. 1987, Roux et al' 1983). Schaffer and coworkers (1984, 1985a,
1985b, 1986) were the fIrSt to recognize the implications of Takens' results to ecological systems,
although the analysis of time-lag structure per-se has a long tradition in population ecology
(Berryman 1978, Hutchinson 1948, Moran 1953, Royama 1977). Graphical analysis (by Poincare
section) of the lagged time series, in view of Takens' theorem, has resulted in the discovery of
probable complex nonlinear dynamics underlying the behavior of insect systems that had
previously been thought to be random (Schaffer and Kot 1985b). Other graphical procedures have
also been used (Sugihara and May 1990) to demonstrate the existence of low-dimensional attractors
(chaos) in ecological data. Ellner, in these proceedings, reviews the validity of these techniques for
analysis of ecological time series.

In recent work, Turchin (1990, this volume) applied a time-lagged methodology (Turchin and
Taylor 1991) to analyze the time series of 13 forest insect pests. This work, which is reviewed
and expanded upon in these proceedings, resulted in the following breakdown of dynamics: no
regulation, 1 case; exponentially stable, 2 cases; damped oscillations, 6 cases; limit cycles, 3
cases; chaos, 1 case. Turchin's results are in marked contrast with Hassell et al.'s (1976) earlier
conclusions, indicating the general importance of complex nonlinear dynamics in forest insect
populations. In particular, Turchin suggested that complex dynamics resulting from density-
dependence may in fact underlie population fluctuations that had previously been attributed to
stochastic and/or exogenous effects.

Analysis of empirical insect population data for the signature of chaos presents a significant
dilemma. On the one hand, the "standard" techniques of mathematical analysis are unrealistically
data intensive. Although development of new methodology for detecting chaos in small data sets
is currently an active area of research in mathematical analysis, there are potential problems in
ecological application of this work, as iUusb"ated by a recent quote from this literature. Ramsey
and Yuan (1989) provide an optimistic statement that, ". . . one should be able to get a reasonably
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iterating a model for enough time steps to allow convergence of the system to its
dynamics. The long-term dynamics are then plotted for a large number of iterations.
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behavior of the model. Repeated plotting of the same point (which forms one line
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cycle, four points a four-point cycle, etc. The points at which one level of complexity
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clear idea of whether one has an attractor or not with only a few thousand observations...
Obviously, the concept of "small data set" is relative. Ecologists feel lucky to measure data
terms of tens rather than thousands!

-
chaotic (e.g. Schaffer et al.1990). - 0 ~ --" ---
further complicates the serious difficulty of accounting for high order dimensionality.
analysis of insect life-table studies. Morris (1990) has

-
the conclusions that are drawn. --- stable equilibrium through chaos) for the same data set.

. o. - - - -~ -~

process level simulation models to generate data that are then subjected to quantitative analysis.
this approach, data from a validated simulation model can be used in several ways.

~~~-- -~ --~-, -

of chaotic systems (i.e fractal dimension, positive Lyapunov exponents, etc.). Since the
result from simulation, the large data requirements

predator system.

'
II ',ii !

III i I !

: IIIII!

~

budworm, Heliothis virescens (Makela et al. 1988).
proceedings.

in more analytically tractable models. The analytic model is then subjected
analysis designed to provide insights into dynamical properties. . - - -
a systematic process of developing progressively more analytically tractable models
simulation models is the development of composite models (Logan 1982,
1987). This approach has been successfully applied for - - ---
several important insect pests (Logan 1982, Ludwig et al. 1978, Wollkind et al.
Application of the composite modeling paradigm for analysis of a spider

- , ~--- ,- discovery of complex dynamics underlying a simple prey-predator interaction,

existence of sub-critical stability in a model that had previously been thought -- --- - -
restricted dynamical behavior (Collins et al. 1990, Logan 1982, Wollkind et al. 1988).

- -- -~-~ ~--
more complex aperiodic cycles that appear to be chaotic (J. A. Logan, unpublished).
significance of this
ecological analysis.
elucidate the role of temperature on the prey-predator interaction and the resulting
control of T. mcdanieli (Logan 1976).

-~ -- -- -~ - - - . . -
First and foremost is that specific modeling constructs and estimated parameter
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based on real life interactions. As indicated in the previous section, the potential for chaos is
ubiquitous in the generally accepted ecological models. Therefore, demonstration of chaos in a real
system through use of a model is credible only if the model is a reasonable representation of the
system and if parameter values are in a realistic range. In any case, due to the difficulties I have
discussed with empirical data analysis, simulation-generated data will continue to play an
important role in analysis of insect population dynamics.

Since neither empirical data analysis nor model results have definitively demonstrated the
importance of chaos in insect population dynamics, the issue provides fertile grounds for
theoretical debate and conceptual conjecture. On one side lies the evidence that ecological structure
abounds in characteristics that lead to complex dynamics and chaos, and on the other side is the
historical tradition that stability (consistency) is a desirable (i.e. has positive selection value)
ecological trait (Berryman and Millstein 1989). The arguments against chaos (and by implication
complex nonlinear dynamics) being expressed in extant ecological associations are based on the
assumption that chaos would lead to population extinction. This assumption is based on the
observation that for some models oscillations in the chaotic parameter region lead to a high
probability of extinction (Berryman and Millstein 1989, Thomas et al. 1980). The counter to this
argument is that the behavior of one class of equations does not generalize to all ecological models
(Rogers 1984). In particular, systems of equations, including simple prey-predator equations, can
exhibit chaotic behavior that is tightly bounded (Stone, these Proceedings). In fact, for some
ecological models the dynamics of populations in chaotic regions are more closely bounded than
those in nearby non-chaotic regions (Allen 1989). Examples from laboratory (pimentel and AI-
Hafidh 1965, Pimentel and Stone 1968) and field experiences (Fenner and Myers 1978) can be cited
to support the view of selection for stability. Conversely, the body of literature on the dynamics
of "outbreak" insects (e.g. Barbosa and Schultz 1987) provide numerous examples of populations
with violent density fluctuations that are none-the-less persistent.

In summary, the empirical search for chaos in ecological systems has involved three
approaches: (1) use of time series data to estimate parameters in simple population models, (2)
phenomenological construction of a multidimensional attractor from time-lagged data, and (3) the
construction of statistical models (RSM technology) from time-lagged data. All three approaches
are limited by large data requirements or potential inconclusiveness of results. Related to these
purely empirical approaches has been the use of validated simulation models to generate data that
are then subjected to dynamical systems analysis. Although data sets generated from simulation
models are not restricted by the constraints of real-world time frames, results from these studies are
subject to the limitations and criticisms of simulation studies in general. Therefore, much of the
evidence for or against chaos and complex dynamics has a basis in conceptual or theoretical
arguments. Once again a convincing case (using selected examples) can be made either for or
against chaos. From this diffuse information, however, one consistent pattern does emerge: and
that is, the deeper one looks into the dynamics of insect populations, the more likely one is to find

evidence for complex nonlinear effects.
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Important Issues

The difficulty in empirically demonstrating chaos in ecological data leaves the
question of the existence of chaos in ecological systems unresolved.
important for reasons both philosophical and practical. -~,-
address both the conceptual and the practical issues relating to chaos in ecology.

In this chapter, .

dynamics are commonly found in ecological structure. -
deterministic chaos become more fully understood, chaos will be found to be an component of many ecological associations. This expectation is by no means univers3I.

underlying theme of natural history since antiquity has been the "balance of nature" ,
1973), which has led to a strong equilibrium-based paradigm for population ecology.

paradigm is implicit to some of the most basic ecological concepts such as

succession and Darwinian selection (Ellis et al. 1991).

incompatible with the prevailing equilibrium paradigm.
"We argue that chaos and stable limit cycle behavior are maladaptive ...

proceedings: "... ecological systems evolve naturally into ordered, stable structures... .

next chapter of this volume, Berryman presents the case for the equilibrium

chaos to be maladaptive.

equilibrium systems.

:1 li t
lit! t
,mIl!

, llll!I!\

. -

be tenDed the paradox of prediction that results from chaotic dynamics.

- -
that are truly unpredictable. ". --- - - . ---c ~-' ~ -~-

possible to predict short term events if the strange attractor can
-- .~.

and Sidorowich 1987). As summarized by Schaffer and Kot (1986), "
severity and timing of the next irruption from knowledge of the last " For,

insects this would indeed be a significant advance in predictive power. The paradox

- . - -
predictable if the system is viewed from an appropriate perspective.

between time series that are chaotic from those that are simply noisy.

-of a system from its time series. .

that has historically surrounded the topic of population regulation. -- c - -- --- -- -
is that complex, nonlinear dynamics are counter to the prevailing view of regulation
stable equilibrium, the "equilibrium" argument. -

(1976) work has had on this controversy. Turchin points out that a major
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al.'s work was the a priori assumption of a single species model4. He then proposes a
multidimensional, time-lag-based model and applies this model to time series from several
important forest insect pests. Turchin concludes that complex dynamics are more common that
has previously been recognized. Following Turchin's contribution, Ellner provides a thorough
review of some of the dangers of looking for chaos in short time-frame data sets that are
characteristic of ecological studies. In particular, he demonstrates that many of the characteristics
of chaotic systems can also arise from simple, non-chaotic stochastic models. Ellner's work serves
to emphasize the necessity of placing the analysis of ecological time series within the ecological
context of the system under examination. In other words, what are the plausible controlling
mechanisms of the system under consideration and are they consistent with (or counter to) chaos as
an explanation for the observed time-series? Ellner concludes his contribution by noting that
significant progress has been made toward development of analytic tools for distinguishing chaos
from random noise in the types of data sets typical to ecology, but that the task is by no means
completed. His paper is an eloquent plea for further development of such techniques.

The papers of Turchin and Ellner serve to point out the challenges of empirically
demonstrating chaos in ecological systems. Their contributions provide motivation for the
empirical analysis of time series that result from well considered ecological models in which the
underlying governing rules are uniquely defined. Due to the accessibility of powerful personal
computers, it is now possible to construct models of ecological associations that are far more
detailed than has previously been reasonable. In the final chapter of these proceedings, Stone takes
a novel approach to simulation of prey-predator dynamics. He departs from traditional modeling
approaches by developing an object-oriented programming simulation of the behaviors of
individuals that comprise the population. Through this approach, Stone is able to examine the
dynamics of the prey-predator interaction at an unprecedented level of resolution. In a further
departure from previous individual-based simulations, Stone bases behavior entirely on if-then
rules that contain no random or stochastic elements. This latter point is particularly germane to
the topic of this symposium since any dynamics that emerge from the model could be attributed
solely to deterministic forces. Since the model was not cast in the traditional difference or
differential equation model, analysis of model results can follow approaches similar to those used
for the analysis of real ecological data. However, since large, long-term data sets can be easily
generated through computer simulation, the typical constraints of ecological data are avoided. In
other words, through simulation, results from Stone's work meet the conditions in Ellner's paper
for reliable detection of chaos (i.e. (I) abundant data, (2) small (nil) measurement error, and (3) data
result from a purely deterministic system). Stone's work identifies a chaotic strange attractor that
is an emergent property from his simulated prey-predator system. Stone further notes that
dynamics resulting from motion on this strange attractor would be diagnosed as resulting from
stochastic forces acting on non-chaotic, logistic growth. The basic result from Stone's paper is,
therefore, in some sense the mirror-image to that of Ellner's; it is also quite easy to misclassify

chaotic behavior as stable.

4 Hassell et al. acknowledged that real-world population dynamics result from complex trophic
interactions and that their results should be viewed with caution for this reason. This caveat has largely
been ignored in subsequent work that has cited the Hassell et al. paper.
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Chaos in Ecology and Resource Management:
What Causes It and How To Avoid It

Alan A. Berryman!

Nowadays, as Logan notes in the first chapter of this volume, there is "much ado about
chaos." Articles regularly appear in the major journals, books are published in profusion, chaos is
hailed as a "new science" (Gleick 1987), ranking in importance to "relativity and quantum
mechanics" (Fisher 1985). Despite all this excitement, however, chaos remains mysterious to
many people. The purpose of this paper is to provide ecologists and resource managers with an
elementary understanding of the phenomenon called chaos. In the first section I describe chaotic
motion and explain what causes it. Then I address three important questions about chaos in
ecology and resource management - Does chaos occur naturally in ecological systems? Can human
actions cause chaos? How can chaos be avoided in managed ecosystems?

What is Chaos?

In the book Chaos: Making a New Science, Gleick (1987) cites several definitions of chaos,
e.g., "complicated, aperiodic, attracting orbits of certain dynamical systems; a kind of order
without order; apparently random recurrent behavior; irregular, unpredictable behavior of

deterministic, non-linear dynamical systems."

Most experts would probably agree that chaos is a type of behavior that emerges from
dynamic (time-varying) systems containing non-linear relationships (as most biological systems
do). Classical dynamics recognizes two major types of deterministic (non-random) behavior -

equilibrium points or point attractors (Fig. 1a), and periodic orbits or cyclic attractors (Fig. 1b). I
should explain that attractors are regions in the phase-space of two or more variables (the inserts in
Fig. 1) that attract nearby trajectories; i.e., a magnet is a point attractor to an iron nail. Chaos is a
third kind of behavior in which the trajectories are not drawn towards a single point or orbit but
rather to a definable region of phase-space called a "strange attractor" (Fig. lc). Because orbits on a
strange attractor do not repeat themselves, or repeat only after long time intervals, they sometimes
appear to have random motion. In fact, if we take a system that has a cyclic attractor (Fig. lb) and
place it in a noisy (variable) environment, we obtain behavior that is difficult to distinguish from
chaos (Fig. ld). A major problem, therefore, is to separate chaos from non-chaotic noisy

trajectories (see EUner's contribution in this volume).

1 Departments of Entomology and Natural Resource Sciences, Washington State University,

Pullman, W A , 99164-6432.
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What Causes Chaos?

are extIemely sensitive to their initial. or starting. conditions. --- - ~
very close together on a strange attractor. their positions relative to one another will
exponentially over time.

Deviation amplification is a well-known phenomenon in systems science.
systems engineers, or caused naturally in ecosystems, by positive feedback
processes. For example, the "population explosion"
economic growth, the "arms race," organic evolution, and so on.
deviation amplification, it can also be an ingredient of chaos (see Box I).
ecological systems contain positive feedback loops, if only
constitutive species, then the "seeds of chaos" must lurk everywhere in
Millstein 1989a).

-
(Berryman 1981).

In contrast to positive feedback, which gives rise to ecological instability and -

amplification, negative feedback usually induces stability by ironing out deviations from
steady-state (deviation attenuation) (Berryman 1981, 1989). In
defines the attractor onto which dynamic trajectories converge. In ecological systems,
feedbacks are created by competition between individuals for food or territories
competition), consumer-resource (predator-prey) interactions, and other
population growth in a "density-dependent" manner.

The type of attractor that emerges from a dynamic system depends, to a large extent,

Time-lags can be caused by

interactions, nutrient cycling, and so on. In general, the more species that are
feedback loop, the longer is the lag in the feedback response. The strength of the
feedback, on the other hand, depends more on the opposing force that is applied, with
counter-action often being termed overcompensatory feedback. Overcompensatory-
feedback can also lead to deviation amplification, the trademark of chaos (see Box I).

When the controlling negative feedback in a dynamic system acts
lime-lag), a point attractor is always created. irrespective of the force applied.

.- "

limit-cycle attractors, or strange attractors can arise under different parametric conditions.
- - - -

certain parameters reach critical values, and then the cyclic attractor can
strange attractor at other critical values of the same parameters (Fig. 2).
particularly sensitive to their positive feedback

26







growth parameters as well as to parameters determining the strength and inertia of the feedback
response, both of which create the deviation-amplifying requirements for chaotic motion.

In summary, it is possible for ecological systems to exhibit dte major types of equilibrium
behavior - point equilibria, periodic cycles, and aperiodic chaotic motion. The behavior around
equilibrium becomes more irregular and unpredictable (more chaotic) as time-lags get larger and as
the intensity or strengdt of dte negative feedback reactions increase and, of course, as dte positive
feedback growdt parameters become large.

Does Chaos Occur Naturally in Ecological Systems?

Following May's (1974) observation of chaos in simple ecological models, an obvious
question was: "Do ecological systems display this complex and unpredictable deterministic
behavior?" In other words, is the irregular and apparently random behavior observed in many
natural populations (Fig. 3) due to chaos (Fig. lc), or to random disturbances of non-chaotic
trajectories (e.g., Fig. Id)? For a number of technical reasons, the usual methods of attractor
reconstruction cannot be applied to most ecological data (e.g. see, Ellner's contribution in this
volume and the discussions by Nisbet et al. 1989 and Berryman and Millstein 1989b).

An alternative approach is to fit theoretically reasonable ecological models to the data and then
determine if the parameters fall into the chaotic domain. When this approach is applied to data
from natural and laboratory populations, chaotic parameters are rarely encountered (see Hassell et
al. 1976, Thomas et al. 1980, and Turchin's contribution in this volume). I have analyzed
numerous sets of field data in a similar way and have only once found parameter values in the
chaotic domain. For example, when the data in Figure 3 are fit to a theoretical two-species model,
the estimated parameters give rise to point attractors (Fig. 4, left), even though the model, with
different parameters, is capable of producing chaotic motion (Fig. lc). However, the trajectories
are very similar to the observed dynamics when the models are run in a variable environment [ci.
Figs. 3 (left) and 4 (right)]. Thus, although some see chaos in ecological data (e.g., Schaffer and
Kot 1986), the empirical evidence suggests that ecosystems are usually quite stable and that the
irregular fluctuations often observed are due to external random perturbations rather than to internal

chaotic motion.

Besides the empirical evidence, there are strong evolutionary reasons why ecosystems should
not behave chaotically. First, chaotic population trajectories often spend considerable time far
from their equilibrium points, sometimes declining to extremely low densities where extinction is
likely (Thomas et al. 1980, Berryman and Millstein 1989a). Conventional wisdom argues that
species should evolve parameter values that minimize the likelihood of extinction; i.e.,
non-chaotic parameters. This viewpoint is supported by modeling exercises (Nisbet et at. 1989,
Mani 1989), and by laboratory and field experiments. For example, Pimentel and his associates
grew populations of houseflies and parasitic wasps in the laboratory and observed that the
amplitude of population fluctuations decreased significantly over time (pimentel and AI-Hafidh
1965, Pimentel and Stone 1968). Examples of evolving stability can also be found in the
biological control of pest organisms. One of the best documented cases is the biological control
of rabbits in Australia by the myxoma virus (Fenner and Myers 1978). Shortly after introduction
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of the virus a virulent sb"ain generated an epizootic that killed most of the rabbits. - -
high-amplitude oscillation, however, less virulent strains (and more resistant rabbits) began
predominate and the populations settled into a muchmore stable condition. Selection
virulent virus strains seems to have occurred because the virulent strains killed their hosts
quickly for effective transmission in sparse rabbit populations.
unstable populations (perhaps even chaotic ones) will evolve over timestable systems through - . - -

efficiency, resistance to attack, virulence, competitiveness, and intra-specific aggression.

0 ~

continuously disturb them from their steady states.

Can Human Actions Cause Ecological Chaos?

Although most natural co-evolved ecological systems do not seem to behave chaotically,
fact remains that all ecosystems contain the "seeds of chaos" in their feedback
therefore, it is always possible to push them into their chaotic domains (Berryman
1989a, Allen -. -
feedbacks by increasing the time lags in the negative feedback loops or - J - ~---~ --~--

certain parameters, particularly the birth and death rates. For example, I have argued
instability in Dungeness crab populations in the
induced by delayed feedback between the crab population and the economic system
1991); i.e., -
then used to purchase new boats and gear, which then impact crab abundance in
fishing season (= time lag) (Fig. 5). Many more examples of human actions that
delayed negative feedback on future populations could be cited,
depletion, destruction of tropical forests, and buildup of radioactive waste. Feedbacks

these, which may not have an impact for a long time, -- ' -- of ecological systems, and could create an environment in which chaos reigns (see Box II).

Instability can also be introduced by modifying certain ecological parameters.
species-specific growth rates can have very c ~ -' -~"~ giving rise to greater instability (Fig. 2). Growth rates can be increased by improving

conditions for the species in question (habitat improvement) or ~ ~ ~ ~. ~

fecund strains (genetic improvement and biotechnology) (Berryman and Millstein
Instability can also be induced by increasing the strength of the interactions between
Box II), i.e., increasing the efficiency or virulence of predators, parasites and -
increasing the degree of competition or cooperation (mutualism) between species.

. . .
- - - ~ -

even chaos. This message should not be lost to biotechnologists who are currently
more virulent viruses for use in insect pest control.
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Nonlinear Modeling of Time-Series Data: Limit Cycles
and Chaos in Forest Insects, Voles, and Epidemics

Peter Turchin 1

.
;,,
'"
~

Although the emphasis of this conference is on chaotic population dynamics, in this paper I
will address the broader issue of complex dynamical behaviors in ecosystems. "Simple" refers to
dynamics whose endogenous (density-dependent) component is characterized by a stable-point
equilibrium. In such systems fluctuations around the equilibrium point are primarily, or entirely,
due to exogenous (density-independent) factors. Thus, "complex" dynamics are bounded,
endogenously-driven fluctuations that do not settle to a stable-point equilibrium. Examples
include limit cycles, quasiperiodic dynamics, and chaos. It is important to consider limit cycles
and chaos together because both dynamical behaviors have the same implications for the
population-regulation debate (more on this later). Another source of complexity is the interaction
between the nonlinear endogenous component and the environmental noise. My main argument
will be that both ecologists and forest managers need to pay more attention to the possibility of
complex dynamical behaviors in natural ecosystems.

The current debate about complex population dynamics revolves around the issue of whether
or not such dynamical behaviors are found in nature. A small, but vocal, group of ecologists
(notably W.M. Schaffer and coworkers) have argued that complex dynamics, and chaos in
particular, are commonly found in nature. On the other hand, many ecologists appear to subscribe
to the view that if populations are regulated at all, they are characterized by stable-point equilibria,
and complex dynamics are no more than a mathematical curiosity. This view has been expressed
by both experimentalists, e.g. "the rarity with which populations fluctuate cyclically in nature..."
(Hairston 1989, p. 6), and theoreticians, e.g. "deterministic stability is the rule rather than
exception, at least with insect populations" (Nisbet and Gurney 1982~ p. 55).

Whether or not complex dynamics are common in nature has a bearing on one of the central
issues in population ecology: the perennial debate about population regulation. Willingness to
ignore the possibility of complex dynamics leads to a certain mind set with which many ecologists
view the debate, which I will call "the one-dimensional paradigm of population regulation."
According to this view, all natural populations lie within the spectrum ranging from completely
unregulated populations at one extreme to tightly regulated populations at the other extreme.
Since "regulation" is usually limited to "regulation around a stable-point equilibrium," any
population fluctuations around the mean must be due to lack of regulation, in other words, to
exogenous (density-independent) perturbations. Clearly, complex dynamical behaviors do not fit
within this framework; thus violently fluctuating populations, even if the fluctuations are caused
by endogenous (density-dependent) factors, are by default classified as poorly regulated.

If complex dynamics were rare or absent in nature, then there would be no need to modify the
one-dimensional paradigm. The most frequently cited empirical evidence for rarity of complex
population behaviors comes from the paper by Hassell, Lawton, and May (1976). Hassell et al.

1 Southern Forest Experiment Station, USDA-Forest Service, Pineville, Louisiana, 71360, USA.
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(1976) used a simple one-species model to assess the frequency of various dynamical behaviors
among 24 natural insect populations. They concluded that all but one population were stable (22
cases of exponential and I case of oscillatory damping). There was only one case of a limit cycle,
and no cases of chaos.

A major flaw in the Hassell et al. (1976) analysis is that they used a single-species model
without delayed density dependence. Using such a simple model biases the results in favor of
stability, since complex dynamics are much more likely in higher-dimensional systems, and
mistakingly analyzing such systems in fewer dimensions will tend to hide this complexity
(Guckenheimer et al. 1977, Schaffer and Kot 1985a). Natural populations are multidimensional
systems, since any given population typically affects, and is in turn affected by, other populations
in the community (i.e. resources, competitors, and natural enemies). Additional dimensionality
may arise as a result of population structure (e.g. age-structure). Hassell et al. (1976)
acknowledged this problem, but lacked the tools for dealing with it. Despite this caveat, the
results of Hassell et al. (1976) are still being used as evidence against complex dynamics and, in
particular, chaos (Berryman and Millstein 1989; Berryman, this volume).

Nonlinear modeling of time-series data

The above discussion highlights a major difficulty associated with assessing the type of
dynamics in natural populations. In order to understand and predict population change, we need
information about the abundances of interacting species. The problem is, usually data are available
only for the target population, and we never have the complete data for all species in the
community. It turns out, however, that actions of other species in the community can be detected
by considering the influence of lagged (past) population densities on the current rate of population
change. To illustrate this idea, consider a very simple community consisting of a single predator
and a single prey species, both species having one generation per year (see Fig. 1). The
population density of the next generation of prey, Nt+l , will be influenced directly by the current
density of prey, Nt. This influence will consist of the effect of reproduction, and any direct density-
dependent effects such as intraspecific competition. In addition, there is going to be an indirect
effect of the lagged density Nt -1 mediated by the predator population. If N 1-1 was high, then

Nt .--: 7

/'

~

Nt-l Nt+l

Pt-l \"'~---?
~+1

Figure 1. Delayed density regulation in a predator-prey system.
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predators at generation t-l had plentiful prey, and predator numbers have increased between t-l and
t, negatively impacting the prey population at t+l. Alternatively, if Nt-l was low, then predator

population has been decreasing, which will have a positive effect on Nt+l. Thus, the system of

two equations describing the dependence of N t+ 1 and P t+ 1 (predator) on Nt and P t can be rewritten

as a single equation describing the dependence of Nt+l on Nt and Nt-I:

Nt+1 = F (Nt. Nt-I)'

In general, if there are p interacting species in a community, then N 1+1 will depend on p

previous lags (Royama 1977). In addition to species interactions, lags can arise as a result of age
structure, maternal effects, and other kinds of population structure. Fortunately, in practice a few
lags (2 or 3) may be sufficient in many situations (Schaffer and Kot 1985a). Analyzing lag
structure of population regulation is a venerable tradition in population ecology (Hutchinson 1948,
Moran 1953, Royama 1977,1981, Berryman 1978,1986, Turchin 1990).

The method of reconstruction with lags provides the basis for recapturing the dynamics of a
multivariate system when only a univariate time series is available. I will call this approach,
described below, "the nonlinear time-series modeling" of data. Nonlinear time-series modeling of
ecological data was independently proposed by Ellner and coworkers (Ellner, this volume; see also
Ellner et al. 1991, McCaffrey et al. 1991, Nychka et al. 1991), and by Turchin and Taylor (1992;
see also Turchin 1991, 1992). This approach is similar to the methods of Eckmann and Ruelle
(1985, Eckmann et al. 1986) and Farmer and Sidorowich (1987, 1988) that were proposed for
physical applications. Its major departure from the physical methods is its explicit treatment of
noise (the exogenous component) as an integral part of dynamics.

The general model underlying the approach is:

Nt =F (Nt-l,Nt-2,...,Nt-p,Et)

where £, is the exogenous component, or the noise term. Note that I have changed the subscripts
to reflect the fact that we are fitting a model to the observed change for the year t as a function of
previous lags t-l, t-2, and so on. The basic idea of the approach is to use the time-series data to
approximate F. If F has been accurately approximated, then the dynamics of the studied system
can be characterized by simply iterating F on the computer, or more formally by calculating the
dominant eigenvalue and the dominant Lyapunov exponent. The function F can be approximated
in a variety of ways. One approach that seems to work well is the response surface methodology
(RSM) of Box and Draper (1987). RSM is similar to fitting polynomials to data, but both the
response (dependent) and predictor (independent) variables are transformed using the Box-Cox
transformation (Box and Cox 1964). For biological and technical reasons (see Turchin and Taylor
1992) it is better to use the realized per capita rate of population change r, = In(NI/N,-i) as the

predictor variable. This variable was fitted with a quadratic surface using the first two lags:

(1)rt = ao + alX + aV + allX2+ a 22y2 +a12XY + Et,
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where X = N ~ -I and Y = N ~ - ~ are uansformed lagged densities, and the parameters of the Box-

Cox uansformation (Jl are estimated from data (for more details see Turchin and Taylor 1992). I
emphasize that nonlinear modeling is a phenomenological approach, since parameters aj have no
biological meaning apart from defining a response surface. The goal is to develop an objective
method for exuacting endogenous dynamics from data, rather than gain understanding into the
mechanisms that generate fluctuations. Nevertheless, visually examing an estimated response
surface, as well as calculating the dynamical quantities described below, provides a useful
diagnostic tool that may suggest possible mechanisms for sub'sequent study (for an example see
Turchin et al. 1991).

Once the shape of F has been approximated (by fitting rl ), we can characterize its dynamical
behavior with two numbers: the dominant eigenvalue of the Jacobian of F evaluated at the
equilibrium, A, and the dominant Lyapunov exponent, A. The dominant eigenvalue characterizes
the stability of the endogenous component of dynamics when the level of noise is set to zero: if its
magnitude IAI ~ 1 then the point equilibrium is stable; otherwise it is unstable (see Edelstein-
Keshet 1988 for a readable introduction to the stability analysis). The Lyapunov exponent is a
generalization of A for dynamics that do not settle on a stable point attractor. It measures the
"sensitive dependence on initial conditions," so that a system with bounded fluctuations and A > 0
is chaotic. The definition of the Lyapunov exponent can be extended to cover noisy systems
(McCaffrey et al. 1991, and Ellner, this volume). I calculated A numerically, using a modified
method of Wolf et al. (1985). The Wolf et al. .

divergence averaged over all points on the attractor (in practice, one needs only to follow
trajectory long enough to "sample" the attractor).

tj

Including an exogenous component, however, affects the amount of time the system
various regions of the phase space. .

attractor of the deterministic system. To measure A of a stochastic system,
al. (1985) method by adding noise to the equation for generating trajectories. In the
method, A :
(1) with a random but identical sequence of errors (£(}. When defined this way, A
trajectory divergence due only to the endogenous component of dynamics. That is, in
with positive A, trajectories diverge both as a result of -

In systems with negative A, endogenous dynamics will cause trajectories to converge,
tendency being counteracted by divergence due to noise. In order to estimate A .

in addition to an estimate of the endogenous component one also - - -- -- - ---

modelled the exogenous component as a Gaussian random variable with mean zero, and
variance estimated by the variance of the residuals from fitting the model (1) to data.
estimate of A was an average of three values obtained by starting with random initial
discarding the first 100 iterations,
1000 iterations.
with a standard error of approximately 0.01 bit/iteration.

In the following section I will discuss the -~ -- -- - --- -- -- -- ---

First, I will discuss time series data for 13 tree and forest insects (this is largely a subset of
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darB analyzed in Turchin and Taylor 1992). Nonlinear modeling of these darB leads to a conclusion
very different from that reached by Hassell et al. (1976). Next. I will analyze two other darB sets,
for which the evidence indicates chaotic fluctuations: small rodents in the Arctic, and measles in

American and European cities.

Forest insects

Unlike the results of Hassell et al. (1976), our analysis revealed a complete spectrum of
dynamical behaviors in the forest insect data set, ranging from stability to chaos. Of the 13 forest
insect cases, only 2 were classified as exponentially stable (Table 1). Six cases were classified as
damped oscillations. However, in one of these cases, Bupalus piniarius, increasing the number of
lags from two to three indicated quasiperiodicity, suggesting that this case may be characterized by
higher-dimensional dynamics, that were misclassified by the two-lag response surface. Another
case, Dendroctonus frontalis, exhibited oscillations of increased amplitude that appear to become
chaotic during the second half of the series (see below). There were one limit cycle and three cases
of quasiperiodic dynamics (these are similar to limit cycles, but have an irrational period, so that
the solution never repeats itself; see Schaffer and Kot 1985a for a classification of various
dynamical behaviors). Finally, one case was classified as chaos. In sum, almost half of the cases
exhibited evidence of complex dynamics. I will now examine several selected cases in greater

detail with the goal of checking on how plausible these results are.

Choristoneurafumiferana (spruce budworm) is the only case for which the extracted dynamics
(exponential stability) did not resemble the observed dynamics (Fig. 2). It has been suggested that

this population undergoes periodic outbreaks as a result of some delayed density-dependent process
(Royama 1977, 1984). However, a regression analysis did not detect any signs of density-
dependent regulation, either direct or delayed (Turchin and Taylor 1992). One alternative to
Royama's hypothesis of endogenously generated cycles is that the population may be tracking a
long-term periodic trend in its food base (Turchin and Taylor 1992). It is too early to attempt to
distinguish between these two (or any other) explanations, since the quantitative data are available

for only one outbreak.

In another case, the population of Dendroctonusfrontalis (southern pine beetle) in East Texas,
there is a well-documented environmental trend. During the last 30 years this beetle's food base
has grown several-fold (Turchin et aI. 1991). It is possible that such a resource enrichment led to
an increased instability in the southern pine beetle populations in the South. Note that during the
recorded history of SPB outbreaks the mean population density did not change much, while the
amplitude of outbreaks has increased, with the peaks getting progressively higher and the troughs
progressively lower (Fig. 3). Since the environmental conditions have changed over the observed
period, fitting the response-surface model to these data directly may have led to overestimating the
degree of stability in this population (non-stationarity tends to bias response-surface results in
favor of stability; see Turchin and Taylor 1992). Fitting a response surface to the first and second
halves of the series separately, we obtained diverging oscillations and chaos, respectively. This
result is consistent with the idea that the SPB population is becoming progressively more

unstable as its environment changes.
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The populations of Drepanosiphum platanoidis (sycamore aphid) and Zeiraphera diniana (larch
budmoth) provide arguably the best examples of periodic dynamics among insects (Fig. 4 and 5).
Both visual examination and more formal analyses (e.g. estimating the autocorrelation functions;
see Turchin and Taylor 1992) suggest that these two populations are characterized by complex
periodic dynamics. Such cyclic populations provide an opportunity to test the ability of nonlinear
modeling to accurately reconstruct complex dynamics from time series of real insect populations.
The logic here is that if the method is not capable of reconstructing limit cycles and
quasiperiodicity from data, than there is little hope that we can use it to detect chaos. If, on the
other hand, we can accurately reconstruct complex dynamics such as limit cycles and
quasiperiodicity, then confidence in our ability to reconstruct another kind, chaos, is
correspondingly enhanced. Thus it is encouraging that the method accurately classified both
populations (Fig. 4 and 5). Moreover, the extracted dynamics were very similar to the observed
time series. First, RSM correctly indicated the period of dynamics: 2 years for sycamore aphid,
and = 8 years (observed: = 9 years) for larch budmoth. Second, the relative amplitude of the

oscillation was also accurately represented, especially when a stochastic exogenous component is
included (Fig. 4 and 5).

The final case is that of Phyllaphisfagi (beech aphid), which was classified as chaotic. As in
the case of limit cycles, the pattern of extracted dynamics has many features resembling the actual
time series. - -
by crashes, interspersed by periods of rapid oscillations (Fig. 6).
similar pattern.
response surface simulations.
the case for chaos in the beech aphid population is yet far from proven. Clearly, more
observations, and possibly manipulative experiments,
settled.

Voles in the Arctic

Violent fluctuations in microtine population density have long attracted
ecologists (e.g. Elton 1942). Subarctic and arctic voles and lemmings seem to be
prone to such "boom and bust" dynamics (for example, cyclicity indices - c - -~~

Fennoscandia increase from south to north; see Hansson and Henttonen 1985). There is
controversy surrounding the mechanistic causes of cycles in arctic rodents (Krebs and Myers
Stenseth 1985, Hansson and Henttonen 1988). - -
cycles (e.g. Getz et al. 1987). Thus the question of whether the endogenous dynamics of
voles are stable, periodic, or possibly even chaotic remains unresolved.

Several long-term trapping programs have now generated time-series data of ~ -

for the analysis of population fluctuations in northern microtines. I analyzed time series
three localities: Kola Peninsula (Koshkina 1966), Alaska (Pite1ka 1976), and Finnish
(Henttonen et al. 1984, and Henttonen, personal communication). '

vole abundances twice a year: in the spring and in the fall. Having two observations
- -,-~ intervals, and (2) the population change reflects within - year seasonal fluctuations in
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of simulated data sets that were correctly classified as chaotic from 80% to 30%. By contrast,
increasing noise level in the generating model with stable endogenous dynamics did not increase
the proportion of data sets that were misclassified as chaotic; this proportion stayed below 1 %. In
short, it appears that any mechanism that increases the scatter of data points around the response
surface will bias the results in favor of stability. Thus finding two of the five real-world data
series classified as stable is perhaps not surprising.

A close examination of one of the data series, the fall numbers of voles in Finnish Lapland,
provides further insights into the nature of vole population fluctuations. Between 1964 and 1986
the population underwent four well-defmed outbreaks (Fig. 7a). However, the outbreak duration
varied from three to six years (Fig. 7a). The autocorrelation function rapidly decays to zero,
indicating that periodicity is not very strong (Fig. 7a). A two-lag quadratic response surface fits
the data very well (Fig. 8), suggesting that a large proportion of variation in population change is
explained by the action of endogenous factors (R 2 = 0.81). The intrinsic rate of increase of this
population, ro, is estimated as 5.5. This is very high -- for example, simple one-dimensional
models such as the Ricker model become chaotic at ro == 2.7 (May and Oster 1976). The dynamics

generated by the estimated response surface without noise are very similar to the observed
dynamics (Fig. 7b). The Lyapunov exponent of the system without noise is relatively small at
0.10. Adding noise to the system further decreases it to 0.03, suggesting that in this case noise
makes the system more stable. Interestingly, the attractor characterizing the estimated
deterministic dynamics consists of four distinct pieces. In short, these results suggest a case of
"weak chaos": a system not very far from a bifurcation point between a four-point limit cycle and
chaos, with strong periodicities still evident in temporal dynamics (see Fig. 7b).

Measles epidemics

Measles epidemics have recently received much attention as possible cases of chaos in ecology
(Schaffer and Kot 1985b, Olsen et al. 1988, Olsen and Schaffer 1990). The case for chaos in
measles is supported by two complementary lines of evidence: analyses of time-series data using
the reconstruction technique, and a priori modeling using the SEIR (susceptible-exposed-infectious-
recovered) framework (for review see Schaffer et al. 1990). Olsen et al. (1988) have also calculated
Lyapunov exponents for a number of data sets. However, they defined the Lyapunov exponent as
the rate of trajectory divergence due to combined effects of endogenous dynamics and noise. This
definition is not very useful, because noise will always cause trajectory divergence, and therefore
positive Lyapunov exponents. Thus, Olsen et al. (1988) estimated positive Lyapunov exponents
both for measles and for the disease that is not chaotic, chicken pox. The definition of A that I use
here does not suffer from this problem, and thus it could be instructive to apply the method of non-
linear modeling to measles data sets.

Measles data sets consist of monthly cases reports. Analyzing monthly data directly,
however, has a disadvantage in that the generating process is not stationary, since there is a
systematic seasonal variation in contact rates. Seasonally driven variation in contact rates causing
annual peaks is well understood (London and Yorke 1973). The interesting question is whether
interannual fluctuations are chaotic (at least in part), or whether the irregularity in fluctuations is
due entirely to exogenous factors. Accordingly, I aggregated monthly cases into the total number
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Figure 10. The response surface estimated for the Baltimore measles data (1928-1952).

Conclusion

In summary, nonlinear modeling of ecological time series reveals a rich spectrum of complex
dynamical behaviors. In two data sets, voles and measles, the frequency of positive Lyapunov
exponents appears to be too high to be easily explained away as spurious. There is also a real
possibility that many higher-dimensional complex dynamical behaviors have been misclassified as
noisy stability. On the other hand, the data sets analyzed here represent organisms with high
intrinsic rates of increase, whose dynamics frequently exhibit violent fluctuations in population
density. It is likely that complex dynamics will be more frequent in such systems.

It is often argued that populations characterized by chaotic dynamics will be eliminated by
natural selection, because such populations would go through periods of low density, during which
population extinctions would be likely (Berryman and Millstein 1989). One can argue in the same
fashion about populations characterized by limit cycles, since they would also go through periods
of low density. This argument is suspect because it is basically a group-selectionist argument.
Individual selection, by contrast, is expected to favor high intrinsic rates of increase, thus
promoting the possibility of limit cycles and chaos.

The danger of extinction in chaotic populations is more apparent than real, especially for
populations of abundant organisms (such as insects that are characterized by high average
population densities). In many population models chaotic fluctuations can have a relatively low
amplitude of fluctuation, e.g. two orders of magnitude. Populations of real insects typically
fluctuate with much higher amplitudes: 10 out of the 13 insects in Table 1 undergo fluctuations
with amplitude of 3 orders of magnitude or higher. One of these populations, the larch budmoth,
oscillates with more than 5 orders of magnitude! Nevertheless, despite such extreme fluctuations,
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Detecting Low-Dimensional Chaos in
Population Dynamics Data: a Critical Review

Stephen EIlner1

Introduction

Methods of analyzing time series data for evidence of chaotic dynamics have been extensively
developed and applied over the last ten years, and as a result chaos is now recognized as a frequently
occurring phenomenon in physical, chemical, and physiological systems (for surveys see, e.g.,
Olsen and Degn 1985, Mayer-Kress 1986, Schuster 1988, Glass and Mackey 1988, Krasner 1990).
These methods have been applied to data on the dynamics of natural populations, with the
conclusion that there is evidence for low-dimensional chaotic dynamics (Schaffer 1984; Schaffer
and Kot 1985a, b,1986; Kot et al. 1988; Schaffer et al. 1990; Olsen et al. 1988; Sugihara and May
1990), but the validity of these analyses remains controversial (May 1987a, b; Pool 1989a, b;
Berryman and Millstein 1989; Kot et al. 1988).

In this paper, my goal is to show by example that many of the features that have been
presented as evidence for chaos in population dynamics can also be observed in simulated data from
non-chaotic, stochastic population models. I also identify the qualitative properties that create the
spurious impression of chaos. In brief, population fluctuations with a constant period (e.g., one
outbreak each year) but variations in amplitude (some outbreaks larger than others) can easily have
features that have been interpreted as evidence for chaos, even in cases where chaos is not actually

present.

These results leave moot the question of whether or not the ~pulations are actually chaotic.
Their implication is simply that methods of "detecting" chaos imported from other disciplines
should not be accepted uncritically, without examining their ability to tell the difference between
true chaos, and plausible alternative explanations. What is plausible depends on the system under
study, so a method that is perfectly reliable when treating chemical reactions or fluid dynamics in
the laboratory, may be unreliable when applied to the dynamics of natural populations in the field.
Population dynamics may be expected to exhibit unambiguous temporal structure for reasons
unrelated to the presence or absence of chaos -- e.g., overlapping generations, limits to rates of
increase or decrease, seasonality and other gradual trends in environmental condition~ -- and it is

necessary to determine if a method for detecting chaos can be fooled by these other sources of
regularity. My contention here is that some methods that have been, and are currently, in use are
unreliable for exactly this reason: the non-random structure they reveal is genuinely present, but it
may not be a sign of chaos. I also review more careful uses of current methods, and describe
methods now in development whose assumptions are more realistic for applications to population
dynamics.

~

1 Biomathematics Program, Department of Statistics, North Carolina State University, Raleigh.

North Carolina 27695-8203, USA
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Reconstructing Chaotic Attractors

Much of the evidence for chaos in population dynamics is based on graphical

-- ---" J -- -J .
b). To illustrate this method and its potential effectiveness in unmasking chaos, Fig. I
- - - - - .
system (Schuster 1988). The R~ssler equations are the three-variable system

M=-z-y, ~=x+O.15y, ~=O.2+z(x-l0),
dt dI. dt

but the simulated "data set" consists of only x(t), -- - .. ._.~-- ~--
on only one species out of a multi-species community. To obtain a chaotic attractor
visual appearance of population outbreaks, the values of x(t) were exponentially
, . . ",
of chaos (Eckmann and Ruelle 1985).

When the data are plotted as "population" abundance x(t) versus t (Fig. la),periodicity in . .

easily conclude that the fluctuations in outbreak magnitude are random. However,_-
reconstruction demonstrates that the fluctuations are entirely deterministic. (Here "random"

.,,-
1111 ~~

,

- --- -- - - -
events up to the present). For reconstruction in 3-dimensional space, the data values, ,
.. .N} are used to construct the points X(t) = (x(t), x(t+L), x(t+2L»; L is called the lag or
delay. .

intel]X>lation) to draw the "reconstructed" trajectory in 3-space (Fig.

J -
appears to lie within a 2-dimensional surface.

This visual impression is strengthened by taking a slice through the attractor
Poincare-section, shown in Fig. Ib as a vertical plane) and
the trajectory crosses the section (Fig. Ic). The points all
dimensional intersection between the attractor and the Poincare section.
intersection with zero thickness would -- .i --- - - - -- -- - - -- - - -

surface (in fact the fractal dimension of this attractor is slightly above 2, but an
determination of the dimension requires more data than are shown here).

Finally. graphing the relationship between successive points on the section

Poincare map. Fig. ld) generates points that lie on a single curve. -
such a simple Poincare map. rather than a haphazard scatter of points. is that it

underlying deterministic rule for the dynamics: given exact knowledge of the - - abundance in the past. future changes in abundance can be predicted with perfect accuracy.

essential last step is the conclusion that these same properties hold in the .
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system. Takens' Theorem (Takens 1981, Schuster 1988) asserts that this is true,
large number of lags are used.

How does reconstruction fare with real-world population data? Apparently, quite well.
repeats Schaffer and Kot's (1985b, -
(1948) frequently-cited study of outbreaks of the apple blossom thrips Thrips imaginis.
monthly census data (shown in Fig. 2a) as x(t) and reconstructing in 3-dimensional
apparently low-dimensional attractor is obtained (Fig.
Fig. la. The points on the Poincare sections lie in a thin. band, suggesting a nearly
intersection (Fig. 2c), and the Poincare map for Thrips (Fig. 2b) suggests a single
and hence a deterministic explanation of the fluctuations.
and Kot (1986) list Thrips among "apparent examples of real-world chaos," --- ---

Andrewartha's earlier conclusion that the magnitude of outbreaks is essentially random.

Spurious chaotic attractors in a stochastic population model

The results in Fig. 2 reveal some regular structure in the outbreaks of
necessarily follow that the outbreak ~.' -

convincing "evidence" for chaos can be generated by non-chaotic models for this population.
illustrate this claim, I use a simple stochastic population model inspired by Bulmer
which seasonality and bounded rates of change produce temporal structure l
chaos. The specific model is

x(t+l) = A(t)X(t)f3, 0 < f3 < I,

where x(t) is the population density (# of individuals or #/area) at time t. If II,
over time, then '.,
solutions converge to the stable equilibrium x = 1I,1/(1-~. The fluctuations in
sources of variation --- -- - -- -- - - , ,. . .
year environmental variability. These are not ad hoc assumptions for the sake of

. -

available (Bulmer 1974, London and Yorke 1973, Yorke and London 1973) and which
subsequently analyzed for evidence of chaos (Schaffer 1984; Schaffer and Kot 1985a,
Schaffer et al. 1990; Sugihara and May 1990). For example, models
human populations often include seasonally ~ 0 --- -, -"-

model (1) to Canadian wildlife, invoked periodic variations in prey abundance to explain
periodic component in predator growth rate. However, like many "strategic" .
biology, model (1) ..

complicated systems, without claiming that it is quantitatively accurate for any

population.

Following Bulmer (1974), I used the log-additive form

In A(t) = Jl+p(t)+O" Z(t)

66





for the input function ).(t). Jl+p(t) is the periodic component of the input,
~

(p(t)). , , -- - --. ~ - - -- -- ~ ~ --~~- -. --- ~-~ ~~- has variance (12), representing random deviations from the "seasonal" trend.

and substituting (2) into (1), gives

y(t+ 1) = jl+p(t)+fJy(t)+O' Z(t).

This is a linear equation; hence, the asymptotic (t~oo)' solution is easily obtained:

y(t) = Yp(t)+e(t).

where

and e(t) is a first-order autoregressive process with autocorrelation p, ~--~-- , -," . &,
Z(t). Thus solutions to (3) consist asymptotically of two components: a stable
oscillation Yp(t), and superimposed "noise" e(t) generated by a -
The solutions are never chaotic, and there is no underlying chaos in
solution.

To fit the Thrips data, the equation'11"11'"
III: ,:

iii I :1'

~I:

3
p(t) = L (aisin(2m /TO + bi(cos(2m /TO)

i=l

was used with periods Tj = 12,6, and 3 months.

~

the qualitative results.
Fig. 3 legend). '. .
to the data are not evidence that (I) is the correct model for Thrips.
outbreak magnitudes has been "built in" , .

population regulation subject only to annual forcing.
information needed to build it (e.g.,
lacking. The point of using (6) with parameters estimated from the data is that -a-_a

of low-dimensional chaos is not found only at biologically implausible or carefully
parameter values.

Fig. 3 shows reconstruction applied to a typical simulation of model (I) with -
parameters for Thrips (Fig. 3a), duplicating the analysis of the real census data in Fig.
similar length time-series, the model produces an equally convincing ,~---~ - ~ ---~---

dimensional attractor (Fig. 3b), even though it does not have a [mite-dimensional attractor.
with a suitable choice of time-delay L, very similar
any data x(t) in which (i) there are large outbreaks that
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is small compared to the outbreaks (e.g., Fig. 4).

As in Figs. 1 and 2, the points on a Poincare section (Fig. 3c; compare with Fig.
thin band. A quantitative measure of thickness, appropriate
among the points on the section, was obtained by fitting the points with a
regressing ZII (the vertical co-ordinate of the points shown in Fig. 3c) on
ordinate). The measure of thickness was 8
of r II values). In 250 simulations of model (I), log 10 8
with mean -1.15, standard deviation 0.33. The
0.98, is entirely consistent with these values; i.e., the model and the data are equally
dimensional" .

Finally. the Poincare map for the model (Fig.
data (Fig. 2d). Fitting the points with the equation r 11+ 1 =(1" nb - --- ---

.001. R2 = .77. .83 for the Thrips data and model output shown. respectively. in a
regression). but at least for the model. the appearance of a single smooth map is spurious.
(1) actually generates two separate clouds of points near the axes. one showing the

Random Amplitudes

~

~
-.J
C'\J
-+-
~
'--

).;:

e~

10
x(t) = L exp(aj-20(t-4ff),

j=1

which produces outbreaks of duration = I, at times t = 4, 8, 12, . . . 40. --

independent random draws from a normal distribution with mean 0, variance 0.25.
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amplitudes, N = 200 values for 0 :S: t :S: 40, L = 0.4. The data were generated by the equation



between a Fall outbreak and the following Spring outbreak, the other the relationship between a
Spring outbreak and the following Fall outbreak. The elongated shape of the clouds results from
the greater variation in the amplitude of large outbreaks compared to small outbreaks.

Model (1)'s ability to generate data with features of low-dimensional chaos is not limited to
short data-sets. When the simulations are extended from 7 to 70 years of monthly values (Fig. 5),
there still appears to be a low-dimensional attractor. In 500 simulations, the Poincare section
remained thin [loglO(} = -1.00 .t 0.17(SD)], and the fit of the apparent Poincare map by the
equation rn+l = a r nb was still highly significant [P < .001 in all caSes for a log-log fit; average
R2 = .31 .t .067(SD) for all crossings, 0.53 .t .061(SD) for crossings n+l and n less than 9
months apart: see Fig. 5 legend]. Simulations extended to 200 years gave nearly identical results
[loglO(} = -0.97.t 0.13(SD); R2 = .31.t .041(SD) for all crossings, 0.53 .t .036(SD) for crossings
less than 9 months apart, P < .001 in all cases].

Why does this model mimic chaos?

The example shown above is not just a fluke, because there are identifiable qualitative features
of model (1) which allow it to produce spurious signs of chaos. The apparent one-dimensionality
of the Poincare section points in Figs. 3 and 5 is a consequence of the specific choice of Poincare
section and of the time-lag L used in plotting the attractor. The Poincare section is typically
chosen to be the vertical plane defined by the equation x(t)-x(t+L) = 0 (Schaffer 1984; Schaffer and

Kot 1985a, b,1986; Kot et al. 1988; Schaffer et al. 1990; Olsen et al. 1988). Intersection points
are recorded whenever x(t)-x(t+L) goes from negative to positive (crossing from behind the plane to
in front of it, in the perspective of Figs. 3 and 5). These crossings occur at times tll when x(tll)

and x(tll+L) are equal and straddle the peak of an outbreak (Fig. 6a, b). Thus the radial coordinate

of the point of intersection (rll in Fig. 3c, d) is roughly pr~portional to the outbreak amplitude.

The vertical coordinate of the intersection point (ZIl in Fig. 3c), is x(tll+2L). For the value of L

used in this reconstruction, ZIl sits very near to the next trough between outbreaks. As a result, Z 11

shows little variation relative to the outbreak amplitudes, and all points of intersection lie near the
one-dimensional curve ZII = 0 on the section.

This bias toward a low-dimensional appearance is most pronounced if Zn sits exactly at the
bottom of the trough between outbreaks. If outbreaks are symmetric about their peaks, with
troughs occurring halfway between peaks, then the choice of L that achieves this is L* = TI3
where T is the time between peaks. Reconstructions of population dynamics (and many other
systems: e.g. Roux et al. 1983, Mpitsos et al. 1988) have often used values of L near T13, based
on the generalization (Schaffer 1984, Schaffer and Kot 1985a) that values between TIS and TI2
usually give the best results. For example L * = 2 months for Thrips (L = 2 months used here and

by Schaffer and Kot 1985b,1986), L*.= 3.2 years for the Canadian lynx cycle (L = 3 years used by
Schaffer 1984, Schaffer and Kot 1986). Reconstructions of measles and other childhood disease
data (T = 12 months, L * = 4 months) are often cited as examples of low-dimensional attractors

(e.g. Olsen and Degn 1985,1988, May 1987a, Stewart 1989, Schaffer et al. 1990, Sugihara and
May 1990). In these studies usually L = 2-3 months has been used; consequently x(tn+2L)

}JIa:edes the trough, but it is still negligibly small compared to the outbreaks on an arithmetic

I
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scale (Fig. 6c, d). Thus, the one-dimensional appearance of the Poincare sections
"confmn the approximately two-dimensional nature of the flows"
not reliable evidence for low-dimensional dynamics.

The spurious appearance of a one-dimensional Poincare map results from
dominant frequencies in the periodic component Yp(t): one outbreak each 6 months,
outbreak each 12 months.
the two clouds of points in Figs. 3 and 5, which the eye (and statistical curve
interpret as a smooth curve plus random errors.
superimposed random noise, the Poincare "map"
et al. 1988). The reason for alternating outbreak magnitudes in Thrips is not known.
Kot's (1985b, . .

models of multispecies

- -

moisture, abundance of food or paucity of natural enemies, etc. allow a period of
growth). Moreover, random environmental fluctuations can interact with ~ --.

chaotic mechanisms of population regulation, to produce oscillations with several
frequency components (Nisbet and Gurney 1982). This counterintuitive behavior -
perturbation producing a periodic response -
act as a "filter" on the environmental "noise,"
Thus there are plausible alternatives to chaos as an explanation for the alternating
magnitudes.

"Stretching and folding" (Raux et al. 1983), a feature of chaotic attractors seen
(Schaffer and Kat 1985a) and lynx (Schaffer 1984) population data, can also occur
Stret{:hing (divergence of nearby lrajectories) occurs at values of x and t where

-Cl.{ A(t)XfJ} = fJ A(t)/X I-fJ
dx

is > 1, while folding (convergence of trajectories) will tend to occur if the same expression
Since I-fJ> 0, (I)
sufficiently large and rapid: stretching during the increase (x small,
the decrease (x large, A(t) small).

Nonlinear forecasting methods

Sugihara and May (1990) have recently suggested a graphical approach - -- - - --

forecasting for identifying chaos in short, noisy time-series. Their method is based

near to each other diverge exponentially.
less accurate as one tries to predict further into the future. - --

this property to test for chaos, by using the first half of the data to construct
nonparametric time-series models for predictions T p = I, 2, 3, ... time-units
determining the models' accuracy when applied to the second half of the data.
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values as the measure of prediction accuracy.

noise).

However, chaos versus "uncorrelated additive noise" is an
alternatives to consider for population dynamics.
alternatives, the property used as the sign of chaos -
prediction interval - is not at all unique to chaotic systems.

have the -
temporal separation increases. -- - 0 ~ - --_c --0 -'-,- -- -

therefore depends strongly on how well the short-term prediction model matches the
dynamics; hence alternate treatments of the same data may give contradictory results.

Rather than consb"uct hypothetical examples of this phenomenon,
analyzed by Sugihara and May (1990). Measles incidence in New
for chaotic behavior:
months ahead is low (Fig. Sa). --- - . --. -- -' ~ --- -'-~ ' satisfying the criterion for nonchaotic periodic oscillations. The intermediate

- - - . -
and random measurement errors. Of course only one of these descriptions can be correct
same,
nonchaotic with measurement errors (Sugihara and May 1990), but aftertransformation there is declining prediction accuracy, .

(Fig. 8b).
III'
if

Sugihara and May (1990) acknowledge that their method may be unable to
between chaos and autocorrelated noise. The point of
often be fatal for applications to population dynamics.

are affected by data transformations; e.g., log
additive noise, and rounds off "spiky" outbreaks.
predictions, therefore, will be .
indication of chaos.

More quantitative approaches to detecting chaos

. - -
decade by theoretical physicists (e.g., Eckmann and Ruelle 1985, Schuster 1988).
most commonly used in applications (Krasner
that characterize a system's dynamics - - --- - --- -.- -.- - , --

dimension of the attractor (Eckmann and Ruelle 1985). Accessible surveys of the
methods and their limitations can be found in the physics literature (Mayer-Kress
al. 1987, Abraham et al. 1989, Theiler 1990), and their uses for.
data are examined by Godfrdy and Blythe (1990).
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These methods are reliable if the data are abundant (103 - 105

nil, and if the data really come --
1989). With careful fine-tuning some methods can be also applied .- ... -_.~.. _._~ -
(several hundred values) with small measurement errors (e.g. Albano et al. 1987, Ellner
Grassberger 1988, Rapp et al. 1988, Havstad and Ehlers 1989, Smith 1991).

- . - -
may be ambigous or simply incorrect if taken at face value (e.g., Ramsay and Yuan
1990, Smith 1991).

Nonetheless, the option remains of using the physicists' methods anyway, paired
extensive simulations to determine their behavior under non-ideal conditions.
critically dependent on having a limited "universe" of credible competing models
cases. .
evaluate the adequacy of linear models for macroeconomic data. ,-
in several cases low-order linear models are not able to account for features of the data -
are as reliable as any other statistical test of a null hypothesis.

Schaffer and co-workers have taken this line in arguing the "case for chaos in
diseases" (reviewed by Schaffer et al. 1990). The class of SEIR models is the

-
establish a baseline for interpreting results on empirical data.

-
consistent with a chaotic seasonal SEIR model, and not consistent with a non-chaotic
SEIR model with additive Gaussian perturbations representing fmite-population effects.
there is a possibility that other stochastic models, perhaps incorporating environmental

'I I' I'

I

o-

j

with the data.

"

outbreaks.

For population studies, however,
class of plausible models.

- . -
valid over a very broad class of models (Sayers 1990). In particular, dIe universe
must include bodI noise-driven and chaotic nonlinear dynamics.

A surprising finding in recent years is that statistical -
successful at identifying the "rules" (i.e., the equations of - -
chaotic system (e.g. Farmer and Sidorowich 1987, 1988a, b; Casdagli 1989; Abarbanel -
1990; Abraham et al. 1989). The "moral" of chaos is that apparently complicated dynamics
be produced by simple rules, such as the density dependence described by the logistic map. --
cases, often more can be learned from limited data by estimating the rules, rather than
estimating quantities indicative of chaos directly from the data.
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Motivated by these findings, I and several colleagues have been developing statistical theory
for estimates of Lyapunov exponents based on nonlinear time-series models (McCaffrey et al.
1991, Ellner et al. 1991). Lyapunov exponents quantify the sensitive dependence on initial
conditions that is the defming feature of chaos: a system with bounded fluctuations is chaotic if its
largest Lyapunov exponent). is positive. Lyapunov exponents are defined at any level of noise
(Kifer 1986) and therefore provide a very general criterion for identifying chaos when a stochastic
component may be present However the predominant method for estimating). from data (Wolf et
al. 1985) assumes a priori that the data were generated by a deterministic system, as does Wales's
(1991) method based on forecasting (which uses relationships between )., entropy, and prediction
errors that break down if noise is present).

The basic model we consider is

x(t) = f(x(t-L), x(t-U), ., x (t-dL» + uE(t), (7)

where f is an unspecified nonlinear function, and E(t) is a sequence of uncorrelated random
perturbations to the dynamics. When 0'= 0 (no noise) this model is equivalent to standard attractor
reconstruction in d-dimensional space, but our methods allow for 0' > 0, acknowledging the
possible importance of random variation in factors affecting the system. Of course (7) has a roster
of questionable assumptions (the noise is uncorrelated over time with constant variance;
measurement errors are ignored), but it is a first step and certainly more realistic than setting 0' = 0
a priori.

Because f is unknown, we are using nonpararnetric (e.g., spline) or "semi-nonparametric"
(SNP) estimates off. SNP estimates are based on truncated series expansions,

" k
/(X) = ao+ L aigi(X;9i)

i=1 (8)

in which X is the state vector (x(t-L), x(t-U),. . . x(t-dL), gj is a specified set of "basis" functions,

and OJ is a set of estimated parameters. SNP shares the advantage of nonparametric methods that

one need not choose a specific functional form for j, which reduces the problem (recently re-
emphasized by Morris 1990) that the results of fitting a model to time-series data may be highly
dependent on the model chosen. The number of terms in the expansion (k) can be chosen
objectively on the basis of the data (Gallant and Tauchen 1990), much like choosing the order of a
polynomial regression. Parametric approaches using local polynomial models have been proposed
independently by Briggs (1990), and Bryant et at. (1990). Turchin and Taylor (1991; see Turchin,
this volume) have proposed a method specifically for population dynamics based on global
polynomial models.

Given an estimate off and the observed values of X(t), estimates of the Lyapunov exponent
can be derived from its mathematical definition in terms of the partial derivatives off (McCaffrey
et al. 1991). Under some reasonable qualitative assumptions about (7), we have proved that these
estimates are consistent (i.e., the estimates converge to the true value as the sample size increases),
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In simulation trials, estimates based on (7) have worked quite well
(d) and the time-delay (L) are known (McCaffrey et al. 1991, Nychka et al. 1991).
20 trials with N = 100 values each from the Henon map (d = 2, L = 1) -

measurement errors ( 0" = .05), we obtained A = 0.386 ::t 0.04 (standard deviation), --~~-
net" SNP model (Gallant and White 1991; McCaffrey et al. 1991). The correct value is A =
(Vastano and Kostelich 1986).

~

- -- -- - -- --- - - --- - ,- c -
does not necessarily degrade the performance in noise-free situations. Again, using the

system, with local spline estimates of J, we obtained estimated exponents -

(standard deviation) with N = 500 data values, and
= 1000 (n = 20 repetitions in each case). With the standard methods, results with

were "poor", and reasonable eimates (within -

and Kostelich 1986). Briggs (1990) reports similarly
based on 200 - 2000 noise-free data values.

lIt'
..
I

Unfortunately, d and L are generally unknown. The problem of identifying
"optimal" values of d and L for attractor reconstruction has
there is no generally accepted solution (Abraham et aI. 1989).
and reducing noise (Broom head and King -

1987, Fraser 1989). More recent suggestions include Sugihara and May's (1990)
accuracy criterion, the BIC Bayesian criterion for
Potscher 1989, Gallant and Tauchen 1990), and information-theoretic criteria based on
information" and "minimal redundancy" (Fraser and Swinney 1986, Fraser 1989,
Schuster 1989). These all try to quantify the intuitive
maximum ability to predict the system's future from a minimum number
past, but they often give different results. For example, -

criteria choose L = 1 month and L = 4 months respectively for the NYC measles data, -

1/24 and L = 1/6 of the time between outbreaks for the Rossler equations (250 x-values
values recorded every 1/24 of the inter-outbreak interval). BIC,
order in autoregressions under certain assumptions (Potscher 1989), but with small data
tends to be conservative, choosing a model with slightly too few
1990, Nychka et al. 1991).

In theory the true value of ). is the same for all sufficiently large d's, so one can
increase d until a plateau appears, as is - - --- ..-

unknown. The success of this ploy may depend on the method used to estimate f:

polynomials (Briggs 1990, Brown et al. 1991) and
including local splines (McCaffrey et aI. -

includes extraneous lags (model d > true d), while
lags (McCaffrey et al. 1991, Nychka et aI. 1991). Thus a value of " -- . when a plateau exists for an increasing number of lags in the model, and is constant

reasonable choices of L.

80



Figure 9 shows results for a neural net regression model with the time-delay L chosen by
several different criteria: mutual information (MI, Fraser and Swinney 1986), BIC with the same
time-delay for all values of d, and "local BIC" in which the optimal time-delay is found separately
for each value of d. Because BIC is conservative (as noted above), estimates are shown for the BIC-
preferred model (solid lines) and also for models with the order [the value of k in equation (8)]
increased by 1 (dashed) and by 2 (dots).

The results are cleanest for NYC measles, where all choices of L give a plateau with
increasing d and an estimated J.. near 0.15/yr. This is roughly half the value estimated by Schaffer
et al. (1990), which is understandable given that the methods of Schaffer et al. (1990) will tend to
over-estimate J.. when 0' > O. Thrips is estimated to be chaotic (J.. > 0) by the MI and BIC criteria,
but the local BIC is inconclusive. The large effects of changing the model order suggest that the
positive values would not be statistically significant, so while these estimates favor the hypothesis
that Thrips is chaotic they should not be taken as proof. The results for marten are similar, except
that both BIC criteria choose chaotic models while MI is inconclusive.

These results indicate the importance of deriving confidence intervals to attach to the estimated
values of A.. Repeated nonlinear function minimizations are required to obtain least-square
parameter estimates for each (d. L) examined, so the sort of replication (e.g., bootstrapping) needed
for statistical inference, and serious explorations of the method's ability to distinguish between
chaos and plausible alternative models, appear to be a job for the supercomputer. Taken
pessimistically, these results might suggest that SNP estimation of A. is too data-hungry for use
on most population data sets: n = 432 is enough (NY measles), but n = 80 isn't. However much
of the variability in current estimates of A. may simply reflect the numerical inaccuracy of
nonlinear least-squares for the underlying regression model, and more careful parameter estimation
algorithms (now being coded) may give estimates that are less sensitive to changes in the time-
delay and model order. The progress to date indicates the potential for developing statistically
rigorous estimates of Lyapunov exponents for nonlinear stochastic dynamics, but that potential
remains to be realized.
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Figure 9. (Continued)

where n is dte number of data points, P is dte number of parameters in dte model, and RMS is dte
root mean square one-step-ahead prediction error; see Gallant and Tauchen (1990) or P6tscher
(1989) for dte general form. The solid line shows estimates from dte BIC-preferred model; dte
dashed and dotted lines are for models widtl and 2 additional units, respectively.
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Conclusions

The main point of the results presented here is that claims for evidence of chaos must
- - - - ~ ~ ~ ~~~~-~~---~

whether the methods being used are able to distinguish between chaos and the alternatives.
applications to population dynamics data often these have not occurred, or have l
within an unrealistically narrow range of alternatives.

This level of caution

deterministic system. These methods are highly effective on accurate data from a
chaotic system--we are far from the situation of 15 ~ -
chaos could never be distinguished from random noise. However, the problem --- -"--
biologists is to detect a chaotic component in a real-world population that almost certainly
subject to random perturbations, if only by the vagaries of climate.

The potential now exists for a second generation of methods that explicitly allow for
stochastic as well as the nonlinear components of population dynamics. Several groups
developing the use of time-series modeling to characterize complex dynamics and
Lyapunov exponents (Turchin and Taylor 1991, Bryant et al. 1990, Brown et al. 1991).
is being given to dealing with noisy measurements or stochastic dynamics (Ml)ller et al.
Hammel 1990, Kostelich and Yorke 1990, Farmer and Sidorowich 1991, Smith --, -. ~ --

current noise-reduction methods still require abundant data (thousands of values) and very
levels of noise «< 10%), work in this area is only beginning. The hope for.
applications is that methods with more realistic assumptions, currently in development,
applicable over a broader range of situations and harder to fool than the current generation.
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Individual-Level Simulation:
New Evidence for Chaos in Population Biology

Nicholas D. Stone1

TWO FACTS are readily apparent from the recent debate on chaos in population biology.
First, natural systems often exhibit very complex dynamics that, despite their irregularities, appear
to contain some order. Second, there is a large class of differential and difference equation models
that produce similar dynamics. These mathematical models that produce chaos have been
extensively analyzed so that we know how chaotic systems ought to behave: they are
deterministic; they are highly sensitive to initial conditions; and they are seemingly random.
However, the fundamental question remains: do natural systems display complex dynamics because
they are chaotic or merely because of stochastic influences and system complexity? The work
described here sheds some new light on this issue.

The finding that initially interested population biologists in chaos was that many of the most
basic models of population growth, single-species models like the logistic model, would produce
chaotic dynamics over specific ranges of parameter values. However, as many researchers have
demonSb"ated in the last fifteen years (e.g., Hassell et al. 1976, Stubbs 1977, Thomas et al. 1980,
Bellows 1981), the required parameter values have almost always proven to be biologically
unreasonable. As a result, population biologists as a whole have lost their optimism about
finding chaos in natural ecosystems.

Two aspects of this waxing and waning of interest in chaos were unfortunate. First is the
focus on single-species models. These models are universally understood to be extreme
simplifications. They are useful in a descriptive way; that is, they show the general pattern of
population growth expected in populations governed by a density-dependent effect on birth and
death rates. However, these models barely begin to approach biological realism. Furthermore, the
chaotic behavior of these models is highly irregular and unnatural (see Berryman in this volume,
Fig 1), giving the impression that chaos implies wildly fluctuating populations with numbers
frequently crashing to levels near zero. In fact, higher order systems can exhibit chaos without
biologically unrealistic parameter values or any apparent trend toward self-extinction.

The second regrettable aspect is the focus on the model itself as the item of interest. Most of
the attention in studies of chaos in biological systems has been on developing and analyzing
difference and differential equation models of low order, specifically to test those models for chaotic
dynamics. This emphasis is or ought to be foreign to population biologists. As a rule, their
focus should be on accurately identifying and representing the key biological elements and
interactions in the system. The type of model chosen should then be dictated by the biology.
Research in chaos has been constrained by an a priori choice of model form and type.

1 Deparunent of Entomology. Virginia Polytechnic Institute & State University, Blacksburg,
Virginia. 24061, USA
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The work described here takes a different approach, one that evolved from a project studying
the interaction of a parasite, Campoletis sonorensis, and one of its hosts, Helicoverpa virescens.
In that study (Makela et at. 1988), we wanted to simulate the population-level effects of changes in
the individual searching behavior of the parasite. Each individual host and parasite adult was
simulated individually in an event-driven simulation. Each individual maintained its identity and
history and acted as an autonomous entity in the model. Population dynamics were simulated as
the sum of individual actions, oviposition, and death. As in nature, population dynamics was an
emergent property of the system, not determined by rate equations as in models of the form dN/dt =
f(N, P).

The host-parasite model produced dynamics that were extremely complex and apparently
realistic. However, because the model included random choices in the selection of individual
behaviors, determining the underlying causes of the complexity was inhibited by noise.

The model of predator-prey interaction presented below was constructed specifically to examine
the emergent population dynamics of a behavior-driven, individual-level simulation with all
random elements removed. The model is therefore unlike most individual-level models or
behavior-based models in that the behaviors of individuals are chosen deterministically with if-then
rules, rather than through the random choice of behaviors with different probabilities of occurrence.

The model is object-oriented (StefIk and Bobrow 1986), a style of programming that has only
recently been applied to model biological systems (Graham 1986; Saarenmaa et al. 1988; Makela
et at. 1988; Crosby and Clapham 1990; Sequeira 1990). It was written in an object-oriented
programming language, Smalltalk-802, in which it is very easy to create computer representations
of the individual actors in a complex system.

Understanding the model description requires familiarity withobject-oriented programming, so
it is reviewed briefly here. More complete discussions abound in the popular and scientific
computer-related literature, and excellent summaries can be found in Stefik and Bobrow (1986) and
in the introductory chapters of Goldberg and Robson (1983).

Object-Oriented Programming3

Traditional procedural computer programming involves defining data structures to represent
system state and procedures to operate on the data structures to reflect changes in system state.
Procedures are like mini-programs. They perform operations on a set of arguments passed to them
and they can return values to the calling program. For example, to compute the area of a
rectangle, one could define a procedure, calculate-area, which requires arguments for the lengths
of the rectangle's base and height. The area of a square with sides 3 units long would be calculated
by the statement, calculate-area (3, 3). Internally, the procedure would multiply the values
specified for base and height and return the result.

2 Smalltalk-80 is a registered trademark of ParcPlace Systems, Inc.

3 This section is virtually identical to a similar section in Stone (1990).
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In object-oriented programming, one creates structures called objects that contain both
information on state varibles and procedures for operating on that data. The state of an object
(i.e., the values of its state variables) can be accessed or modified only by the procedures defined in
that object. Procedures are called methods and are invoked by messages sent by one object to
another or to itself. Methods may return the value of a variable or calculation to the calling
object. For example, one could define an object called mySquare with one state variable,
sideLength = 3, and a method called calculateArea that computes the length squared and returns

the value to the object sending the message. Finding the area of this square would be
accomplished by sending the message, mySquare calculateArea. Notice that the. message name
is the same as the method name and that the message makes no reference to the size of the square.

Classes, Hierarchies, and Inheritance

Objects are specific instances of an object class and object classes are organized into
hierarchies. For example, the object, mySquare. would be a particular instance of the class,
Square, with sides of length 3. The class definition includes all variable declarations and code for
methods. It also includes a special method (called a class-method) for creating instances of itself,
with appropriate initial values for variables. Creating the object, mySquare, for instance, would
be accomplished by the code, mySquare ~ Square newWithSide: 3, which sends a message to
the Square class, causing the class to create and return a new object with side Length equal to 3,
after which the new object is assigned to the name, mySquare. This process is called
instantiation.

Object classes may also be subclasses of other classes. Subclasses inherit variable
declarations and methods from their parent classes, just as an object inherits from its class.
However, subclasses may add variables, add or redefine methods, and specify static class variables.
For example, if there were a class, Rectangle, with two variables, base and height, and a
method called calculateArea that returns the value of base. height, then the class, Square,
could have been created as a subclass of Rectangle. The only coding required would be to redefine
the class method for instantiation so that the message, Square newWithSide: X, would return a
new instance of Square with both base and height set equal to X.

Despite the semantic conflict, one could also create a class called Triangle as a subclass of
Rectangle by modifying the calculateArea method to return 0.5 * base * height. Instances of

Triangle would respond appropriately to the same message, calculateArea, as would instances of
Square and Rectangle. The sender of the message need not know what the appropriate
algorithm is for a particular polygon. This characteristic of object-oriented systems, that different
objects can respond in different ways to the same message, is termed polymorphism.

Object-Oriented Simulation

Writing an object-oriented simulation involves creating classes to represent the types of actors
in the simulation, creating specific instances of those classes with appropriate state variables, and
letting them interact by sending messages to one another. The objects in the computer model and
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the actors in the natural system are in one-to-one correspondence, and the interactions among actors
in the natural system likewise correspond to messages sent among objects in the computer model.
In designing an individual-level population dynamics model, the actors clearly include the
individual organisms, as well as the physical objects with which they interact.

The Model

The individual-level model of predator-prey interaction was designed to be very simple in that
all individuals were created with the same default values for state variables and the environment
was likewise completely uniform at the outset, consisting of identical habitat patches.
Furthermore, there was no individual variation in the methods used to select behaviors by
individuals.

Nevertheless, the simulation was also fairly complex, since many fundamental aspects of each
individual's daily life needed to be mimicked. Aging, eating, moving, hiding or hunting, and
dying all had to be described in methods, along with behavioral rules to stimulate these actions at
appropriate moments.

Object Classes

The class/object hierarchy of the model as well as the relationships among the different object
types are shown in Fig. 1. The simulation environment included 225 patches arranged in a 15 x
15 grid, and each patch represented a suitable habitat for the prey. The environment's boundary
was closed. Except for the initialization of the model, no migration was allowed.

Each patch was modeled as an instance of the class, Patch. All Patch objects contained their
Cartesian coordinate in the grid, but the overall spatial arrangement of the patches was recorded in
another object, a single instance of the class, Environment. The Environment object also
maintained a list of all the live predators and prey in the simulation. Each day of the simulation
consisted of the Environment object sending each actor (instances of the classes: Patch,
Predator, and Prey) the message, act. Each object receiving the act message responded as
specified by the act method defined in its class. This use of polymorphism allowed the
Environment object to treat all the actors identically.

Patches

The state variables in the Patch class included: xyCoord, a pair of integers describing its grid
position within the environment; food, an amount of food for the prey; and shelters, a list of
refuges in which the prey could escape predators but could not eat. In this analysis, all Patch
objects were assigned the same default values, including a single shelter. The Patch class also had
variables called prey and predators, which were lists of all prey and predators in that location
(Fig. 1).
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Figure 1. Class-object hierarchy of the predator-prey model and a listing of the linkages among
objects in the simulation (box). In the hierarchy, solid lines indicate class-subclass relationships;
dashed lines indicate class-object relationships. Class names are shown in bold type on the left.
In the box, double-headed arrows indicate that the objects are associated. For example, each
predator is associated with one patch and one environment.

Methods defined in the Patch class included: act, which added a constant increment to the
amount of food available for the prey up to a maximum value; and remove Food, which decreased
the food in a patch and was triggered by a message from Prey objects to simulate eating. Other
methods allowed patches to respond to objects requesting information about the patch. An
immature prey, for example, sensed the presence of predators within its patch by sending the
message, predators size, to its patch. The Patch object responded to this message by returning
the length of its list of Predator objects. Finally, there were messages for keeping track of
individuals as they entered and left the patch.
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Predators and Prey

Because predators and prey shared many aspects of biology and behavior, their object classes
were defined as subclasses of an abstract class, SimBug. It had no instances; it was defined for
convenience so that shared characteristics of the predators and prey could be coded once and
inherited by both subclasses.

Predators and prey were modeled after simple arthropods in their biology. The SimBug class
description included variables to hold the name of each individual's Environment and current
Patch objects, its age, stomach content (metabolic supply), and the number of eggs ready to
oviposit. Males were not included in this simulation. Behaviors implemented in the SimBug
class included act and move methods, as well as two messages announcing an individual's arrival
in and departure from different patches. The act method (Fig. 2) in turn sent messages like die,
eat, and reproduce that were defined differently for each subclass.

The act method was based on the motivational model of animal behavior described by Packard
et al. (1990). At each time step, individuals updated their age, chose a motivational mode of
behavior (e.g., ingestion, reproduction, escape), and chose an action based on their behavioral
mode. Mortality occurred by predation, starvation (defined as going two time steps with exhausted
reserves), or by aging past a fIXed maximum age. Individuals were always given the opportunity
to eat and reproduce if possible. Specific methods for these actions were defined in the subclasses,
Prey and Predator.

The Prey class inherited all the variables and methods of SimBug. It also added a variable
called inShelter, which was true when a prey was in a shelter. Also, variables that were constant
for all Prey instances were defined in the Prey class. These included the metabolic loss rate,
maximum age of the prey (20 days), and the age at reproductive maturity (10 days). Methods for
choosing motivational modes and actions were also defined at this level in the hierarchy. These are
described below. In addition, methods that allowed the prey to act were defined at this level,
including methods for eating, ovipositing, dying, and entering and leaving shelters.

Predators were instances of the Predator class, which also inherited variables and methods
from SimBug. In addition, all predators shared a maximum age of 30 days and became
reproductively mature at 20 days. Predators' metabolic loss rate was also higher than that of prey.
Other behaviors and methods were similar to those of the prey.

Eating was more complicated for predators because it involved capturing and consuming a
prey. Predators chose prey items from the list of Prey objects recorded in their current Patch
object. They had an age-preference for prey that was a function of their own age. Predators chose
the first prey in the list that was an acceptable age. Their stomach contents were increased after a
kill as a function of the age of the prey they took.
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Behavior

Behaviors were chosen deterministically by if-then rules based on the individual's current state
(e.g., hunger, position, and age). Rules were developed in an ad-hoc manner, in an attempt to
model as simply as possible the motivational model of animal behavior described by Packard et al.
(1990). These rules were coded in two methods, chooseGoal and chooseAction. First a
motivational mode or goal was chosen, then actions were chosen to meet those behavioral
objectives. This implementation of an animal's decision-making scheme was based on the general
model developed by Saarenmaa et al. (1988). Prey goals included: Food, Rest, Escape, Dispersal,
and Reproduction; actions included: Eating, Resting, Hiding, Moving, Staying, Reproducing. The
behavioral repertory of immature prey was more restricted than that of adults. Adults could
disperse or sense the approach of predators. Immatures could not. They sensed predators only in
their current patch. Adults also attempted to oviposit when they reached reproductive age.

The goal, Dispersal, was triggered when the Prey object's patch became crowded or low on
food, and Food became a goal when the Prey object's stomach was nearly empty. Once a set of
goals was decided, the Prey object's chooseAction method was triggered, which selected an
action and then sent messages to carry out the actions chosen. Prey could decide to enter a shelter,
remain in their current location, or move. If they moved, they picked one of the adjacent patches
in the environment to move to. This selection involved narrowing down the potential locations to
a subset that best satisfied the Prey object's goals, then selecting the fIrst member of this subset

Even though there might be more than one suitable patch to move to, patch selection was not
implemented as random choice. Instead, all neighboring patches were placed into an ordered list,
always in the same order, and then inappropriate patches were eliminated. The first patch
remaining in the list after elimination was always selected. This procedure did put some bias into
the direction that prey and predators tended to move; however, it also eliminated any randomness.

Predator behavior differed from that of prey in the following ways. Their goals included Food,
Rest, Hunting, and Reproduction. They fed only by killing prey. They could not eat the food in
patches, and they were not able to kill prey in shelters. Predators could sense the presence of prey
in patches up to three steps away from their current location. When hunting, predators moved as
directly as possible toward the highest concentration of prey nearby. This sensing ability is
analogous to insect predators keying in on kairomones or chemical cues in the environment that
relate to prey density. In the model, a hunting Predator object sent a message to the
Environme nt object requesting the direction toward the highest prey concentration nearby. Recall
that the Environment object was the only object in the simulation with any knowledge of the
spatial arrangement of the patches.

Simulation Results and Analysis.

The model was initialized by placing newborn predators and prey into the simulation
environment at one edge of the grid (Fig. 3). Prey were placed flfSt, ten per day for five days after
which two predators were added per day for 20 days. Subsequently, no individuals were added except
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by individuals giving birth. In each day of the simulation, every location updated its food supply,
and each predator or prey was allowed to act.

A time-series from a run of this model is shown in Fig. 4. The system clearly exhibits
complex dynamics. The system ran for several thousand days (hundreds of generations) without
any indication of repeating or stabilizing. A phase plot (Fig. 5) from the simulation shows a
complex or strange attractor in two dimensions. From Fig. 3, one can see also that the dispersion
of predators and prey in the environment went from patterns that were easy to follow (a wave of
prey spreading out before a wave of predators), to a more complex and jumbled situation after
approximately 200 days.

Fig. 6 shows the effects of very small variations in the initialization of the model. By adding
11 prey on the fifth day of the model initialization instead of 10, for a to~ of 51 instead of 50, the
model's trajectory was totally changed so that 50 days later, the two trajectories bore no
resemblance, except that in phase space they were constrained within the same attractor.

To summarize, the simulation was deterministic, it produced pseudo-random but bounded
population dynamics; and it exhibited extreme sensitivity to initial conditions. This combination
of characteristics defines chaotic behavior. There is some chance that the pseudo-random
oscillations produced by the model would eventually stabilize to some periodic or quasi-periodic
pattern. Still, the output from the model is remarkably realistic; it is unpredictable within a
bounded region of phase space; and it is completely deterministic. This is exactly the kind of
system behavior that, when observed in nature, sparks arguments about whether it is chaos or the
influence of stochastic events that is responsible. In this case, randomness has been eliminated.

To obtain some conflrInation of the chaotic nature of the model's dynamics, two analyses were
undertaken based on the time series data. However, since the model is not in the form of
differential equations, testing for chaos is complicated. The methods used were the same one
might use to test whether a time series observed in the field is chaotic. The Lyapunov exponent
and fractal dimension of the system were estimated using algorithms from the Dynamical Software
program (Schaffer et al. 1988). Calculation of the Lyapunov estimate employed Wolf et al.'s
(1985) method, and calculation of the fractal dimension was by the method of Grassberger and
Procaccia (1983). Both estimates used a univariate time series of just the total prey numbers over
time. Over a wide range of parameter values for sampling interval and delay, the estimate of the
Lyapunov exponent was positive (appx. 0.04), and the correlation dimension was approximately
4.7, indicating a fairly high-ordered chaotic system.

If the two-spe;cies system was chaotic, one obvious question was whether the single-species
model would behave similarly. That is, is the complexity coming from the interaction, or is it
driven by the prey dynamics? To examine this question, the model was run with no predators.
The results are shown in Fig. 7. At first glance, it seems that no chaos is present. The prey
population increased in a sigmoidal pattern and seemingly stabilized at a carrying capacity of about
K=I095 individuals. Fitting the Ricker (1954) equation
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Figure 3. The spatial pattern of predator-prey dynamics is shown in a series of charts. The
environment is represented by the 15 x 15 grid. Prey population density in each grid cell or patch
is indicated by the intensity of blue color. Predator population density is indicated by the intensity
of red color. Thus, a black cell is empty; a bright blue cell contains only prey at a high density;
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Figure 7. A time-series plot (solid line) of simulated prey population initialized as in the
simulation shown in Fig. I, but with no predators. The dashed line was generated by a simple
logistic model with r=0.08 and K=1095 (see text). Inset is a plot of the system dynamics about
equilibrium for 500 days after day 100, showing chaotic cycles about K. This system had a fractal
dimension of approximately 4.9.
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Conclusions

If one were to examine this simulated interaction as though it were a natural system, one
would very likely conclude that the single-s~ies system is well modeled by a Ricker or logistic
model, that the intrinsic rate of increase in the prey population is in a very normal range, and that
the two-species system exhibits the typical limit-cycle dynamics predicted by the Lotka-Volterra
equations. The noise in the data, one would argue, is just that-evidence of stochastic influences
on the system that we do not understand or cannot measure. In fact, however, there are no
stochastic influences acting on this system. There are no forces that we do not understand. The
model is simple; it is deterministic.

The chaotic dynamics produced by this model were generated by allowing individuals to
behave and interact. Many attributes could have been added to the model to increase the system's
complexity. There could have been individual variation in factors like aging rates, fecundity, or
metabolism. There could have been spatial heterogeneity, variation in the characteristics of the
patches. There could have been random choice involved in decision making or even variation in
the rules used by individuals to make decisions. There could have been periodicity in food
availability. None of these complicating factors existed in the model, yet the system dynamics
was still remarkably realistic and complex.

That this elementary model of individual's interacting produced chaotic dynamics indicates that
there is something fundamental about population interactions that results in chaos. Perhaps it is
the spatial or compartmental aspect of the environment. Perhaps it is the fact that individuals are
affected by the decisions of others so that populations are inherently non-linear systems. In any
case, high-order chaos may well be the foundation upon which we study population dynamics.

As we have seen here, even though a system is chaotic, it need not be wildly fluctuating or
unpredictable. It may, in fact, be well enough bounded to be modeled effectively by a simple
logistic function. However, this work suggests that arguments discounting the role of chaos in
population dynamics are premature.

This study also suggests that chaotic population models can be constructed based directly on
observation of individual behaviors and actions. Furthermore, such models can be experimentally
validated by comparing emergent properties from the models with emergent properties of the
natural populations: survivorship and natality functions, functional response relationships, and
dispersion patterns, for example. This type of modeling and its relationship to chaotic dynamics
warrant further attention.
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