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Abstract Near infrared (NIR) spectroscopy (500 nm~2400 nm), coupled with
multivariate analytic (MVA) statistical techniques, have been used to predict
the chemical and mechanical properties of solid loblolly pine wood. The sam-
ples were selected from different radial locations and heights of three loblolly
pine trees grown in Arkansas. The chemical composition and mechanical
properties were measured with traditional wet chemical techniques and three
point bending tests, respectively. The microfibril angle was measured with x-ray
scattering. These chemical and mechanical properties were correlated with the
NIR spectra using projection to latent structures (PLS) models. The correla-
tions were very strong, with the correlation coefficients generally above 0.80.
The mechanical properties could also be predicted using a reduced spectral
range (650 nm-1150 nm) that should allow for field measurements of these
properties using handheld NIR spectrometers.

Background

Near infrared (NIR) spectroscopy has been used for the characterisation of
different forms of biomass for more than 15 years (Marten et al. 1985). Early
work focused on the agricultural and food industries, and remote sensing
applications. More recent work has expanded the use of NIR for applications
of interest to the forest products industry.
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Relative to other spectroscopic techniques NIR has a number of advantages
that make it an ideal tool for characterising biomass. These advantages include
minimal sample preparation, rapid acquisition times, and non-contact, non-
destructive spectral acquisition. Some commercial NIR spectrometers are also
lightweight, portable, and battery operated, which make them suitable for field
operation.

Some of the initial applications of NIR to forestry and the forest products
industry focused on forest health and analysis of leaves and needles (Newman
et al. 1994; Aber et al. 1994; Martin and Aber 1994; McLellan et al. 1991a;
McLellan et al. 1991b; Couteaux et al. 1997; Hiukka 1998). Together, these
researchers showed that NIR could be used to accurately measure nitrogen,
cellulose and lignin content of fresh and dried leaves and needles. The NIR
spectra could be correlated with the measured compositions using several dif-
ferent statistical techniques including stepwise multiple regression (Newman
et al. 1994; Martin and Aber 1994; McLellan et al. 1991a; McLellan et al.
1991b) and projection of latent structures (PLS) analysis (Couteaux et al. 1997,
Hiukka 1998). Looking across all these studies, the correlations between NIR
spectra and nitrogen content were very strong, r>0.95, while the correlations
between NIR spectra and the cellulose, starch, or lignin content were very good
r>0.90. Hiukka found that the correlations between NIR and several specific
carbohydrates, e.g., glucose, fructose, pinitol, sorbitol, and inositol, were
modest (Hiukka 1998). McLellan et al. (1991b) concluded that there were
greater errors for inter-laboratory analysis of foliage samples using traditional
wet chemistry compared to NIR based techniques.

NIR has also been used to study cellulose and cellulose derivatives. Sorption
of water onto cellulose surfaces is a fruitful area of study due to the strong NIR
signal for water and carbohydrate hydroxyl groups (Berthold et al. 1998;
Svedas 2000). These studies show that NIR could be used to measure the
amount of water absorbed onto the cellulose surface, and distinguish between
“free’” and “bound’ water. Ali et al. (2001) showed that NIR could be used to
monitor the aging of paper used for insulation materials. Specific chemical
changes of cellulose associated with aging could be detected. Chemical differ-
ences of cellulose derivatives have also been monitored with NIR (Svensson
et al. 1997).

Recently, the use of NIR to measure wood properties of interest to the pulp and
paper industry has received a great deal of attention. Some of the earliest work
showed that NIR could be used to measure properties of the wood resource and
the resulting paper products (Wright et al. 1990; Michell 1995; Wallbacks et al.
1995). Wright et al. (1990) used NIR to predict both pulp yield and cellulose
content of pulps. Michell (1995) looked at both wood and pulp properties. He
showed that NIR could be used to measure pulp vyield, lignin content, and hot
water and alkaline extractable compounds. Wallbacks et al. (1995) demonstrated
that NIR spectroscopy could be used to detect day-to-day variations in the
characteristics of beaten and unbeaten pulps, and measure paper properties such
as tear index, burst index, and elastic modulus. Complete analysis of the chemical
composition of wood, e.g., cellulose, lignin, hemicellulose, glucose, xylose, acetyl,
can also be conducted with NIR (Schimleck et al. 1997). The correlation coeffi-
cients for most of these wood components were very strong, r>0.95.

Subsequent work by Schimleck and Michell (1998) and Raymond et al. (2001)
highlighted the value of using NIR for predicting properties of interest. This work
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shows that NIR models for a property of interest, e.g., pulp yield, can be con-
structed with a small number of samples, and that this model can then be used asa
predictive tool to study a large number of samples with unknown properties. This
approach shows how NIR can be used to map relevant properties in trees, e.g.,
pith to bark or base to crown (Schimleck and Michell 1998; Raymond et al. 2001),
or between trees subjected to different silvicultural treatments or growing con-
ditions (Raymond et al. 2001; Schimleck et al. 1996). Recently this approach was
extended to drawing correlations between wood composition and genetic char-
acteristics of wood (Greaves et al. 1996).

The majority of work with NIR has focused on chemical composition of
wood and paper properties; however, some research has also been done on
other wood properties. One of the most extensive studies of wood properties
was that of Hoffmeyer and Pedersen (1995) who showed that NIR could be
used to predict wood density, and compression and bending strength of dry
wood. Tygesen (1994) also showed that NIR could be used to measure the
density of wood. Additionally, the use of NIR to predict the stiffness of radiata
pine has been reported by Thumm and Meder (2001).

These papers have focused on using the full NIR spectral-range (1000 nm-
2500 nm) or both the visible and NIR spectral range (400 nm-2500 nm). This is
because the range between 1000 nm-2500 nm contains the most distinct spec-
tral information on the first overtone and combination bands that make up
NIR spectra. Two recent studies have revealed that even the very subtle second
overtone spectral signals contain information that can be used to predict wood
properties of interest. Axrup et al. (2000) showed that the full chemical com-
position of wood chips—glucose, galactose, xylose, mannose, arabinose, and
lignin—could be measured using the spectral information between 800 nm and
1100 nm. They also measured the size distribution of bark and the amount of
wood in bark. Malkavaara and Alen (1998) measured the lignin content of kraft
pulps subjected to different bleaching sequences using a spectral range between
360 nm-740 nm. In both cases the correlation coeflicients were generally above
0.90, indicating that large reductions in the spectral range did not have a sig-
nificant negative effect on the quality of the models. One report on the use of a
reduced spectral range (400 nm—1100 nm) for predicting the stiffness of wood
showed a substantial decrease in the quality of the models (Thumm and Meder
2001). Defining the effects of reducing.the spectral range is very significant since
it can be accessed with very inexpensive, lightweight spectrometers that can
acquire spectra in fractions of a second. In fact, the results of Axrup et al. were
gathered on moving wood chips, highlighting the potential for using NIR for
process control applications by the pulp and paper industry.

Most of the work done on NIR analysis of wood and wood products has
used some kind of simple spectral preprocessing such as the first or second
derivatives, or multiplicative scattering correction. More recently, other ana-
Iytical techniques have been used to improve the quality of the models con-
structed using NIR spectral data (Axrup et al. 2000; Marklund et al. 1999).
Axrup et al. (2000) used fixed window evolving factor analysis to identify
outliers. This type of analysis would be required to use NIR in a processing
environment. Marklund et al. (1999) used orthogonal signal correction (OSC)
to improve the correlations and predictive quality of PLS models. They
obtained high quality correlations between the NIR spectral properties of pulp
and strength properties of paper derived from those pulps. Using OSC they
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could extend the correlations back to the wood originally used to produce the
pulps.

This previous work has illustrated the potential for using NIR to measure the
chemical and physical properties of wood. This paper extends this prior work to
include predictions of a variety of chemical and mechanical properties from one
uniform set of solid wood samples, and evaluates the impact of reducing the
spectral range from 500 nm~2400 nm to 650 nm-1150 nm.

Experimental
Collection of wood samples

The preparation of the samples is described in greater detail elsewhere and is
only briefly outlined here. Three loblolly pine trees were harvested from a plot
in southern Arkansas. Two foot long disks were cut every 16 feet along the
trees. Slices were isolated: fromthe disks-at each-compass heading. Samples
containing three growth rings were then cut from the slice to produce the
bending samples. These samples were oven dried at 105°C, and reconditioned
prior to testing. The mechanical properties of the samples from each of the four
compass headings were measured and averaged to provide one value for each
tree, height and growth ring. Samples from a single growth ring from each tree,
height, and compass heading were ground and mixed to form a master batch
that was then subjected to chemical analysis.

NIR measurements

The NIR measurements were made with an Analytical Spectral Devices (ASD)
Field Spec at wavelengths between 400 nm-2,500 nm. A fiber optic probe ori-
ented at a right angle to the sample surface was used to collect the reflectance
spectra. A piece of commercial, microporous Teflon was used as the white ref-
erence material. The samples were illuminated with a DC lamp oriented at 30 °
above the samples and aligned parallel with the longitudinal axis of the sample.
Thirty scans were collected and averaged into a single average spectrum. The area
that was sampled varied depending on the width of the individual bending
specimen, but was generally about 2 cm?. Two average spectra were taken from
the different locations near the center of both the tension and compression surface
of the bending samples, providing four averaged spectra for each sample.

The reflectance spectra were transferred from the ASD to an Unscrambler
file. The reflectance spectra were converted to absorbance spectra in the
Unscrambler. The four averaged spectra collected on each sample were aver-
aged to provide a single spectrum that was used to predict the mechanical
strength or chemical composition of the sample. The data set was further
reduced by averaging the spectra that were collected at 1 nm intervals, to a
spectral data set at 10 nm intervals. Averaging the spectral data reduces the size
of the spectra matrix and significantly reduces the time required to compute the
PLS models without decreasing the quality of the models. There are a number
of preprocessing techniques that can be used to increase the quality of the PLS
models, e.g., second derivatives or orthogonal signal correction (Wold et al.
1998; Fern 2000). However, these techniques greatly complicate ones ability to
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provide chemical interpretation of the regression coefficients. In this study no
preprocessing techniques were used.

The average spectra were used to perform a principal component analysis of
the samples. One sample, tree 1, disk 1, ring 16, was identified as a spectral
outlier and was excluded from the subsequent analyses.

Chemical analysis

All samples were milled using a standard Wiley knife mill with a 2 mm screen.
The —2 mm material was sieved for five minutes using a 20 mesh sieve. Any
+ 20 mesh material was milled until it passed the 20 mesh screen (American
Society for Testing Material (ASTM) 1999). All samples were analysed using
ASTM standard methods for whole biomass analysis (ASTM 1999). NIST pine
standard reference material # 8493 was used as a reference for the determina-
tion of extractives, lignin, and carbohydrates. All determinations were per-
formed in duplicate on the prepared biomass samples. Analysis errors for
softwood composition using these traditional wet chemical analysis methods
are 0.5% for lignin and ash, 1.0% for glucose and extractives, and 1.5% for all
other sugars (Milne et al. 1992).

Two samples were identified as outliers with mass closure for all wood
components above 105% and were not used in the models for predicting the
chemical composition of wood.

Measurement of mechanical properties

All the samples were broken in three point bending according to ASTM stan-
dards (ASTM 1999). The stiffness (modulus of elasticity (MOE)) was calculated
using the linear portion of the load-deflection curve. The ultimate strength
(modulus of rupture (MOR)) was the breaking load divided by the cross-sec-
tional area.

Microfibril angle measurements

X-ray measurements were conducted on a General Electric XRD-7 diffrac-
tometer. A copper target was used at an accelerating voltage of 50 kV. The
x-ray spot at the surface of the sample was 3.8 mm. The detector, a sealed
xenon gas proportional counter, was positioned to pick up the 002 diffraction
arc. Specimens were produced by sampling from one end of the desired growth
ring. Sample dimensions were approximately 6.5 mm in the tangential by lon-
gitudinal direction, and did not exceed 3 mm thick in the radial direction. The
sample was placed with the tangential face perpendicular to the x-ray beam.
The diffracted intensity was recorded as the sample was rotated through 360°.
Additional procedural details and data analysis methods are available (Huang
et al. 1997).

Projection to latent structures (PLS) modeling

While a complete description of multivariate analysis can be found elsewhere
(Martens and Naes 1991; Vandeginste et al. 1998) the following summary de-
scribes the steps used to construct PLS models in this work. Multivariate
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analysis was performed using the Unscrambler version 7.6 (CAMO, Corvallis,
OR). The package has the capability to perform both principal component
analysis (PCA) and projection to latent structures (PLS) (also known as partial
least squares) analyses. All of the NIR spectra are combined into a single data
matrix (X-matrix) while the chemical and mechanical property data are com-
bined into a response matrix (Y-matrix). The software is used to systematically
extract (decompose) variation in the data matrix (X-matrix) while principal
component regression is used to regress each response variable (Y-matrix) onto
the decomposed spectra (X-matrix), and make a projection to latent structures.
This process allows for the simultaneous and independent decomposition of
both the X- and Y-matrices and then performs the regression of the Y-matrix
onto the X-matrix, e.g., the chemical or mechanical properties onto the spectra.

The Unscrambler also allows for calculation of two different PLS algorithms.
A PLS-1 analysis allows only one Y-variable to be projected against the X-
matrix at a time, e.g., MFA, while a PLS-2 analysis allows several Y-variables
to be projected against the X-matrix, e.g., all of the chemical properties, or
MOR and MOE. Both PLS-1 and PLS-2 models were constructed for different
response variables. The models were constructed with an X-matrix of 190
points (500 nm—-2400 nm) or 50 points (650 nm—-1150 nm), and the chemical
and mechanical properties as the Y-matrix. Both the X- and Y-matrices were
mean centered variance normalised prior to performing the PLS analysis. When
PLS-2 models were constructed, weighting the Y-matrix values compensated
for the large differences in the magnitude of the MOE and MOR values by the
inverse of their standard deviations. The number of principal components
(factors) used for a model were selected by observing the response of the
residual Y-variance with added factors. When additional factors did not sub-
stantially decrease the residual Y-variance, additional iterations were termi-
nated. All of the PLS models are based on either 4 or 5 factors.

Calibration models (CALB) were constructed with about two-thirds of the
samples (45) using full cross-validation. Cross-validation systematically re-
moves a single sample from the data set, constructs a model with the remaining
samples, and uses that model to predict the value(s) of the Y-variable(s) for the
extracted sample. This process continues until each individual sample has been
removed from the data set and a fully cross-validated model is constructed
(Martens and Naes 1991; Vandeginste et al. 1998). This fully cross-validated
model was then used to predict the response of the test set (TEST) that contains
about one-third of the samples (27) that were not included in the original
model. This conservative approach insures that the predictive capabilities of the
model are reliable.

Results and discussion
NIR spectra

Representative spectra of wood, cellulose and lignin are shown in Fig. 1. The
differences between cellulose and lignin are clear for some regions of the NIR
spectra, but there is also considerable overlap. Based on the NIR spectra of the
isolated wood components and literature references many of the vibrations in
the NIR spectra of wood can be assigned (Ali et al. 2001; Curran et al. 1992;
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Fig. 1 NIR spectra of representative loblolly pine samples, and cellulose and lignin model
compounds. The reduced spectral range of the same loblolly pine wood is also shown to
highlight this region spectral region

Fourty et al. 1996; Marten et al. 1985). The major vibrations include the yellow-
brown color of the wood at 400 nm-700 nm that are primarily due to the
presence of lignin and extractives. The first overtone of cellulose and hemicel-
lulose hydroxyls between 1400 nm and 1660 nm, and the interactions between
carbohydrate hydroxyls and water between 1890 nm and 2020 nm can be seen.
There is also a strong vibration at 2020 nm-2250 nm that has been assigned to
the cellulose hydroxyl vibrations. The first and second overtones of the lignin
aromatic and aliphatic carbon/hydrogen vibrations are seen between 1635 nm
and 1825 nm and 1075 nm and 1250 nm, respectively. Some of the lignin
hydroxyl vibrations overlap with the cellulose hydroxyl vibrations, e.g., the first
overtone of the lignin hydroxyl vibrations occur between 1400 nm and
1520 nm. These assignments provide some insight into the chemical structures
present in the material, but the overlapping bands limit the information
available from simple, visual inspection of NIR spectra.

Figure 1 shows the NIR spectra of wood in the visible and short wavelength
NIR region (650 nm—1050 nm). These spectra show some features, but these
features are very subtle. The peaks in this region are even more difficult to
assign to specific wood components but can be attributed to second overtones
of hydroxyls and third overtones of C-H stretching vibrations. There is also a
contribution from the brown color of lignin in the visible region of the spectra.

Chemical analysis

Several publications have highlighted the use of spectroscopic techniques,
including NIR, to predict the chemical composition of wood (Schimleck et al.
1997; Axrup et al. 2000; Malkavaara and Alen 1998). This work extends these
studies by using solid wood samples and investigating the use of a reduced
spectral range.

A total of 72 samples representing different tree, height, and growth ring
combinations were randomly assigned to either the CALB or TEST set for
further analysis. The range of chemical compositions, determined by traditional
wet chemistry, of the samples in the CALB and TEST set are shown in Table 1.
The two sets are similar in both their medium composition and their compo-
sition range. A detailed discussion of the changes in chemical composition with
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Table 1 Compositional range for the 70 loblolly pine samples used for construction of PLS-2
models of wood chemistry. All values are weight percent

Lignin  Glucose Xylose Mannose Galactose Extractives Closure

CALB set
Min 22.1 . 26.7 5.0 6.2 1.8 2.8 95.7
Max 33.2 48.2 9.4 12.3 8.3 26.9 104.4
Median 27.9 40.9 7.1 10.0 4.3 6.2 98.1
TEST set
Min 23.1 26.9 6.1 6.5 2.4 36 95.8
Max 30.8 46.5 8.9 11.5 7.7 25.9 103.1
Median 27.9 384 7.8 8.7 4.1 6.4 97.5

respect to their location within the tree, and the differences between trees are
provided elsewhere (Snell R et al., 2003, submitted).

Using the chemical composition information determined by traditional wet
chemistry measurements and the NIR spectra collected on the radial face of the
corresponding solid wood sample, a series of PLS models were constructed. All
of the following results are based on PLS-2 models that predict all six wood
components, e.g., lignin, extractives, glucose, xylose, mannose, and galactose, at
one time. The PLS-2 models for the glucose, lignin, mannose, and extractives
content of these solid wood samples are shown in Fig. 2a—d. These models were
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Fig. 2a-d The results of PLS-2 models showing the correlation between measured chemical
compositions and the chemical composition predicted with NIR spectra collected over the full
spectral range (500 nm-2400 nm). a glucose, b extractives, ¢ lignin and d mannose. Solid
symbols are the samples included in the CALB set and the open symbols are the samples
included in the TEST set
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all constructed using the full spectral range (500 nm-2400 nm) and spectra that
were averaged over a 10 nm interval.

The 41 samples in the CALB set were used to construct the PLS-2 models for
all six of the wood components. These PLS-2 models were then used to predict
the chemical composition of samples in the TEST set which had not been
included in the original data used to construct the models. Testing the model
with samples that were not contained in the original model is an example of
how these models might be used to predict the composition of a large number of
unknown samples. Examination of the four graphs in Fig. 2 show that the data
points for the CALB and TEST set have substantial overlap. With the excep-
tion of the lignin model, the values are also uniformly spread across the data
range. The values for lignin content are clustered around the mean.

The same wet chemical values, and NIR spectra between 650 nm—1150 nm,
were used to construct a second set of PLS-2 models. Again, the 41 samples in
the CALB set were used to construct the PLS-2 models for all six of the wood
components. These models were then used to predict the chemical composition
of samples in the TEST set, which had not been included in the original data
used to construct the models. The results of these PLS-2 models are shown in
Fig. 3a—d. These models have very similar appearance to the models for the full
spectra range. Again, the model for the lignin content has a majority of the data
close to the mean.
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Fig. 3a—d The results of PLS-2 models showing the correlation between measured chemical
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inlcuded in the TEST set
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The quality of PLS models can be measured in several ways. For this work,
the correlation coefficient (r) and the root mean square error of prediction
(RMSEP) or root mean square error of calibration (RMSEC) were used as a
way to compare the PLS models. These data are shown in Table 2.

The results in Table 2 highlight several features of using NIR spectroscopy to
predict the chemical composition of solid wood. First, there is very little
reduction in r, RMSEC, or RMSEP when the spectral range is reduced from
500 nm—2400 nm to 650 nm-1150 nm. This is a very significant finding because
it opens up these NIR techniques to the use of very low cost and lightweight
spectrometers. The only significant reduction in model quality was for the
measurement of lignin. This reduction can be attributed to the very low
intensity of CH overtone vibrations in this range and the relatively low OH
content on the lignin. The second feature that these data highlight is the use of
NIR to predict the chemical composition of an unknown sample. In almost all
cases the r-values are slightly lower for the TEST set compared to the CALB
set. This is due, in part, to the fact that the TEST set has fewer data points than
the CALB set, 26 vs. 44. The RMSEC can also be compared to the RMSEP. In
most cases these two measures of the accuracy of the models are comparable.

The number of principal components (PC) can have a significant impact on
the quality of a PLS model. Too many PCs can result in overfitting of the
model, while too few can result in a less accurate model (REF). In this work
four principal components were used to construct the PLS-2 model for the full
spectra range and five principal components were used to construct the model
for the reduced spectral range. The effects of varying the number of PCs on the
quality of the PLS models are shown in Table 3.

As expected, increasing the number of PCs increases r and decreases the
RMSEC or RMSEP for most of the wood components. However, in the case of
the models constructed using the full spectrum, there is a notable increase in r and
a decrease in the RMSEC or RMSEP going from three to four PCs, but little
improvement in going from four PCs to five PCs. The same trends are seen for the
models constructed using the reduced spectral range. Increasing the number of
PCs from four to five increases r and decreases RMSEC or RMSEP, but adding
one more PC does not substantially improve the quality of the models.

Table 2 Correlation coefficients and root mean square error of PLS-2 models for the chemical
composition of the CALB and TEST sets. The RMSEC and RMSEP values are weight percent

Lignin Glucose Xylose Mannose Galactose Extractives

500 nm~2400 nm, 4 PCs used for models

CALB set

r 0.81 0.90 0.80 0.86 0.82 0.93

RMSEC 1.1 2.4 0.6 0.8 1.0 2.3

TEST set

r 0.76 0.78 0.56 0.58 0.80 0.85

RMSEP 1.0 2.7 0.6 1.3 1.0 2.3
650 nm~1150 nm, 5 PCs used for models

CALB set

r 0.71 0.88 0.80 0.86 0.81 0.93

RMSEC 1.5 2.6 0.8 0.8 1.0 2.4
TEST set

r 0.67 0.84 0.54 0.69 0.83 0.88

RMSEP 1.4 2.3 0.6 1.0 0.8 2.2
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Table 3 Effects of varying the number of principal components on the quality of PLS models
for wood chemistry. The RMSEC and RMSEP values are weight percent

Lignin  Glucose Xylose Mannose Galactose  Extractives

500 nm—-2400 nm

CALB set

r (3 PCs) 0.81 0.86 0.79 0.79 0.75 0:89
r (5 PCs) 0.82 0.93 0.80 0.88 0.82 0.94
RMSEC (3 PCs) 1.2 2.8 0.6 0.9 1.2 2.8
RMSEC (5 PCs) 1.3 2.0 0.6 0.7 1.0 2.2
TEST set

r (3 PCs) 0.75 0.74 0.56 0.57 0.77 0.79
r (5 PCs) 0.76 0.86 0.58 0.63 0.82 0.89
RMSEP (3 PCs) 1.0 2.9 0.6 1.3 1.0 2.7
RMSEP (5 PCs) 1.0 2.3 0.6 1.1 1.1 2.0

650 nm—1150 nm

CALB set

r (4 PCs) 0.71 0.88 0.80 0.86 0.81 0.89
r (6 PCs) 0.82 0.92 0.81 0.89 0.83 0.93
RMSEC (4 PCs) 1.5 2.6 0.6 0.8 1.0 2.9
RMSEC (6 PCs) 1.3 2.1 0.6 0.7 1.0 2.3
TEST set

r (4 PCs) 0.60 0.82 0.55 0.66 0.84 0.86
r (6 PCs) 0.43 0.85 0.53 0.66 0.82 0.89
RMSEC (4 PCs) 1.2 2.4 0.7 1.0 0.8 2.2
RMSEC (6 PCs) 1.4 2.3 0.7 1.0 0.8 2.1

These results are comparable to previous work (Schimleck et al. 1997,
Hiukka 1998; Axrup et al. 2000). Hiukka (1998) reported r-values above 0.90
for nitrogen and starch content of pine needles, but these correlations decreased
to 0.70 to 0.86 for six minor sugars. Using the second derivative of the NIR
spectra, but very similar PLS techniques and comparable numbers of PCs,
Schimleck et al. (1997) reported r values for a set of E. globulus above 0.90 for
cellulose, hemicelluloses, and xylan. The correlation for the lignin content was
slightly lower. They report RMSEC that are much better for glucose, but
comparable for lignin and xylose. Using a reduced spectral range but more
elaborate analytical techniques Axrup et al. (2000) reported consistently higher
RMSEC and RMSEP values for lignin, extractives, glucose, xylose, galactose,
and mannose. However, they collected their NIR spectra and samples on wood
chips that were moving on a conveyor belt. Compared to the current results, the
prior work shows that very high quality correlations can be obtained for ground
samples under ideal laboratory conditions. While the quality of the models may
decrease for solid wood or with a reduced spectral range, these NIR techniques
have great value for measuring the chemical composition of wood under a wide
variety of conditions.

Finally, the accuracy of the NIR models can be compared to the accuracy of
wet chemical methods. Based on the work of Milne et al. (1992) NIR analysis is
comparable to wet chemistry for the minor sugars, xylose, mannose, and
galactose, but 1-2 times less accurate for prediction of glucose, lignin, and
extractives. However, given the ease, speed, and low cost of the NIR methods
relative to the traditional wet chemistry techniques, this decrease in accuracy is
acceptable for many applications.
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Mechanical properties

While it is clear that the NIR spectra contain information on the chemical
composition of wood, it is much less obvious that these same spectra contain
information on the strength properties of solid wood. There are two reports on
the use of NIR of ground wood (Hoffmeyer and Pedersen 1995; Thumm and
Meder 2001) to predict the strength properties. It is well-known that the
strength properties of wood are related to the density, microfibril angle and
slope of grain of wood samples. But, it is not intuitive that the NIR spectra of
solid wood will contain information on these wood features.

The mechanical properties of the loblolly pine samples were measured in
three-point bending. The range of mechanical properties is shown in Table 4.
To minimise the relatively large natural variations in the mechanical properties
of clear wood, the mechanical properties of the four individual pieces taken at
different compass headings at each tree, height, and growth ring location were
averaged to provide a single value for that location. As discussed above; the
samples were randomly assigned toeither the CALB set or TEST set. The same
samples were assigned to the CALB and TEST sets for analysis of both
chemical and mechanical properties. The average and range of mechanical
properties are similar for both the CALB set and TEST set. A detailed dis-
cussion of the changes in mechanical properties by location within the tree, and
between tree differences are provided elsewhere (Snell R et al., 2003, submitted).

The same NIR spectra collected from the radial face of solid wood samples
were used to predict the mechanical strength of these pine samples. The CALB
set of samples was used to construct the PLS models while the TEST set was
used to validate the models. As mentioned above, the models predicting the
mechanical properties of wood are based on PLS-2 models, and the strength
properties were normalised by the inverse of their standard deviations.

The results of these predictions using the full spectral range are shown in
Fig. 4a and b. The correlations between the measured strength properties and
the strength properties predicted with NIR are very good. Both the MOE and
MOR can be predicted from NIR spectra. The r-values and RMSEC or
RMSEP for these models are shown in Table 5. The r values for the CALB set
models were 0.88 for MOE and 0.92 for MOR. More importantly, the quality
of the TEST set was also very good with r values of 0.87 and 0.94 for MOE and
MOR, respectively. The RMSEP for the TEST set were 1,490 MPa for MOE
and 10.4 MPa for MOR. These RMSEP values are about 15% of the mean for

Table 4 Mechanical properties of the 72 loblolly pine samples used for construction of PLS-2
models of wood strength (MOR) and stiffness (MOE), and microfibril angle (MFA)

MOR (MPa) MOE (MPa) MFA (deg)

CALB set

Min. 39.6 4,049 6.5
Max. 125.5 15,327 43.0
Median 88.0 8,988 19.5
TEST set

Min. 33.5 3,791 7.0
Max. 116.3 13,674 36.0

Median 76.6 8,540 19.0
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Fig. 4a,b The results of PLS-2 models showing the correlation between measured mechanical
properties and the mechanical properties (a) MOE and (b) MOR predicted with NIR spectra
collected over the full spectral range (500 nm-2400 nm). Solid symbols are the samples
included in the CALB set and the open symbols are the samples included in the TEST set

the MOE and 10% of the mean for the MOR. These results are similar to the
prior reports (Hoffmeyer and Pedersen 1995; Thumm and Meder 2001) on the
use of NIR to measure the bending and compressive strength of wood. These
results show that the strength properties of an unknown loblolly pine sample
could be accurately predicted from its NIR spectrum.

Similarly, PLS-2 models can be constructed with a reduced spectral range,
e.g., 650 nm-1150 nm. It should be emphasised that these models were con-
structed with only 50 individual spectral data points. The results of these PLS-2
models are shown in Fig. 5a and b. In this case the correlation coefficients for
the CALB set model were 0.89 for MOE and 0.92 for MOR, and the correlation
coefficients for the TEST set were 0.84 for MOE and 0.91 for MOR. The
RMSEP were 1,580 MPa for the MOR and 10.2 MPa for the MOE. Again,
RMSEP values are about 15% and 10% of the mean for the MOE and MOR,
respectively. These results show that the strength properties of an unknown
loblolly pine sample could be accurately predicted from its NIR spectra col-
lected over a reduced spectral range. This further highlights the potential for
using small lightweight NIR spectrometers for measuring the strength of wood
and trees.



270

Table 5 Correlation coefficients and root mean square error of PLS-2 models for the
meéchanical properties and microfibril angle of the CALB and TEST sets

MOR (MPa) MOE (MPa) MFA (deg)

500 nm—2400 nm, 5 PCs used for models

CALB set

T 0.92 0.88 0.82

RMSEC 8.7 1,450 5.7

TEST set '

r 0.94 0.87 0.68

RMSEP 10.4 1,490 6.8
650 nm—1150 nm, 5 PCs used for models

CALB set

r 0.92 0.89 0.80

RMSEC 8.8 1,370 6.0

TEST set

r 0.90 0.84 0.56

RMSEP 10.2 1,580 8.0

The effects of varying the number of PCs on the quality of the mechanical
property models are shown in Table 6. As expected increasing the number of
PCs generally increases r and decreases the RMSEC or RMSEP. In most cases
increasing the number of PCs from four to five substantially increases the
r-values and decreases the RMSEC or RMSEP. But, further increasing
the number of PCs from five to six does not substantially improve the quality of
the models.

It is not intuitive that there should be a relationship between reflected NIR
radiation and the orientation of the cellulose crystallites, e.g., MFA, in wood.
However, this correlation could be a major contributor to the correlation
between NIR and mechanical properties. Figure 6a shows the correlation be-
tween the MFA measured with x-ray scattering and the MFA predicted from
the NIR spectra. The results shown in Fig. 3 are based on PLS-1 models of the
MFA using 5 PCs. There is a good correlation between the measured and
predicted MFA, with correlation coefficients of 0.82 for the CALB set and 0.68
for the TEST set. These correlations decrease but are still useful when the NIR
spectral range is reduced from 500 nm—2400 nm to 650 nm~1150 nm (Fig. 6b).
In this case, the correlation coefficients decrease to 0.80 for the CALB set and
0.56 for the TEST set. These correlations are lower than those seen for the
chemical or mechanical properties due to the relatively large experimental
errors associated with measuring the MFA with x-rays.

The results shown in Fig. 6 indicate that the correlations between mechanical
properties and NIR spectra are based, in part, on the relationship between the
NIR spectra and MFA. The relationship between mechanical strength and
MFA are well-known (Butterfield 1997), and if we can measure MFA with NIR
then it is reasonable that we should also be able to measure mechanical
strength. There is also a correlation (r=0.82, not shown) between NIR spectra
and specific gravity of solid wood. A strong relationship between MOE and
cellulose content has been reported (Tsehaye et al. 1997), and, as shown above,
the NIR spectra contain information on the cellulose content of wood. Since
molecular information contained in the NIR spectra can be correlated with
MFA, specific gravity and cellulose content, it is quite logical that NIR and
mechanical properties should be correlated.
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Fig. 5a,b The results of PLS-2 models showing the correlation between measured mechanical
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The fundamental explanation for the relationship between MFA and NIR
spectra is not clear at this time. However, an indication of the molecular fea-
tures that are responsible for the correlations can be obtained by examining the
regression coefficients from the PLS models. The regression coefficients for the
PLS models of MFA and MOE are shown in Fig. 7. Figure 7a shows the
regression coefficients for the PLS models over a spectral range of 500 nm—
2400 nm, while Fig. 7b shows the regression coefficients for the PLLS models
with a spectral range of 650 nm-1150 nm. It is clear from the results in Fig. 7
that there is a strong inverse relationship between the regression coefficients for
MFA and MOE. This is expected since there is an inverse relationship between
MFA and MOE, e.g., as MFA increases from 0 to 45 degrees the MOE of wood
generally decreases. These regression coefficients also provide some information
of the chemical features that drive the correlations between NIR spectra, and
mechanical properties and MFA.

Assigning molecular features to NIR spectra is difficult due to the extensive
overlap of the fundamental molecular vibrations in the NIR range. Some ten-
tative assignments can be made to the chemical features associated with these
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Table 6 Effects of varying the number of principal components on the quality of the PLS-2
models for the mechanical properties and the PLS models for microfibril angle

MOR (MPa) MOE (MPa) MFA (deg)
500 nm-2400 nm, 5 PCs used for models

CALB set

r (4 PC) 0.88 0.86 0.79
r (6 PC) 0.93 0.91 0.85
RMSEC (4 PC) 10.6 1,550 6.1
RMSEC (6 PC) 8.3 1,280 5.3
TEST set

r (4 PC) 0.82 0.77 0.54
r (6 PC) 0.93 0.88 0.56
RMSEP (4 PC) 13.6 2,040 8.0
RMSEP (6 PC) 9.7 1,400 7.9

650 nm—1150 nm, 5 PCs used for models

CALB set

r (4 PC) 0.86 0.89 0.72
r (6 PC) 0.93 0.91 0.82
RMSEC (4 PC) 114 1,400 6.9
RMSEC (6 PC) 8.5 1,300 58
TEST set

r (4 PC) 0.88 0.83 0.48
r (6 PC) 0.90 0.84 0.63
RMSEP (4 PC) 11.5 1,640 8.6
RMSEP (6 PC) 10.2 1,580 7.4

regression coefficients (Ali et al. 2001; Curran et al. 1992; Fourty et al. 1996;
Marten et al. 1985). The peak between 1090 nm and 1210 nm can be assigned to
the second overtone of cellulose hydroxyls. The importance of these second
overtone vibrations is highlighted by the regression coefficients for the reduced
spectral range shown in Fig. 7b. These second overtone vibrations are the
major contributors to the correlations between NIR spectra, mechanical
properties, and MFA. The peak between 1450 nm and 1630 nm is associated
with the first overtone of cellulose and hemicellulose hydroxyls. The peak
between 1630 nm and 1800 nm appears to be associated with the first overtone
of aliphatic and aromatic CH vibrations. Finally, the peak between 1890 nm
and 2000 nm is related to OH combination bands. These different vibrations
are closely associated with the major peaks in the regression coefficients,
showing that the molecular features of wood and the NIR predictions of wood
strength and MFA are clearly related.

Conclusions

NIR spectra of solid wood samples were collected and related to the chemical
and mechanical properties, and microfibril angle of the samples. NIR spectra of
solid wood could be correlated with the chemical composition of wood. The
correlation coefficients were generally above 0.80 for lignin, extractives, glucose,
xylose, mannose, and galactose. The correlation coefficients remained high even
when the spectral range was reduced from 500 nm-2400 nm to 650 nm-—
1150 nm. These same NIR spectra were also correlated with the mechanical
properties of solid wood. The correlation coefficients between NIR spectra and
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Fig. 6a,b The results of PLS models showing the correlation between measured microfibril
angle and the microfibril angle predicted with NIR spectra collected over (a) the full spectral
range (500 nm-2400 nm) and (b) a reduced spectral range (650 nm~1150 nm). Solid symbols
are the samples included in the CALB set and the open symbols are the samples included in the
TEST set

the mechanical properties of wood were generally above 0.85 and above 0.90 for
some of the models. Again, both the full spectral range and the reduced spectral
range could be used to predict the mechanical properties of wood. Finally, these
same NIR spectra could be correlated with the microfibril angle of wood. This
result is unexpected but helps explain the relationship between NIR spectra and
mechanical properties.

The strength of the correlations between a reduced NIR spectral range, and
the chemistry, mechanical properties, and microfibril angle is particularly sig-
nificant since it enables the use for small, inexpensive, lightweight NIR spec-
trometers. These small spectrometers could be conveniently used in field
applications or for process control applications. Foresters for a variety of
applications, including genetic screening, timber management, harvesting and
sorting decisions could use these NIR tools.
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