Influence of soil porosity on water use in *Pinus taeda*

Received: 28 December 1999 / Accepted: 31 March 2000

Abstract We analyzed the hydraulic constraints imposed on water uptake from soils of different porosities in loblolly pine (*Pinus taeda* L.) by comparing genetically related and even-aged plantations growing in loam versus sand soil. Water use was evaluated relative to the maximum transpiration rate (E_{crit}) allowed by the soil-leaf continuum. We expected that trees on both soils would approach E_{crit} during drought. Trees in sand, however, should face greater drought limitation because of steeply declining hydraulic conductivity in sand at high soil water potential (Ψ_s). Transport considerations suggest that trees in sand should have higher root to leaf area ratios ($A_R:A_L$), less negative leaf xylem pressure (Ψ_L), and be more vulnerable to xylem cavitation than trees in loam. The $A_R:A_L$ was greater in sand versus loam (9.8 vs 1.7, respectively). This adjustment maintained about 86% of the water extraction potential for both soils. Trees in sand were more deeply rooted (>1.9 m) than in loam (95% of roots <0.2 m), allowing them to shift water uptake to deeper layers during drought and avoid hydraulic failure. Midday Ψ_L was constant for days of high evaporative demand, but was less negative in sand (−1.6 MPa) versus loam (−2.1 MPa). Xylem was more vulnerable to cavitation in sand versus loam trees. Roots in both soils were more vulnerable than stems, and experienced the greatest predicted loss of conductivity during drought. Trees on both soils approached E_{crit} during drought, but at much higher Ψ_s in sand (<−0.4 MPa) than in loam (<−1.0 MPa). Results suggest considerable genotypic plasticity in water use traits for *P. taeda* which are adaptive to differences in soil porosity.

Key words *Pinus taeda* · Xylem cavitation · Soil water transport · Root-shoot relations · Stomatal regulation

Introduction

Plants are capable of growing in a wide range of soil textures ranging from coarse sand to heavy clay. These soils differ greatly in their hydraulic characteristics and present different challenges to plants trying to extract water from them (Bristow et al. 1984). At the same time, plants can differ considerably in their potential for water extraction, as determined by their cavitation resistance, root depth and density, and root-to-leaf ratio (Sperry et al. 1998). In this paper we investigated how the hydraulic traits of a single widespread species of pine (*Pinus taeda* L., loblolly pine) differed with respect to growth on a porous sand versus fine-textured loam soil. Specifically, we compared even-aged plantations of genetically similar stock on both soils to evaluate phenotypic rather than genetic adjustments to the different soil environments. *P. taeda* is widely planted across southeastern USA (over 20 million hectares) as well as in subtropical regions of South America and South Africa and hence frequently occurs on a wide variety of soil types.

Previous analyses of soil porosity and plant water use (e.g., Newman 1969; Bristow et al. 1984; Sperry et al. 1998) lead to a series of expectations for how plants might differ with respect to porosity so as to maintain water uptake. Here we summarize these predictions beginning with the soil and moving up the continuum to the leaves.

(1) Coarse soils lose more moisture and conductivity at higher water potentials than fine soils because of the
weaker capillary forces retaining water in the larger pore spaces. These differences are most pronounced across the coarse end of the soil texture spectrum from sand to loam (Campbell 1985). This suggests that plants growing in sandy soils require less negative water potential to exhaust their water supply than plants in a loam or finer soil. For the same reason, plants in sandy soil may become water-stressed at relatively high soil water potential. To the extent that plants in coarse soils have a greater need for accessing water at high water potential, they may also require deeper root systems in a drought-prone habitat than plants in fine soil to access soil at a high water potential.

(2) In addition to having deeper roots, plants in coarse soils should exhibit lower rates of water uptake per root surface area (rhizosphere flux density) than plants in fine soils to counter a potentially greater drop in rhizosphere hydraulic conductivity during water uptake. There is a non-linear drop in soil water potential and conductivity as water funnels into a narrow root from the surrounding expanse of bulk soil (Cowan 1965; Newman 1969; Bristow et al. 1984). This can lead to critically low rhizosphere hydraulic conductivity, especially in sandy soil where conductivity is very sensitive to soil water potential. Loss of hydraulic contact between parts of the root system and the soil can be minimized by developing a higher root to leaf area ratio (A_r/A_l) and/or by lowering the transpiration rate. Both features will reduce the rhizosphere flux density and are likely to be more pronounced in sandy soil.

(3) Once the water enters the plant xylem, it must rise to the leaves along a gradient in negative xylem pressure. This gradient depends on the hydraulic conductivity of the xylem per unit leaf area. Different xylem types differ substantially in their ability to sustain negative pressure without cavitation and subsequent loss of hydraulic conductivity of the xylem (Tyree and Sperry 1989). Cavitation resistance is correlated with the range of water potentials experienced by a plant, suggesting there are costs associated with having an overly resistant xylem. An adjustment of cavitation resistance to the amount of drought stress has been found among a wide variety of species (Sperry 1995; Davis et al. 1999; Hacke et al., in press) and also within populations of Acer grandidentatum (Alder et al. 1996). To the extent that plants growing in sandy soils operate under consistently higher water potentials, they may be more vulnerable to cavitation than plants in finer soils (Sperry et al. 1998).

(4) At the leaf level, plant water status is regulated by stomatal control of transpiration. Here, the effect of soil porosity may be on the sensitivity of stomata to declining soil water potential. Plants in sandy soils might be expected to show greater stomatal sensitivity to soil water potential than plants in fine soil as a result of the more limited range of water potential over which soil water is available.

In this paper, we tested if the water use and hydraulic properties of P. taeda growing on sand versus loam were adjusted to differences in soil porosity. Trees were similar in age and genetic background, and the sites were within the same region and experienced similar climatic conditions. However, the two soils provided a stark contrast in hydraulic properties. To compare water use at both sites we obtained data on numerous parameters, including transpiration, soil moisture and root profiles, A_r/A_l, cavitation resistance, plant hydraulic conductance, and plant water status through two growing seasons that included multiple droughts.

Data on plant and soil characteristics were used to parameterize a transport model (Sperry et al. 1998). This model integrated the measured plant and soil hydraulic properties to predict a transpiration rate (E) that could be validated against the measured E. The model also predicted the maximum hydraulically permissible transpiration rate (E_{max}) above which water can no longer be transported to the leaves because of the loss of hydraulic conductance in the soil-plant continuum. The E_{max} is a useful parameter because it is an estimate of the maximum potential for water extraction as defined by both soil and plant properties. We used the model to estimate how important the observed differences in water use between sites were for the maintenance of water uptake.

Materials and methods

Plant material and study sites

The loam site was a plantation of 15-year old P. taeda trees in the Duke Forest of central North Carolina (35°58'N, 79°8'W). It was in the same stand used for the free air CO$_2$ enrichment (FACE) project (Ellsworth 1999). The sand site was a 14- to 15-year-old plantation at the Southeast Tree Research and Education Site (SETRES) in the sandhills of south-central North Carolina (35°N 79°W; Albaugh et al. 1998; King et al. 1999). This facility is managed by the United States Forest Service.

The trees at both sites originated from the same nursery (Federal Paperboard in Lambert, North Carolina) and were of the same central North Carolina provenance. Trees across both sites were related at the half-sib level based on analyses of amplified fragment length DNA polymorphisms, a DNA fingerprinting analysis (P. Keim, unpublished data).

At the loam site, soil texture was quantified as percentage sand, silt, and clay (Table 1). Six samples per site were taken at about 0.3 m depth and analyzed with the hydrometer method by the Utah State University Analytical Laboratory (Logan, Utah). At the sand site, we used silt and clay fractions averaged over 1.65 m depth as reported by Abrahamsson et al. (1998) for the site. Both sites received only natural precipitation at an average annual rate of 1,210 mm for the sand site and 1,150 mm at the loam site.

Cavitation resistance and tracheid anatomy

We measured the relationship between xylem conductivity and water potential (a "vulnerability curve," Tyree and Sperry 1989) using the centrifugal force technique to expose excised branch and root segments to known negative xylem pressures (Alder et al. 1997). Branch segments were from 1- and 2-year-old portions of prominent lateral branches in the mid to upper crown. Root segments were from three diameter classes: large (8.2–13.0 mm xylem diameter), medium (4.2–6.4 mm), and small (1.6–4.1 mm).
Table 1 Selected soil and plant parameters. Soil fractions are means of six measurements at the loam site (±SD) and taken from Abrahamson et al. (1998) for the sand site. Texture fractions and bulk densities were the basis for calculating the air entry potential (Ψ_0) and saturated hydraulic conductance (K_s). The b value for loam was taken from Oren et al. (1998a), and for sand was estimated from soil moisture data of Abrahamson et al. (1998). Bulk density was assumed to be 1.3 Mg m$^{-3}$ (Campbell 1985) at the loam site, and taken from Abrahamson et al. (1998) for sand. Saturated leaf-specific hydraulic conductance of the whole plant (k^*) was averaged from May (loam) or June (sand) data of 1997–1998 prior to drought. The leaf area index (LAI) range is May–August averaged for 1997–1998. Loam root area index (RAI) was based on fine root data from June 1997 (Matamala et al. 1998) and sand RAI was measured in winter 1998. The A_{kSAI} was adjusted for LAI at the time of the RAI determinations.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Loam site</th>
<th>Sand site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay fraction (%)</td>
<td>11.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Silt fraction (%)</td>
<td>45.8</td>
<td>3.7</td>
</tr>
<tr>
<td>Sand fraction (%)</td>
<td>43.0</td>
<td>92.1</td>
</tr>
<tr>
<td>b (mmol s$^{-1}$ MPa$^{-1}$ m$^{-2}$)</td>
<td>4.95</td>
<td>2.56</td>
</tr>
<tr>
<td>Ψ_0 (kPa)</td>
<td>-1.77</td>
<td>-0.65</td>
</tr>
<tr>
<td>K_s (mol s$^{-1}$ MPa$^{-1}$ m$^{-2}$)</td>
<td>18.8</td>
<td>107.8</td>
</tr>
<tr>
<td>Bulk density (Mg m$^{-3}$)</td>
<td>1.3</td>
<td>1.42</td>
</tr>
<tr>
<td>Plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k^* (mmol s$^{-1}$ MPa$^{-1}$ m$^{-2}$)</td>
<td>0.65</td>
<td>1.07</td>
</tr>
<tr>
<td>Midday Ψ_r (MPa)</td>
<td>-2.31±0.22</td>
<td>-1.61±0.10</td>
</tr>
<tr>
<td>LAI</td>
<td>3.22±0.62</td>
<td>1.56±1.95</td>
</tr>
<tr>
<td>RAI</td>
<td>5.46</td>
<td>14.19</td>
</tr>
<tr>
<td>A_{kSAI}</td>
<td>1.68</td>
<td>9.75</td>
</tr>
</tbody>
</table>

Roots were collected from the upper 0.40 m of soil. Six trees per site were sampled, with a minimum of one segment per type per tree. Trees were sampled between October 1997 and February 1998. Segments were 0.14 m long and were cut underwater from longer lengths collected in the field. Material was bagged in plastic for transport from field to laboratory. In the laboratory, all segments were flushed with deionized and filtered (0.22 μm) water at about 40 kPa for 20 min to remove embolism. The initial (and maximum) hydraulic conductivity of the segments was measured as the flow rate of water through the segments divided by the pressure gradient (ca 50 kPa m$^{-1}$). Pressure was controlled by hydraulic head, and flow rate was measured gravimetrically. The tubing apparatus was cleaned regularly to minimize microbial growth that could otherwise occlude the xylem.

Segments were mounted in a custom centrifuge rotor and spun with their ends immersed in water. The magnitude of the negative pressure in the segment was determined by the length of the segment and its angular velocity (Alders et al. 1997). Segments were spun for at least 3 min and then their hydraulic conductivity was remeasured. The process was repeated, spinning segments to progressively lower pressures until their hydraulic conductivity dropped to zero. Conductivity was stable after spinning indicating no refilling of cavitated tracheids during the flow measurement. Vulnerability curves were plotted showing the percentage drop in hydraulic conductance versus xylem pressure (Fig. 2) to represent vulnerability curves by a single mean cavitation pressure, ψ_c. Curves were converted to a non-cumulative frequency distribution of loss of conductance versus xylem pressure. The mean of this distribution was calculated using the midpoint of each pressure increment. The mean cavitation pressure will usually be similar to the xylem pressure that is associated with 50% loss of hydraulic conductance, with deviations depending on the asymmetry of the distribution.

We also measured tracheid diameters for comparison with mean cavitation pressure. Tracheid diameters were measured from a transverse section made at the middle of each segment. Diameters were determined in three radial sectors of the two outer growth rings at 120° intervals. A minimum of 100 tracheids were measured per segment. We used a light microscope interfaced with a bit pad (Donsanto Microplan II, Natick, Mass.) to trace lumen area and calculate the diameter of the equivalent circle. Tracheid diameters are reported as the hydraulic mean value. The hydraulic mean is the mean of the diameter distribution weighted in proportion to its theoretical contribution to hydraulic conductivity as postulated by the Hagen–Poiseuille law. Mathematically, the hydraulic mean tracheid diameter equals $\Sigma d^3/2 \Sigma d$ where d is tracheid diameter (Sperry and Ikeda 1997).

The ratio of root area to leaf area, leaf area index, and root area index

The ratio of root area to leaf area (A_{kSAI}) was calculated from the ratio of root area index (RAI, root surface area per ground area) and leaf area index (LAI, projected leaf area per ground area).

At the sand site, LAI during 1997 and 1998 was calculated using allometric relationships with tree basal area derived from winter biomass harvests (Albaugh et al. 1998). Leaf area estimates for each tree were corrected for seasonality using the relative increase in LAI from winter to the sampling period as determined with a leaf area meter (LAI-2000; Civ, Lincoln, Neb.) and calculating area from total lengths in each class using the midpoint of the diameter class. We assumed the narrowest roots were 0.5 mm in diameter. A mean RAI was calculated from m=4 pits.

The RAI for the loam site was estimated as 5.46, a value derived from results of the FACE project for ambient CO$_2$ trees (Matamala et al. 1998). It was based on roots less than 1 mm diameter from five 0.2-m cores made in June 1997. The top 0.2 m accounted for 95% of the fine root biomass at this site, which has shallow soil (Matamala et al. 1998). This is consistent with a water budget for the site showing that >90% of the transpired water was coming from the top 0.35 m of soil (Oren et al. 1998a). To correct from area of small roots to total root area, we assumed the small roots contributed 70% of the total area, as was found by direct measurement for a comparable stand of P. taeda (Kinsoner 1975).

Soil and leaf water potential

Soil water potential (ψ_s) was estimated from water content measurements made with time-domain reflectometry probes. Vertical probes were installed in the shallow soil of the loam site to provide an integrated water content of the upper 30 cm (model CS615; Campbell Scientific, Logan, Utah). Horizontal probes (Delta-T Devices, Cambridge, UK) were installed at six depths (0.05, 0.15, 0.25, 0.5, 1, 2 m) in the deeper soils at the sand site. The 2-m probe was available only in the 1999 growing season. However, it averaged 0.002 cm3 cm$^{-3}$ higher water content than the 1-m probe with very little variation, and this value was used to back-calculate 2-m water contents for the 1998 and 1999 seasons. The conversion from water content to ψ_s was given by Campbell (1985):

$$\psi_s = \epsilon \psi_s (1 - \epsilon)$$

where θ is water content, ϵ is saturated water content, ψ_s is the soil matric potential at air entry, and the exponent b is related to soil texture (larger for finer soils). Values for ψ_s (Table 1) were calculated from sand, clay, and silt fractions according to Campbell (1985). A value for ψ_s at the loam site was available from previous work at the site (Oren et al. 1998a). b at the sand site was derived by fitting Eq. 1 to moisture release data from the site (Abrahamson et al. 1998).
Midday leaf water potential of single fascicles from the mid to upper canopy were measured with a pressure chamber for n = 3 trees. Leaf water potential data for days of high vapor pressure deficit (D) during the two growing seasons showed no trend with Ψ_5 at either site indicating that $P. taeda$ exhibited "isohydric" behavior (Tardieu 1993) at these sites.

Midday transpiration

Transpiration was calculated from sap flux density measured with Granier-type sensors (Granier 1987). Sap flux density was averaged across eight trees at the sand site, and eight trees in three clusters at the loam site. Sap flux density was corrected to transpiration from estimates of sapwood area, radial trends of sap flux density, and LAI (Oren et al. 1998b; Ewers et al. 1999). Measurements of midday transpiration were averaged from half-hourly (or finer) readings made between 1200–1400 hours. Data were used for days from May–September 1997 and 1998 where the average D from 1200–1400 hours exceeded 1.5 kPa. The temperature and relative humidity for determining D were measured with thermistors and Vaisala sensors (HMP35C, Campbell Scientific).

Model application

The model (modified from Sperry et al. 1998) solved the relationship between steady state E (mmol s$^{-1}$ m$^{-2}$ leaf area) and the water potential difference driving flow in the soil-plant continuum:

$$E = k_s (\Psi_s - \Psi_l)$$

where k_s is the leaf-specific hydraulic conductance (in units of mmol s$^{-1}$ MPa$^{-1}$ m$^{-2}$), and Ψ_s is the bulk soil water potential. As E increases at a constant Ψ_s, Ψ_l becomes more negative in the continuum, and k_s decreases from xylem cavitation and soil drying in the rhizosphere. E reaches a maximum (E_{max}) and associated Ψ_{trans} above which the leaf area ratio and hydraulic failure occur.

The model divided the continuum into three components in series: rhizosphere (distance between bulk soil and root surface), root system, and shoot system (Fig. 1). Each component was assigned an initial "saturated" leaf-specific conductance (k_s^*) representing the maximum conductance capacity prior to drought. The initial saturated rhizosphere k_s^* (mmol s$^{-1}$ MPa$^{-1}$ m$^{-2}$ of leaf area) was calculated from saturated soil conductivity (K_S, mmol s$^{-1}$ MPa$^{-1}$ m$^{-1}$) assuming a cylindrical rhizosphere sheath of 8 mm thickness from bulk soil to root surface. The K_S was determined from measured silt and clay fractions according to Campbell (1985; Table 1). The rhizosphere conductance on a root surface area basis was converted to a leaf area basis from estimates of A_{g} / A_L.

The initial saturated k_s^* for root and shoot systems were assigned from psi $k_s^* = E(\Psi_s - \Psi_l)$ measured at middayl averaged for May dates (loam site) or June dates (sand site – May data not available for both years) with midday (1200–1400 hours) $D > 1.5$ kPa and prior to significant soil drying (Table 1). The root and shoot components were assumed to constitute 50% each of the total hydraulic resistance of the continuum as is typical of a wide variety of woody plants (Hellkvist et al. 1974; Salindera and Meinzer 1989; Meinzer et al. 1992; Sperry and Pockman 1993; Yang and Tyree 1993; Menecuccini and Comstock 1997). Thus, k_s^* of root and shoot was set to twice the measured early season k_s^* of the entire continuum.

For the shallow roots and soil of the loam site, the root system and rhizosphere was modeled as resistances in series (Fig. 1, left). To model the deeper roots at the sand site, the root system was divided into lateral and axial root components (Fig. 1, right). Lateral components serviced each of six soil layers centered on the six depths measured for water content (0.05–2 m). We scaled the component conductances proportional to upstream root area supplying each component, and inversely proportional to their relative lengths. Axial lengths were determined by relative depths of the midpoint of each soil layer. Lateral lengths were assumed to diminish linearly with depth from 1.5 m at 0.05 m to 0.5 m at 2 m.

![Fig. 1 Structure of the transport model. All resistances were variable because they were a function of water potential according to vulnerability curves of xylem and texture of soil. The loam model (left) consisted of three major resistances in series: shoot, root system, and rhizosphere. The root system was further divided into small and large roots to account for variation in cavitation resistance (Fig. 2). The sand model (right) consisted of six layers of roots servicing progressively deeper soil layers at depths corresponding to soil water content measurements. Each root layer consisted of lateral and axial root components that were assigned small and large root vulnerability curves, respectively.](image)

However, the model showed little difference if lateral root length was fixed at 1 m, suggesting little sensitivity to this parameter. The area- and length-based scaling assumptions allowed us to set the relative k_s^* of each component. To convert these to the actual k_s^* that accounted for 50% of the whole-plant resistance we used an iterative procedure. In this routine, the scaled k_s^* of each component was set high, and then uniformly decremented until the root collar pressure corresponding to the measured E was half way between the field values of Ψ_s and Ψ_l. At this point, the k_s^* of the entire root system was at the desired setting of twice the measured k_s^* of the whole plant.

Once the model was initialized with the appropriate k_s^* values, it was used to predict seasonal changes in E_{max} and Ψ_{trans} for comparison with corresponding values of midday E and Ψ_l through two growing seasons. For each date, the model calculated changes in k_s^* relative to k_s^* based on changes in LAI, A_{g} / A_L, and Ψ. The model assumed that needle and xylem production during the growing season occurred proportionally so that k_s^* was independent of the seasonal increase in LAI observed from May through August. However, as needles fell and LAI dropped in September, the model increased k_s^* in inverse proportion to the drop in LAI. Similarly, root area was assumed to keep pace with leaf area production leading to constant A_{g} / A_L until September needle drop at which point A_{g} / A_L increased in inverse proportion to the decrease in LAI. We also determined the sensitivity of the model to A_{g} / A_L as discussed in relation to Fig. 7 (Results).

The Ψ-dependent decrease in k_s^* for the root and shoot components was assumed to result from xylem cavitation, and it was calculated from a Weibull function fit to vulnerability curve data:

$$k_s = k_s^* e^{-\left(\Psi_{\text{trans}} / \Psi_0\right)^{1/2}}$$
where d and c are curve-fitting parameters. As reported in the Results section, we found that the small roots were significantly more vulnerable to cavitation than larger roots (Fig. 2). To incorporate this variation in the loam site model, we assumed half of the root system conductance resided in roots represented by the small root vulnerability curve and the other half in roots represented by the large root curve (Fig. 1, left). A comparable assignment was made for the sand site where the lateral root components were given the small root vulnerability curve and the axial roots were given the large root curve (Fig. 1, right). The model assumed no reversal of cavitation with increasing Ψ following a drought. Thus, k^*, d, and c in Eq. 3 were adjusted to the minimum Ψ experienced by root and shoot systems during the growing season. The Ψ^*-dependent decrease in rhizosphere conductance was calculated as:

$$k_{\text{r}} = k_{\text{r},0} X \left(\Psi^* / \Psi_s \right)^{d+3/c}$$

(4)

where X is a factor converting soil conductivity to leaf-specific rhizosphere conductance based on cylindrical geometry of the rhizosphere and the $A_{\text{r}}:A_{\text{l}}$ ratio (Sperry et al. 1998), b and Ψ_s are soil parameters described earlier (Eq. 1, Table 1). Equation 4 was discretized for concentric rhizosphere shells as explained in Sperry et al. (1998). Unlike the k_{r} of the plant, the model assumed that decreases in k_{r} in the rhizosphere were reversible.

Results

Vulnerability curves and tracheid anatomy

At the loam site, cavitation in stem segments occurred between -3 and -5 MPa (Fig. 2, solid squares) with a mean cavitation pressure of -3.80 ± 0.14 MPa (mean\pmSE, $n=6$). There was no difference between 1- and 2-year-old stems, so the data were pooled. Root xylem at the loam site was more vulnerable than stem xylem, cavitating at pressures between -0.5 and -3.0 MPa (Fig. 2). Although all root classes showed complete cavitation at -3 MPa, the smaller the root, the more vulnerable it was overall to cavitation (Fig. 2). Mean cavitation pressures of small and medium-sized roots (-1.50 ± 0.12 and -1.85 ± 0.04 MPa, respectively) were higher than large roots (-2.34 ± 0.07 MPa, $n=6$, t-test $P<0.05$).

Trees at the sand site also had branches that were more resistant to cavitation than roots, and showed the same trend for greater vulnerability in narrower roots (Fig. 2, open symbols). However, these trees were more vulnerable to cavitation compared to those at the loam site. Mean cavitation pressure was higher in branch (-3.23 ± 0.10 MPa, $n=6$) and small root (-1.05 ± 0.06 MPa, $n=6$) categories compared to the loam site ($P<0.05$). There was no difference in the large root class ($P>0.05$), and medium-sized roots were not measured at the sand site.

The greater vulnerability of roots versus branches to cavitation was associated with roots having much larger tracheid diameters (hydraulic means=49.1±1.4 vs 17.2±1.1 μm, roots vs stems, respectively). Furthermore, the more vulnerable sand-site branches also had larger-diameter tracheids [18.7±0.37 (sand) vs 15.7±1.10 (loam), $P<0.05$]. Within roots, however, there was no correlation between tracheid diameter and cavitation resistance. Although small roots were more vulnerable than large roots, small roots had narrower tracheids (e.g., hydraulic means=49.2±2.2 vs 58.1±0.7 μm, respectively for sand trees).

Root to leaf area ratios ($A_{\text{r}}:A_{\text{l}}$)

The estimated $A_{\text{r}}:A_{\text{l}}$ was nearly six times lower at the loam versus sand sites. Both the RAI and LAI contributed to this difference (Table 1). The measured RAI was much lower at the loam site (5.46, June 1997) than the sand site (14.19, January 1998). The difference was likely even greater because while the fine-root sampling for the loam site was essentially complete at 0.2 m depth (Matamala et al. 1998), the sampling at the sand site showed no sign of fine-root mass diminishing as the 1.9-m sampling depth was approached (Fig. 3). The LAI
was higher at the loam (3.22–4.62 increase May through August) than sand sites (1.56–1.95 increase May through August). Based on estimated LAI at the time of the RAI measurement, the \(A_2 : A_1 \) was 1.68 at the loam site versus 9.75 at the sand site.

Seasonal patterns of transpiration (\(E \)) and water potential (\(\Psi_s \))

Loam site

Figure 4 shows the seasonal course of \(E \) and \(\Psi_s \) for the 1997 (4A) and 1998 (4B) growing seasons at the loam site for days where \(D \) exceeded 1.5 kPa. Both growing seasons experienced significant drought with \(\Psi_s \) dropping to -1.8 MPa in 1997 and -1.1 MPa in 1998 (Fig. 4A,B, triangles). These droughts caused significant declines in \(E \) to less than 10% of maximum. Throughout the growing season, \(\Psi_s \) remained nearly constant at an average of -2.3±0.22 MPa (n=6 sampling dates) despite the large variation in \(\Psi_s \).

Sand site

Figure 4C shows the seasonal pattern of \(E \) and \(\Psi_s \) at the sand site for 1997 and \(D>1.5 \) kPa. Only partial data were

Fig. 4 Transpiration (\(E \)) and soil water potential (\(\Psi_s \)) vs Julian day for loam site 1997 (A), loam site 1998 (B), and sand site 1997 (C). Measured \(E \) (circles), modeled \(E \) (\(E_{\text{pred}} \) line), and modeled \(E_{\text{crit}} \) (dashed line) are shown for days with \(D>1.5 \) kPa. The \(\Psi_s \) (triangles) corresponds to a 0.2 m depth for the loam site (A, B) vs 0.05 and 1 m depths at the sand site (C; triangles and inverted triangles, respectively)

Fig. 5A, B Measured \(E \) vs modeled \(E \) (\(E_{\text{pred}} \)). A Loam site. Slope is 0.94 (\(\tau^2=0.85 \)) and 95% confidence limits encompass the dotted 1:1 line. B Sand site. Slope is 0.82 (\(\tau^2=0.68 \)) and 95% confidence limits encompass the 1:1 line over much of the measured \(E \) range.

The fit of the model was evaluated by comparing measured \(E \) (Fig. 4A,B, solid circles) with the \(E \) predicted (Fig. 4A,B, \(E_{\text{pred}} \) line) from the average midday \(\Psi_s \). The \(E_{\text{pred}} \) closely tracked the measured \(E \) through both seasons with an \(\tau^2 \) of 0.85 (Fig. 5A). The 95% confidence limits on the \(E \) vs \(E_{\text{pred}} \) relationship encompassed the 1:1 line over the measured \(E \) range (Fig. 5A, regression slope=0.94). If the model assumed that the loss of root conductance during the drought was completely reversible following a drought it consistently overestimated \(E \) for post-drought values and the fit was not as good (data not shown).

The model predicted that trees closely approached but did not exceed \(E_{\text{crit}} \) as \(\Psi_s \) fell to -1 MPa or below during drought (Fig. 4A,B, compare \(E_{\text{pred}} \) line with dashed \(E_{\text{crit}} \) line). The measured \(E \) during these droughts remained centered on \(E_{\text{pred}} \) and for the most part remained below \(E_{\text{crit}} \) or at most exceeded it because of normal random variation (Fig. 4A,B). Some of this variation may reflect non-steady-state conditions during the \(E \) measurement vs the steady-state model predictions of \(E \) and \(E_{\text{crit}} \).
available for 1998 (shown only in Fig. 5B) owing to equipment failure during a drought period in July. The 1997 droughts roughly paralleled those at the loam site, and are evident from the drop in \(\Psi_S \) measured at 0.05 m (Fig. 4C, triangles). The droughts had a more subtle influence on \(\Psi_S \) at 1.0 m (Fig. 4C, inverted triangles). \(\Psi_S \) did not drop to the low values seen at the loam site despite similarly low rainfall. This probably reflected the inability of the trees to dry out the bulk soil much below -0.5 MPa owing to the large drop in water content and conductivity in the coarse sand soil (see Fig. 8 and below). There was no evidence from the continuous soil water content measurements of nocturnal hydraulic lift of water from deep to shallow soil (Richards and Caldwell 1989).

Droughts were associated with declines in \(E \) (Fig. 4C), but not of the magnitude seen at the loam site. The midday \(\Psi_S \) showed no trend with \(\Psi_S \), and remained approximately constant at \(-1.62 \pm 0.10 \) MPa \((n=5 \text{ sampling dates})\). This was significantly higher \((P<0.05)\) than midday \(\Psi_S \) of \(-2.31 \) MPa at the loam site \((\text{Table 1})\). Figure 5B shows the relatively good fit \((r=0.68)\) between modeled \(E_{\text{pred}} \) values \((E_{\text{pred}} \text{ line})\) and the measured \(E \) (open circles). The 95% confidence limits on the \(E \) vs \(E_{\text{pred}} \) relationship over both growing seasons encompassed the 1:1 line over most of the measured \(E \) range \((\text{Fig. 5B, regression slope}=0.81)\).

Although safety margins from \(E_{\text{crit}} \) diminished under drought conditions, \(E \) did not converge as closely on \(E_{\text{crit}} \) as in loam trees \((\text{Fig. 4})\). The relatively large safety margins and \(E \) under drought conditions was associated with a predicted shift in water uptake to deeper soil layers during drought \((\text{Fig. 8})\). On a day when \(\Psi_S \) was equal and high throughout the soil profile \((\text{Fig. 4C, first day shown})\), the model predicted relatively even water uptake with depth, with a shallow maximum in the upper meter \((\text{Fig. 8A, solid circles})\). In contrast, on a day when \(\Psi_S \) was below -0.5 MPa in the shallow soil layers \((\text{Fig. 4C, last day shown})\) water uptake was sharply reduced in the upper soil layers, and increased at depth \((\text{Fig. 8A, open circles})\). The shift to deeper roots was caused by a severe drop of hydraulic conductance in shallow soil layers owing to soil drying and root cavitation \((\text{Fig. 8B})\). The sharp reduction in water uptake from surface soil at -0.5 MPa was due to soil conductivity being very sensitive to \(\Psi_S \) in the sandy soil, and the vulnerable xylem of the sand tree root system.

Comparison of water extraction between sites

To facilitate comparison in water use between sites, Fig. 6 shows \(E \) vs \(\Psi_S \) for a subset of the 1997 and 1998 data shown in Fig. 4 for monotonically declining \(\Psi_S \). This eliminated variation in \(E \) associated with the lack of recovery in xylem conductivity when soil was rewetted following a drought. \(E \) is shown on a ground area rather than a leaf area basis to factor out the influence of variation in \(LAI \) on \(E \). The dashed line is \(E_{\text{crit}} \) the solid line is the predicted \(E \), and the open symbols are measured \(E \). The \(E_{\text{crit}} \) line for the sand site \((\text{Fig. 6B, dashed line})\) could not be extrapolated beyond the data because it depended on the variation in the \(\Psi_S \) profile with depth \((\text{the } \Psi_S \text{ axis in Fig. 6B represents the mean for the profile})\). However, we also show \(E_{\text{crit}} \) for the sand site assuming equal \(\Psi_S \) in the profile \((\text{Fig. 6B, dash-dotted line})\) to enable direct comparison with the loam site.

At both sites, the convergence of \(E \) on \(E_{\text{crit}} \) under drought conditions is evident. A comparison of the \(E_{\text{crit}} \) curves in Fig. 6A and B shows that water use at the sand site was severely limited with respect to \(\Psi_S \). At the loam site, \(E \) approached its hydraulic limit as \(\Psi_S \) fell below -1 MPa. At the sand site, \(E \) approached \(E_{\text{crit}} \) based on an equal \(\Psi_S \) profile \((\text{dash-dotted line})\) for \(\Psi_S \) lower than -0.4 MPa. For the actual \(\Psi_S \) profile where deep roots accessed soil at relatively high \(\Psi_S \), the \(E_{\text{crit}} \) \((\text{dashed line})\) was somewhat higher during drought as discussed above. The model predicted that water use at the sand site was an "all or nothing" proposition with maximal uptake for \(\Psi_S > -0.25 \) MPa, and an abrupt decline to nearly negligible uptake for \(\Psi_S < -0.5 \) MPa. In contrast, \(E_{\text{crit}} \) at the loam site declined much more gradually with \(\Psi_S \), approaching negligible values at \(\Psi_S < -2.0 \) MPa.

In addition to the narrow \(\Psi_S \) window predicted for water uptake from sand, the sand trees also showed much lower rhizosphere flux density (uptake rate per
unit root area). Based on the maximum \(E \) per ground area (Fig. 6) and the \(RAI \) (Table 1), maximum rhizosphere flux density averaged over the root profile at the sand site was 0.16 vs 0.88 mmol s\(^{-1}\) m\(^{-2}\) for the loam site. The lower rhizosphere flux density for sand trees was almost completely a result of their greater \(A_{R\cdot A1} \) because transpiration rates on a leaf-specific basis were similar between sites (Fig. 4). The decline in \(E \) with \(\Psi_S \) was much more sensitive to \(\Psi_S \) over the narrow range observed for the sand site (\(\Psi_S \approx 0.4 \) MPa), whereas there was no significant relationship (\(P<0.05 \)) over the same range in loam trees. This is suggestive of greater stomatal sensitivity to \(\Psi_S \) at the sand vs loam sites.

The area under the \(E_{crit} \) vs \(\Psi_S \) curve in Fig. 6 was used to define the “extraction potential” from a drying soil. We used the model to determine the importance of the near sixfold increase in \(A_{R\cdot A1} \) between loam and sand sites on this extraction potential based on the measured range of \(\Psi_S \) at each site. For this comparison, we assumed an equal \(\Psi_S \) throughout the soil profile, so the results were independent of any variation in \(\Psi_S \) with depth.

As shown in Fig. 7, the extraction potential initially increased steeply with \(A_{R\cdot A1} \) before saturating. At low \(A_{R\cdot A1} \) values, extraction potential was limited by loss of hydraulic contact between the soil and parts of the root system, i.e., by loss of rhizosphere conductance. As \(A_{R\cdot A1} \) increased, the extraction potential saturated because cavitation in the xylem contributed progressively more to hydraulic failure such that further increases in \(A_{R\cdot A1} \) were ineffectual. The sand site required much higher \(A_{R\cdot A1} \) to saturate the extraction potential and shift hydraulic failure to the xylem (Fig. 7, compare dashed vs solid curves) as a result of the greater sensitivity of soil conductivity with \(\Psi_S \) for sand versus loam.

The actual \(A_{R\cdot A1} \) at each site (Fig. 7) was at a comparable point on the extraction curve, representing approximately 86% of the maximum extraction potential (at \(A_{R\cdot A1} =40 \), chosen as a very liberal maximum for woody plants). This result implies that the increase in \(A_{R\cdot A1} \) at the sand site was important for the maintenance of water uptake from this more hydraulically constraining soil. If the sand trees had had the low \(A_{R\cdot A1} \) of the loam trees, their extraction potential would have dropped by more than 50%.

Consistent with the relatively high extraction potential at both sites, the model predicted that hydraulic failure would occur in the xylem rather than the rhizosphere. Specifically, the failure would occur in the vulnerable root xylem under water-stressed conditions where \(E \) approached \(E_{crit} \) in the field. Substantial loss of root conductivity was also predicted by the model under drought conditions for both sites. No loss of conductivity was predicted in the shoot, owing to its much greater resistance to cavitation.

Discussion

The results showed substantial differences in the hydraulic properties of \(P. \) taeda trees growing on loam versus sand soil. The differences were consistent with expected adjustments to the very different hydraulic properties of the two soils. This implies considerable phenotypic plasticity in these traits given the similar age and genetic background of the trees.

Soil porosity and the operable \(\Psi \) range: associations with cavitation resistance and stomatal sensitivity

The effect of the different soils on the range of \(\Psi_S \) available for water uptake is evident from a comparison of the \(E_{crit} \) versus \(\Psi_S \) curve at the two sites (Fig. 6). Compared to the loam site where \(E_{crit} \) spanned a broad \(\Psi_S \) range down to \(-2 \) MPa (Fig. 6A, dashed line), the sand trees confronted an “all or nothing” situation with respect to water use with \(E_{crit} \) dropping sharply to a negligible value below \(-0.5 \) MPa.

Consistent with the narrower \(\Psi_S \) range for water uptake, trees in sand operated at higher \(\Psi_S \) (Table 1) and were more vulnerable to cavitation (Fig. 2). The shift to a greater vulnerability suggests there is some cost to having xylem that is more resistant to cavitation than necessary. A similar study on \(P. \) taeda found that greater cavitation resistance was associated with lower xylem conductivity per unit area (Ewers et al., in press). However, we found no such association in our study, and the cost of cavitation resistance remains elusive.

Sand trees also showed a greater stomatal sensitivity to \(\Psi_S \) as indicated by the greater decline in \(E \) for \(\Psi_S \approx 0.4 \) MPa at the sand versus loam sites (Fig. 6). According to the model, this greater sensitivity was required to avoid hydraulic failure. At both sites, the mechanism of stomatal regulation of \(E \) in response to drought was capable of responding not only to \(\Psi_S \), but more importantly, to the significant reductions in hydraulic conductance of the continuum that accompanied the
drought. The mode of regulation at both sites was isohydrich, meaning that midday \(\Psi_t \) remained constant despite variation in \(\Psi_s \) and in hydraulic conductance. Isohydrich control of \(\Psi \) was also necessary in *Betula occidentalis* (Sperry and Pockman 1993; Saliendra et al. 1995), *Populus balsamifera* (Hacke and Sauter 1995), and *Sambucus nigra* (Vogt 1998) to prevent extensive cavitation. The simplest mechanism for isohydrich regulation in the presence of variable \(\Psi_s \) and hydraulic conductance is a leaf-level feedback between stomatal conductance and the \(\Psi \) of sensory cells in the leaf, as has been demonstrated experimentally in trees (Saliendra et al. 1995; Fuchs and Livingston 1996) and shrubs (Comstock and Mencuccini 1998).

Soil porosity and rooting depth

The model indicated that the much deeper roots at the sand site (Fig. 3) were essential for maintaining at least some of the root system in water above \(-0.25\) MPa, thereby insuring protection from hydraulic failure. For example, if sand trees had roots confined to the upper 20 cm of soil as at the loam site, the \(\Psi \) of their total rooting zone would have dropped below \(-0.5\) MPa (Fig. 4C) and this would have required more than 50% drop in \(E \) for these trees to avoid hydraulic failure (Fig. 6B). Consistent with this, the model predicted a shift to the use of deep water during surface drought (Fig. 8). Use of deep water buffered the trees from drought, as indicated by the more subtle declines in \(E \) and greater safety margin from \(E_{crit} \) at the sand site during the same weeks where \(E \) at the loam site was severely depressed and converged on \(E_{crit} \) (Fig. 4).

Independent studies of water use of sand-site trees are consistent with their predicted reliance on deep water. A water balance at the site indicated that over 30% of the transpired water comes from below 1 m during the growing season (Ewers et al., in press). A 3-year irrigation treatment at the sand site has shown only slight enhancement of growth (Albaugh et al. 1998; King et al. 1999; Ewers et al., in press). This is in agreement with the subtle drought response of non-irrigated trees (Fig. 4) and their access to relatively plentiful water at depth.

The results may seem contradictory in showing that the limitation on water uptake was greater for the sand trees (Fig. 6) when these trees showed relatively little drought response compared to loam trees (Fig. 4). However, as Figure 6 shows, trees in sand cannot experience much soil drying without having the bottom fall out of their water supply. To survive, they must escape even modest soil drying by having a deep root system.

Root-to-leaf area ratio, water extraction capability, and implications for nutrient interactions

Trees at the sand site also had a nearly sixfold higher \(A_r/A_l \) (Table 1) than loam trees. This had an important influence on water uptake that was independent of the difference in rooting depth. As explained in the Introduction, \(A_r/A_l \) contributes to rhizosphere flux density and the consequent drop in rhizosphere conductance with water uptake. Too low an \(A_r/A_l \) can cause steep gradients in \(\Psi_s \) and lead to critical loss of hydraulic conductance in the rhizosphere. At both sites, \(A_r/A_l \) was high enough to avoid hydraulic failure in the rhizosphere and to approach maximum extraction potential (Fig. 7).

Due to the much higher \(A_r/A_l \) at the sand site, the actual maximum rhizosphere flux density was over five times lower in the sand versus loam trees (0.16 vs 0.88 mmol s\(^{-1}\) m\(^{-2}\)).

It is noteworthy that both sites achieved a similar relative extraction potential (86%) as indicated in Fig. 7. From the standpoint of optimizing water uptake while minimizing root biomass, the 86% point is near where the cost of adding roots would begin to outweigh the diminishing returns for water extraction. Whether or not this is a general optimizing principle for the soil-plant continuum awaits further evaluation, particularly with respect to the role of roots in nutrient uptake.

As is often the case with sandy soils, the sand site is also nutrient poor compared to the loam site (King et al. 1999), and nutrient limitation can lead to some of the same adjustments that facilitate water uptake (e.g., high-
er \(A_R : A_L \)). Trees at the sand site that were given 5 years of fertilization (Albaugh et al. 1998) had an \(A_R : A_L \) of 4.6 versus 9.8 in non-fertilized trees (Ewers et al., in press). According to Fig. 7, this would reduce extraction to 66% of maximum. However, this was accompanied by an increase in cavitation resistance of the roots such that the extraction potential was actually only reduced to 77%. In trees given both irrigation and fertilization, \(A_R : A_L \) was 3.6 versus 9.8 in untreated plots and there was no change in cavitation resistance. This reduced extraction potential to 63%. However, this deficiency was not exposed because the irrigated trees were drought free (Ewers et al., in press). In both fertilized treatments, reduced extraction potential caused by nutrient addition implied greater vulnerability to drought-induced dieback versus non-fertilized trees. Thus, there was a significant antagonism between the shift in allocation triggered by fertilization versus the demands required for optimizing water uptake during drought. If irrigation were withheld from fertilized trees, our analysis predicts that their diminished water uptake capacity would result in severe water stress.

Roots as a “hydraulic fuse”

The model and data together implicate root xylem as the weak link in the hydraulic continuum at both sites. This conclusion has also been reached in similar studies on woody species (Alder et al. 1996; Linton et al. 1998; Kolb and Sperry 1999). Under some circumstances roots may be acting as a hydraulic “fuse” analogous to the protective function of an electric fuse. Localizing hydraulic failure to the plant maximizes water extraction (Fig. 7). Further localizing it to the root system (especially the more vulnerable small roots; Fig. 2) minimizes replacement or refilling costs. Replacement of smaller roots can be achieved by regrowth, and refilling of cavitated root xylem following a drought would be enhanced by the high \(\Psi_s \) of surrounding wet soil. Though predicted to experience considerable cavitation in our study, the smaller lobolly roots may not have been able to refill after the drought, since assuming a lack of refilling produced a better model fit than otherwise. Lack of refilling may have resulted from senescence of severely cavitated roots (Seiler and Johnson 1988).

Acknowledgements Financial support was provided by NSF grant IBN-97-23464 to J.S. Sperry, and a Feodor Lynen fellowship to U.G. Hacke from the Alexander von Humboldt Foundation. Support is acknowledged for the Duke Forest FACE by the US Department of Energy, Office of Health and Environmental Research, under DOE contract numbers DE-AC02-98CH10886 at Brookhaven National Laboratory and DE-FG05-95ER62083 at Duke University. Partial support from the US Department of Energy through the Office of Industrial Technologies, Forest Products Division is also gratefully acknowledged. Support for sap flux measurements at FACE and SETRES was obtained from the United States Forest Service (Southern Research Station), NSF grant BIR-9512333 to R. Oren, and the US Department of Energy through the University of Alabama’s Southeast Regional Center of the National Institute for Global Environmental Change Cooperative Agreement No. DE-FCO3-90ER61010.

References

