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Abstract

A mathematical framework is introduced to study attractors of discrete, nonautonomous dynami-
cal systems which depend periodically on time. A structure theorem for such attractors is established
which says that the attractor of a time-periodic dynamical system is the union of attractors of ap-
propriate autonomous maps. If the nonautonomous system is a perturbation of an autonomous map,
properties that the nonautonomous attractor inherits from the autonomous attractor are discussed.
Examples from population biology are presented.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

This work develops a mathematical framework for studying attractors of discrete,
nonautonomous dynamical systems which depend periodically on time. Continuous and
discrete models of many physical and biological systems include periodic variation in both
intrinsic and extrinsic parameters [ 1-3,5.8]. For models in population biology, periodicity
in season and climate affects intrinsic parameters such as population growth rates, carry-
ing capacities, and interaction coefficients and affects extrinsic factors such as stocking,
harvesting and migration [6,7,11,13]. In addition, Giiémez and Matfas [4] illustrated how
periodic stocking or harvesting may be used to produce stable periodic oscillation in pop-
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ulation size for logistic and exponential maps which behave chaotically without stocking
or harvesting. Hence, chaos may be controlled in this setting by using periodic forcing.

The effects of periodic fluctuations have been observed in laboratory experiments. Jill-
son |8] studied the oscillations in population size of a flour beetle (Tribolium) given a
periodic food supply. Henson and Cushing {7], Costantino et al. [1] and Henson et al. [6]
explained Jillson’s observations and suggested additional laboratory experiments by using
a 3-dimensional, discrete model to study the flour beetle’s behavior.

Motivated by models from population biology. here we study attractors for time-
periodic, discrete dynamical systems. The periodicity permits us to consider an associated
autonomous map on a topological cylinder constructed by including time as an additional
state variable. The standard definitions for autonomous maps of concepts such as invari-
ant sets and attractors may be used to define these concepts in the time-dependent setting.
The compactness in the time direction avoids the technical details Thieme [14,15] needs to
define attracting sets for nonautonomous semiflows. Using the cylinder space, we prove a
structure theorem which states that an attractor of a time-periodic dynamical system is the
union of attractors of appropriate autonomous maps. We establish conditions which guar-
antee these autonomous attractors are homeomorphic and the corresponding autonomous
maps are conjugate. If the time-periodic system is a small C' perturbation of a diffeo-
morphism with a hyperbolic attractor then we show that these autonomous attractors are
homeomorphic to each other and to the unperturbed hyperbolic attractor. Such perturba-
tions arise from time-periodic forcing of an autonomous system, e.g., see Henson [5] or
Selgrade and Roberds [13].

Section 2 presents examples of several attractors which occur in a time-dependent prey-—
predator model. These examples suggest that the topological structure of an attractor is
related to the period of the time-variation and that its domain of attraction depends on
time. Section 3 rigorously develops the mathematical framework for our study and proves
the structure theorem for time-periodic attractors. Perturbations of autonomous maps and
hyperbolicity are discussed in Sections 4 and 5.

2. An example of periodic variation in a prey-predator model

In this section we discuss a simple, 2-dimensional prey—predator system which experi-
ences periodic variation in the intrinsic predator growth rate. Let x denote the prey popula-
tion density and y, the predator density. We assume that the per capita transition functions
are linear functions of the population densities and take parameter values so that the attrac-
tor in the positive quadrant is an invariant loop. In order to produce 2-periodic variation in
an intrinsic parameter, we multiply the predator growth rate by the term (1 + a(—1)") for

O0<a <1 Forn=1,2,..., oursystem takes the form
X=X (2 — x50 —0.5y,-1),
Vo = Y1 (0.8(1 + a(—1D") + 1.3x,1). (2.1)

We restrict our attention to small density values because if y > 4 or x > 2 then the prey
density becomes negative in the next generation. If o =0, this system has an attracting
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It is clear that an attractor I" in X’ produces an attractor A in X for the time-periodic
dynamical system.

To understand the structure of an attractor A = wy ("), consider the trapping region
U ¢ X for I". This trapping region restricted to each fiber gives an open set which can be
used to produce an attractor for an autonomous system in X. The autonomous system is
the composition of all of the f; taken in an appropriate order. The union of these attractors
is A. The next theorem gives a precise statement of this observation and we will refer to it
as the Structure theorem.

Theorem 3 (Structure theorem). Let A be an attractor for the p-periodic dynamical system
{fos froo o fpi). Then A = UII’() Ai, where A; is an attractor for the map fis .1 0---0
fiviofi: X —= X, fori=0,1,....p—1.

Proof. Assume A is an attractor for the p-periodic dynamical system. Then there is an
attractor I for the cylinder map F such that wy (I") = A. Since F(X;) C X1 mod p then
FP(X;) C X; foreach fiber X;. Now F(I)=I",so F(I"y=T.Let A; =nx(I" N X;),
l.e., A; is the projection of the part of /™ in the ith fiber. Thus A = f;()l Ajand FP({i} =
Ay =i} x Ap. Now FP(U.x) = (i, fizp-10--0 firr0 fi(x).S0 fiyp-10---0 figr0
JilAp) = A,

To see that A; is an attractor for fi1,—1o-- -0 firy o f; we need to find a trapping
region U;. Since I” is an attractor for F, it has a trapping region Y. Now F(4) C U so
Frady cU. Let U; = tx (U4 N X;). Since X is a finite number of copiesof X, UUNX; =
Un X; and U; = JTx(Z;{ N X;). Using that Fran Xi) cUNX; we seethat fi , o
+-+0 fiero fi(U;) C Uj. The final step is to get A; = (1" o (fi4p-10 -0 firi o £
To see this first note that Y D FAUH D F2U) D - DFPAUH D D implies that I" =
ﬂ:io FrU) = ﬂ;:() F" (). Thus, on each fiber, U gives a trapping region for F7 for
the attractor which is the intersection of ™ with that fiber. Thus A; = ﬂ;]’io(j‘,-,,},l,wl o+ 0
fiv10 _]‘}-)"(lj/) and A; is an attractor. [

Theorem 4. If F is a homeomorphism on a trapping region for an attractor I' then all the
corresponding A; are homeomorphic and the compositions fiip.10---0 fiv1 o fj onthe
Aj are topologically conjugate.

Proof. Assume F is a homeomorphism on trapping region {{. Then f; is a homeomor-
phism from mx (U N X;) into 7wy U 0V Xyt mod p) foreach i =0,1,..., p — 1. Since the
composition of homeomorphisms is a homeomorphism, fi .1 o---0 fiy1 0 f; is ahome-
omorphism from wx (I N X;) into itself. The attractor I" produced by the trapping region
U 1s invariant under F and a subset of (/. Thus F is a homeomorphism from I onto I
Since F sends fibers to fibers, the fibers of I are homeomorphic. Now A; =y (I N X;)
and wy restricted to X; is a homeomorphism. Thus the A; are homeomorphic using
JitA) = Aj .

To see that fiy .1 0-- 0 fip10 fi: Ai — A; 1s topologically conjugate to fijy 00
Jivzio fivitAjer — Appy remember that fiy, = fi.s0 (fizpo- -0 fix1)o fi= fio
(fixp-10---0 firro fi). Since f; is a homeomorphism from A; onto A; ., this equation
shows that f; is a topological conjugacy between fi . ,0---0 fiyjo fiprand fii, jo---0
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Siwro fi. Similarly all the fiop, 1 0---0 fix10 fi, i=0,1,..., p~1, are topologically
conjugate. 7]

We will now present several examples of attractors in time-period dynamical systems.

Example 5. This is a 2-periodic system on R. Let fo(x) =x/2and f1(x) =1 +x/2. Since
Jo(4/3) =2/3 and f1(2/3) = 4/3, the set {2/3,4/3} is invariant. Using the fact that both
of these maps are contractions, we see that 2/3 is the attracting fixed point for fy o f and
4/3 is the attracting fixed point for f) o fy. There are many choices for trapping regions.
One choice is to take Uy = U = (—10, 10).

This example illustrates the next theorem about contractions on complete metric spaces.

Theorem 6. Let { fo, f1, fo. ..., fp-1} be a p-periodic dynamical system on a complefe,
locally compact, metric space X . [feach f; is a contractionthen each fii,..10- -0 fir10 f;
is a contraction with a unique fixed point g; and, for each of these compositions, there is
an open set which is a trapping region. The collection of fixed points {qo. g1, .. .. Yp-1}is
an attractor for the p-periodic system.

Proof. For each i, fiy,—1o- -0 fiy1 0 f; is a contraction since the composition of two
contractions is a contraction. Also since a contraction has a unique fixed point, for each i,
fiep—io---0 fiy) o f; has a unique fixed point ¢;. The union of the open unit disks about
each g; is a trapping region with the collection of fixed points {go,q1,...,4p—1} as the
attractor for the p-periodic system. 0O

When we are dealing with contractions, we are in a setting similar to that of iterative
function systems. The major difference is that in iterative function systems the order of
applying the functions is random, while a p-periodic dynamical system has a fixed order
for applying the maps.

Example 7. Consider the 2-periodic system on R where fy(x) = x>+ 1and fi(x) =
x2 — 1. Note that these maps are not contractions. Now f(0) =1 and f1(1) =0s0 {0, 1}
is an invariant set for this system. To see that this set is an attractor, we will look at the deriv-
atives to show that we have local attraction. j';;(()) = () and f,’(l) =2,50 (foo f1Y(1)=0
and (f) o fu)'(0) = 0. Since these functions are C', we can find trapping regions around 0
and 1. In fact, we can show that U = (—0.25,0.25)U (0.9, 1.1) will work. If we start at 1
with fi then the orbit is {1,2,3, 10,99, ...}, which is easily seen to go unbounded. This
example shows that we must keep track of the starting time in the trapping regions.

Example 8. Numerically the 2-periodic prey--predator model (2.1) witha = 0.1 or e = 0.4
has an attractor consisting of two closed curves. Each of these closed curves is an attractor
for an autonomous system consisting of the composition of the two maps making up this
model. When « = 0.1 the trapping regions for these attracting loops can be taken as the
same set, i.e., an annular band containing both loops. This is not the case when o = 0.4
When « = 0.4 the two loops have separated significantly and the union of two narrow
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Fig. 5. Nonhomeomorphic subsets Ay and Aj.

annuli each containing one loop, is a trapping region. If we start in the diamond-shaped
region in Fig. 2 at t = 0, the orbit can oscillate wildly and escape to negative infinity.

Example 9. We studied numerically a 5-periodic system in Section 2. In this system the
attractor consisted of five closed curves (see Fig. 3). Each of the five closed curves is an
attractor for a specific composition of the 5 maps making up this system. There is a large
annular region which contains all 5 closed curves and is a trapping region for each of the
5 compositions. This annular region is a trapping region for the 5-periodic system.

If one f; is not a homeomorphism on a neighborhood of A; then the subsets A; may
not be homeomorphic.

Example 10. Take fo(x, y) = (Jx], ¥) and fi(r, @) = (0.5r + 0.5, 26). Nontrivial circles
centered at the origin are sent onto nontrivial circles centered at the origin by fi o fy. Under
iteration the radius of these circles converge to 1. The attractor for fj o fo is Ag the circle
of radius 1 and any annulus centered at the origin and containing the unit circle is a trapping
region. Because fp folds along the y-axis, the attractor for fy o fy is the semicircle A;.
See Fig. 5.

4. Perturbations of autonomous systems

The p-periodic predator—prey model in Section 2 can be viewed as a perturbation of
an autonomous system (i.e., Eq. (2.1) with « = 0) with constant predator growth rate. Pe-
riodic variation in an intrinsic parameter and periodic forcing are natural scenarios for
obtaining p-periodic systems from autonomous systems. The attractor for the autonomous
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system (2.1) with @ = 0 is an invariant closed curve. For the values of o we study, the at-
tractor for the time-dependent model is a union of 2 closed curves (see Fig. 1). In the next
two sections we will investigate whether or not an attractor for a perturbed, time-periodic
system inherits properties from the attractor of the original autonomous system.

We define the concept of two p-periodic systems being CY close. Firstlet f, g: X — X
and let Y C X. We say the f and g are CY e-close on Y if d(f(x).g(x)) < & for all
xeY. Let {fo, fi..... fp—1} and {go.g1....,gp—1} be p-periodic dynamical systems
of X. Let Y ={¥y.Y|.....Y, 1} be a sequence of p subsets of X. Then the p-periodic
systems are CY s-close on Y if d(fit), g(x))y <eforallxeY, i=0,1,...,p— 1
We also say that the two systems are CY e-perturbations of each other. We can ex-
tend this definition to C* e-perturbations. Start by taking X = R” and Y an open sub-
set of R". Let D/ f(x) be the jth derivative of f at x and d(D? f(x), D/g(x)) be
the maximum of the jth partial derivatives of f — g at x. Now let &, (f(x), g(x)) =
max{d(f(x), g(x)). d(Df(x), Dg(x)),....d(D* f(x), D*g(x))}. By replacing d with d;
in the definition of p-periodic systems being C" e-close on ¥, we obtain the definition of
p-periodic systems being C* e-closeon Y.

An example of a property which is inherited under CY perturbation is the existence of
a trapping region. Given an autonomous map f: X — X, consider the p-periodic system
using f for each map. Let F be the corresponding cylinder map. If U C X is a trapping
region for f then the corresponding trapping region U for F is U on each of the fibers,
ie.,

U=1{0,1,....p—1} x U.

Since U is a trapping region for F, ¢ = 0.5min{d (F(z), ¥ \U): z € U} is positive. If G is
any C" e-perturbation of F then G (U) C U and U is a trapping region for G. In particular,
if the p-periodic system {go, g1, ..., &p-1} 182 CY e-perturbationof { £, f,..., f}and G is
the corresponding cylinder map then G isa C U g-perturbations of . Thus U is a trapping
region for the p-periodic system {go, g1, ..., £p--1}. The Structure theorem asserts that the
attractor A C U for the system {go, g1, ..., gp—t} is the union of p subsets A;. These
A; may be different from each other and different from A . the attractor for the original
autonomous map f, as the following example shows.

Example 11. Take f(r,8) = (0.5r + 0.5,20). Then A, is the circle of radius I, see
Fig. 6(a). In Cartesian coordinates, f(x, y) = (u(x, y), v{x, y)) is given by

0+ D) =)

ey 202+ 57%)
L e 4 9305y (o
p(e, y) = LR OT YD) 4.1
X<y

Define the C' e-perturbation {go, g1} of the system {/, f} by taking go(x.y) = f(x,¥)
and g1 (x, ¥) = f(x,y) + (¢, ). For ¢ = 0.05, the subset A| appears to be an annulus and
hence not homeomorphic to the circle (Fig. 6(a) and (¢)). A has two distinct rings, see
Fig. 6(b). Thus Ay and A, are not homeomorphic to each other. These regions are not
homeomorphic to the circle A ; nor to one another because f is not a homeomorphism.
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(a) attractor for f (b) A, if £=0.05
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Fig. 6. Subsets Aq and A| not homeomorphic to the attractor of the autonomous map f.

If f is a diffeomorphism with attractor A ; and {go, g1, ..., ¢gp—1}isa C! e-perturbation
of {f, /..., [} then the corresponding attractor A for {gy, g1,..., gp—1} will consist of
subsets A; which are homeomorphic to each other. To see this we need the following three
results which show that C' e-perturbations preserve diffeomorphic structure. We start with
alemma which is similar to part of the Inverse Function theorem and the proof is motivated
by Marsden’s proof of the Inverse Function theorem [9]. Let D(x, r) denote the closed disk
of radius r centered at x.

Lemma 12. Let B be an open neighborhood of the origin in R". If f e C'(B,R"),
FO) =0 and Df(Q) = I there is a neighborhood N of f in C'(B,R") and an r > 0
such thatif g € N then g is one to one on D(0, r).

Proof. Let H, (x)=y+x —g(x),wherex,ve Band g € C'(B.R"). Now

DH /.‘()('\f)[ vam() == [)(\ - ]‘(_\’))]\ 0 =0.

DH, (x) 1s a continuous function and the components are linear in the partial derivatives
of g. So there is an r = 0 and a neighborhood N of f in C' (B, R") such that x € D(0, r)
implies |DH, o ()|l < 1/4n, for i = 1,2,... n, where H,o = (Hy01, Hy02. ...,
Hg 0.0). Taking a slightly smaller N, we may also assume [|g(0)|| < r/4.
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The Mean Value theorem implies that if x € D(0, r), then there are points ¢y, ¢2, ..., ¢y €
D(0, r) such that

Hgy0.i(x)~ Hy 0(0) =DH,pi(c;){x —0)=DH, gy, (c;)x.
Thus

n I
| Ho00) = He o(O) | <D [He04(x) = He 0.0 (0)| =Y | DH, (i) ()]

=1 jed

< ZHDHM./(C,')]]IIXH < E;—” <L
i=I 4
The Triangle inequality gives [[Hy o(0)l| < [[Hy 0(x) — Hy o(O)l] + [[He oD < r/4 +
r/4=r/2.So H, o maps D(0, r) into D(0, r/2).

Now let y € D(0.r/2) and x € D(0.r). |Hyy (Ol = Iy + Heoll < Iy] +
WHe ol < r/2+1r/2=r. So H, ,:D(O,r) — D(0,r). Let x;,x2 € D(0,r). Then
TH, vCo) = Hy )l = [ Hg 0(x)) — Hy o(x2) || < [lxy — x2(I/4 by the Mean Value the-
orem. So H, , is a contraction with contraction constant k = 1/4. This implies that H,
has a unique fixed point in D(0, ). Thus

p=Hey(p)=y+p—glp) < gp=y

Thus there is only one point in D(0, r) that g sends to y.

We finish the lemma by showing ¢ is one to one on D(0, r/5). Let x € D(0, r/5). Note
that Hy o(x) — Hy 0(0) = x — g(x) +g(0). S0 g(x) — g(0) = x — Hy o(x) + H, 0(0). Thus
lg(x) = g < llxll + [ Hg0(x) = He oDl < r/5+1/4(r/5) = r/4 and so |[g(x)]| <
lg(O) || 4+ r/4 < r/2. So by the previous paragraph is no other point in D(0, ») that g sends
to g(x). Thus g is one to one on D(0, r/5).

Theorem 13. Ler A C R" be compact and B be an open neighborhoodof A If f: B — R”
is a diffeomorphism onto its image, then there is an open set U with A C U C B and
a neighborhood N of f in the C' maps from B into R", C'(B,R"), such that if ¢ € N
then g restricted to U is a diffeomorphism onto its image.

Proof. We start by noting that we can assume that U has compact closure U that is con-
tained in B. Since f is a diffeomorphism on B, |det(Df(x))| > 0 on B and bounded
away from 0 on U. The continuity of the partials of the functions in C'(B,R") and of
| det(Df (x))] on these partials gives a neighborhood Ny of f in C'(B,R") such that if
g € Ny then det(Dg(x)) = 0 for x € U. The Inverse Function theorem tells us that these g
are locally one to one and that locally their inverses are C' and have nonsingular deriva-
tives.

The remaining step is to show that if the g is close enough to [, then g will be globally
one to one on U. Fix an x € U/. After a change of coordinates, Lemma 12 can be used to
show that there is a neighborhood of f and a compact disk containing x in its interior such
that all the g in the neighborhood of f are one to one on this fixed compact disk. Since
we can do this for each point in U, we have a family of compact disks. Now consider a
new family D of compact disks obtained from the original family by reducing the radius
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of each disk to half its original value. Since U is compact, we can cover U with a finite
number of the compact disks in D. Let r be the minimum radius. Let g be in the finite
intersection of the corresponding neighborhoods of f in C'(B,R"). If x,y € U and they
are less than r apart, then they are in one of our original disks and g(x) # g(y).

Now (f. f):U x U — R" x R” with the diagonal going to the diagonal and these
are the only points going to the diagonal. Now if we restrict (f, f) to U x U minus
the r-neighborhood of the diagonal, the image is compact and misses the diagonal in
R* x R" by some distance ¢ > 0. If g is within £/2 of f then (g, g) on U x U minus
the r-neighborhood of the diagonal also misses the diagonal in R” x R". Soif x, y € U
and they are at least » apart, then g(x) # g(v). We now have a neighborhood N of f in
C'"(B,R"), such thatif g € N then g is one to one on U. Thus these g are diffeomorphisms
from U onto their images. O

Theorem 14. Ler { fo, f1..... fp-1} be a p-periodic dynamical system with corresponding
evlinder map F. Let U be a trapping region for F. If F is a diffeomorphism on a neigh-
borhood of U, then there is an € > 0 and a neighborhood V of U such that any p-periodic
system C' e-close to F is a diffeomorphism on V.

Proof. F is a diffeomorphism on some open neighborhood B of U. The intersection of B
and I/ with each fiber in the cylinder space X’ gives an open neighborhood of a compact
set in R". Now F restricted to this open set is precisely the situation of the last theorem.
Thus each of the functions fo, f1,.... f,—1 are diffeomorphisms from these corresponding
open sets onto their images. If ¢ is less than the distance between the fibers in the fibered
cylinder space, then any C* perturbation of F of size less than ¢ will send the fibers to
the fibers in the same order. Thus the perturbation can be thought of as coming from a
perturbation of the p-periodic dynamical system. In fact close to F, C'(X, X) has the
product structure of C'(X, X) x C'(X, X) x -+ x C'(X, X). Applying Theorem 13 to
each f;, we see that on each fiber there is an open set V; in B which contains the intersection
of U with the corresponding fiber and a neighborhood N; of f; such that if g; € N; then
g 1s a diffeomorphism on V;. The cylinder map ¢ that {gg, g1,..., gp—1} generates is a
diffeomorphism of

p—1

Utitxvi=v. o

i=0

Example 15. Take f(x) = arctan(x). Then 0 is a globally attracting fixed point for the
diffeomorphism f. To get a 2-periodic dynamical system that is C' close to {f, f} let
go(x) = arctan(x) and g (x) = (1 4 a)arctan(x), where ¢ > 0. The attractor for {f, f}
is the single fixed point 0. By the Structure theorem the attractor for {gg, g1} consists
of the union of the attractors Ag for gy o gy and A; for go o g;. These attractors are
symmetric intervals centered at 0. Their union is the larger of the two intervals. When
a=0.1, gy o gy has three fixed points, {—0.3997,0,0.3997} and gy o g, also has three
fixed points, {—0.3802, 0, 0.3802}. Hence, the attractors are Ag =[—0.3997,0.3997] and
Ay =[—0.3802,0.3802]. We see that the two attractors are homeomorphic to each other
but they are not homeomorphic to the original attractor for f.
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From the last example we see that a small C' perturbation of a diffeomorphism can
produce an attractor for a time-periodic dynamical system with attracting subsets which
are not homeomorphic to the attractor for the diffeomorphism. In the next section we will
develop hyperbolic structure to obtain sufficient conditions so that C I ¢-perturbations will
have homeomorphic attractors.

5. Hyperbolic cycles

If X is an open subset of R" or an n-dimensional manifold then a fixed point xp € X
of f:1X — X is hyperbolic if the derivative Df (xg) has no eigenvalues on the unit cir-

cle. A p-cycle {xp, x1,....x,—1} of fis hyperbolic if xq is a hyperbolic fixed point of
the map f7. In fact, if {xg, x1,....xp_1} is a hyperbolic p-cycle then for each point x;,

i=0,1,...,p~ 1, the matrix Df”(x;) has no eigenvalue on the unit circle because the
eigenvalues of Df”(x;) are the same as those of Df”(xg). A hyperbolic p-cycle of f
produces a hyperbolic p-cycle for the corresponding cylinder map as described in the next
paragraph.

Let {go, g1, ..., gp—1} be a p-periodic dynamical system on X and G: X — X be the
corresponding cylinder map. Since X" is p copies of X topologically, X' is a n-dimensional
manifold. The derivative of G at (i,x) € X is just DG(i,x) = Dgi(x). A p-cycle
{(0, x0), (1, x1), ..., (p—1,xp,_)} of G is hyperbolicif (0, xo) is a hyperbolic fixed point
of the map G”. Clearly, DG” (0, x¢) is given by the product

Dgp((xp_1)-- Dgi(x1)Dgolxo).

Hence, if {xg,x{,...,xu—1} is a hyperbolic m-cycle of f and m divides p then
{0, x0), (1, x1), ..., (p = 1,x,_1)} is a hyperbolic p-cycle of the cylinder map F asso-
ciated to the constant p-periodic system { f, f, ..., f} because

DFP(0,x0) = Df (xp—1)--- Df (x)Df (x0) = Df " (x0).

Recall that hyperbolic p-cycles are stable under C ! perturbation. For a discussion of this
result for maps which are not diffeomorphisms, see Appendices 1 and 4 in Palis and Tak-
ens [10]. If {go.g1,...,8p—1} 152 C! e-perturbation of {f, f,..., f} with cylinder map
G then G is a C! g-perturbation of F. For i =0,...,m — 1, each point x; on the hy-
perbolic m-cycle of f determines a hyperbolic p-cycle of F starting with (0, x;), ie.,
{0, x), (L, xie), ... (p — 1, xiqp—1)}. Hence, there is a y; near x; and a hyperbolic
p-cycle of G starting at (0, v;). Thus, the hyperbolic m-cycle of f produces m hyperbolic
p-cycles of the C! e-perturbation {gg, g1, ..., gp-1}. This result is analogous to a result
of Henson [5] where the perturbation corresponds to small amplitude p-periodic forcing.
Henson [5] exhibits an example where the perturbed p-cycles are not distinct.

The notion of hyperbolicity may be extended to compact invariant sets of a map (see.
e.g., Palis and Takens [10]). Let f: X — X bea C' map and A C X be a compact invariant
set for . A is hyperbolic if there are constants A > 0 and . 0 < « < 1, and a continuous
splitting of the tangent bundle over A into stable and unstable subbundles, i.e., Th X =
E> @ E", so that
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(1) Df(E®) C ES and [(Dfips)"| < A« foralln > 1,
(ily Df(EY) = E", Dfip has an inverse and [[(Dfjpo) ™| < Aa” foralln = 1

If A is a hyperbolic invariant set for a diffeomorphism f and g is a C! e-perturbation
of f then g has a hyperbolic invariant set A, homeomorphic to Ay and f4, is topolog-
ically conjugate to g, (see Theorem 7.4 in [12]). However, if f is not invertible in a
neighborhood of A then g still has a hyperbolic invariant set A, close to Ay [10] but
fia, may not be conjugate to gi4, and Ay and A, may not be homeomorphic. For an
example in the context of p-periodic dynamical systems, see Example 11 and Fig. 6.

Theorem 16. Let [ have a hyperbolic attractor A ; and be a diffeomorphism on a neigh-
borhood of U the closure of a trapping region producing A r. Then there is an ¢ > 0 and
an open neighborhood V of U such that if {go. g1. . ... gp-1)isa C' e-perturbation of
{f. fo.... fYonV then V is a trapping region for {go. g1, ..., &p—1} and produces an
atiractor consisiing of p subsets each of which is homeomorphic 1o A ;.

Proof. If f is a diffeomorphism in a neighborhood of A ; then the cylinder map F cor-
responding to the p-periodic system { [, f,..., f} is a diffeomorphism in a neighborhood
of the hyperbolic invariant set I'z, where I’z is Ay in each fiber. If {go, g1, ..., gp—1}isa
C! e-perturbation of { f, f, ..., f} with cylinder map G then G is a C' e-perturbation of F
and also G is a diffeomorphism because of Theorem 14. It follows that G has a hyperbolic
invariant set Iz homeomorphic to I'7. Moreover, because the homeomorphism between
I'g and I'x is fiberwise, the corresponding invariant set A, = wx (I'g) for the p-periodic
system {go, g1, ..., gp-1} consists of subsets each homeomorphicto Ay, [

6. Summary

In order to study attractors for a p-periodic, discrete dynamical system { fo, fi, ...,
fp—1} on a state space X, this work introduces the cylinder space X' by adding time as a
state variable and introduces the corresponding cylinder map F. Because F is autonomous
and X’ is compact in the time direction, an attractor A for { fo, fi,..., f,-1} may be de-
fined as the projection of an attractor for F. The Structure theorem shows that A is the
union of p subsets A;, where each A; is an attractor of an autonomous system formed by
composing all of the f; taken in an appropriate order. These A; are homeomorphic if each
fi 1s a homeomorphism. Example 10 (see Fig. 5) presents an attractor where the A; are not
homeomorphic because one f; is not a homeomorphism.

Periodic variation in an autonomous system f with attractor A, often results in a
p-periodic system with attractor A. However, Example 11 (see Fig. 6) shows that if f
is not one to one then even a small C' perturbation may have an attractor where the sub-
sets A; are not homeomorphic to each other nor to A ;. As a result of Theorems 4 and 14,
if f is a diffeomorphism in a neighborhood of A ; then the subsets A; are homeomorphic
to each other but may not be homeomorphic to A, (see Example 15). With the addi-
tional assumption of hyperbolicity on A s, we show that the A; are also homeomorphic
oAy
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