Proceedings of the 13th International Peat Congress

After Wise Use - The Future of Peatlands
Volume 1

Oral Presentations

Edited by Catherine Farrell (Bord na Móna) and John Feehan (University College Dublin)

Tullamore, Ireland
8 – 13 June 2008

Sponsored by

EPA
Environmental Protection Agency

National Parks and Wildlife Service
Proceedings of the 13th International Peat Congress

After Wise Use – The Future of Peatlands

Volume 1
Oral Presentations
Design and layout Bernard Kaye
School of Biology and Environmental Science
University College Dublin
Hydrology of a natural hardwood forested wetland

George M. Chescheir1, Devendra M. Amatya2 and R. Wayne Skaggs3

1 North Carolina State University, Campus Box 7625, Raleigh, NC 27695, USA
 Phone: 1 919 515 6741, Fax: 1 919 515 7760, e-mail: cheschei@eos.ncsu.edu

2 US Forest Service, Center for Forest Wetlands Research, 3734 Highway 402, Cordesville, SC 29434, USA
 Phone: 1 843 336 5612; Fax: 1 843 336 5068, e-mail: damaty@fs.fed.us

3 North Carolina State University, Campus Box 7625, Raleigh, NC 27695, USA
 Phone: 1 919 515 6739, Fax: 1 919 515 7760, e-mail: wayne_skaggs@ncsu.edu

Summary
This paper documents the hydrology of a natural forested wetland near Plymouth, NC, USA. The research site was located on one of the few remaining, undrained non-riverine, palustrine forested hardwood wetlands on the lower coastal plain of North Carolina. A 137 ha watershed within the 350ha wetland was selected for intensive field study. Water balance components including surface runoff, lateral seepage, soil air volume, rainfall, and evapotranspiration were monitored for a three year period. Water balance closure error over the 36 month period was 5%. The hydrology model DRAINMOD predicted that average annual outflow from the wetland would have been 23.3% of the average annual rainfall (1288 mm) during the 68 year period from 1933 to 2000.

Key index words: water balance, DRAINMOD, flow duration curve

Introduction
Natural wetlands are greatly valued for their role in attenuating drainage rates and improving water quality in receiving streams and estuaries. The importance of wetlands is increasing due to their role in the conservation of biologically diverse ecosystems and water resources. The study was conducted on a natural forested wetland located on the Tidewater Research Station near Plymouth, NC.

Materials and methods
Site description
The study was conducted on a natural forested wetland located on the Tidewater Research Station near Plymouth, NC. The wetland is characterized by a mixture of hardwood forest and open areas with a significant amount of standing water.
The importance of hydrology on the structure and function of wetlands is well documented and wetland hydrology is a significant part of the legal definition of wetlands (Mitsch and Gosselink, 2000). While the importance of wetland hydrology is recognized, complete and accurate hydrologic water balances have rarely been included in wetland studies (LaBaugh, 1986). Wetland water balances are important parts of quantifying and understanding wetland hydrology.

The objective of this paper is to report the results of a field study in which the water balance components of a natural forested wetland were continuously monitored. The data from this study will be used to develop and validate models for simulating wetland hydrology.

A watershed within the wetland was selected as a site for intensive study (Fig. 1). The watershed is approximately 137

![Figure 1. Diagram of the wetland research site at Plymouth, NC showing the wetland watershed and the locations of water table and flow monitoring stations.](image-url)
ha and is delineated by ridges on the north and south and by managed forest on the east and west. Very shallow streams (less than 0.3m deep) form on the study site and lead to a well defined primary outlet on the northern end. A shallow abandoned canal (less than 45 cm deep) borders the site on the east forming a secondary outlet. A berm blocks most of the overland flow from the wetland to the canal; however, the canal receives seepage from the wetland and possibly some overland flow during large runoff events.

Field measurements
The primary outlet (Station 3) was equipped with wing walls and a trapezoidal flume to measure the flow of surface water from the site. The wing walls were treated plywood sheet pile inserted 45 cm into the soil and supported by 4 x 4 treated posts. The galvanized metal trapezoidal flume had a 2.7 m top width with a 0.3 m bottom width. The slope of the side walls was 4:1 to a height of 0.3 m above which they were vertical. Stage was measured continuously in the trapezoidal section and 25 m upstream of the section. Water velocity and stage in the section were manually measured weekly and these weekly measurements were used to develop a stage discharge relationship for the section. Flow from the secondary outlet (Station 75) was measured by a sharp crested V-notch weir.

Measurement stations were located along constructed trails (Fig. 1) and points of known elevations were determined at each station by survey. Wells for determining elevations of shallow groundwater and surface water were installed at 27 stations. Water elevations were measured at biweekly intervals 10 minutes after maximum rainfall.

Where: \(\Delta V_s \) is the change in soil air volume, \(ET \) is evapotranspiration, \(RO \) is surface runoff, \(D \) is subsurface drainage, \(LS \) is lateral seepage, \(DS \) is deep seepage, and \(R \) is rainfall. All components have units of depth (mm) or volume per unit surface area (mm³/m²)

Evapotranspiration (ET) for each biweekly period was the sum of calculated daily potential evapotranspiration (PET) values. Daily PET was calculated by the Thornthwaite method using daily maximum and minimum temperature values measured at the weather station. The daily PET values were adjusted using monthly factors developed by Amatya et al. (1995) for the North Carolina coastal plain for correcting Thornthwaite values to Penman-Montieth (grass reference) values.

The surface runoff (RO) for each biweekly period was the sum of the flow volumes measured at the primary (station 3) and secondary (station 75) outlets. While most of this flow was from surface runoff, a small percentage of the flow likely comes from subsurface drainage (D) that occurred at various locations on the wetland. We assume that the flow measured at the outlets includes D.

Lateral seepage (LS) volume from the wetland for each biweekly period was the sum of seepage volumes calculated at each series of gradient wells located on the wetland boundaries, and divided by the wetland area. Seepage rate at each series of gradient wells was calculated by Darcy's law using the measured gradient and the measured soil hydraulic conductivity near the wells. Biweekly seepage volume for each series of gradient wells was the average of the seepage rates at the beginning and end of the period multiplied by the duration of the period.
biweekly intervals at 19 stations and continuously at eight stations. Lines of two or three wells installed perpendicular to the wetland boundaries were located at fifteen points along the wetland boundaries. These wells were installed to determine shallow groundwater gradients at the boundaries for calculating subsurface inflow or outflow. A weather station that measures precipitation, air temperature, net radiation, relative humidity, wind speed, and wind direction is located 1.5km north of the center of the wetland site. Three other recording rain-gauges are located 3.1km east, 3.0km south, and 4.2km west of the wetland center.

Soil physical properties including bulk density, porosity, soil water characteristics, and saturated hydraulic conductivity were determined at six locations. Soil water characteristic curves were determined from undisturbed core samples of each horizon using the methods described by Klute (1986). The saturated hydraulic conductivity of the soil were measured with the auger hole method (van Beers, 1970) at each well location.

Calculations

Water balance calculations were performed biweekly during the 36 month period from May 25, 1993 to May 24, 1996. The water balance was performed for a control volume including the soil profile and the volume of surface ponding. The water balance is expressed as:

\[\Delta V_a = ET + RO + D + LS + DS - R \] \hspace{1cm} (1)

where \(\Delta V_a \) is the change in soil air volume, \(ET \) is the evapotranspiration, \(RO \) is the runoff, \(D \) is the drain, \(LS \) is the lateral seepage, \(DS \) is the deep seepage, and \(R \) is the rainfall. The water balance equation can be rewritten as:

\[Q = (R + ET + RO + D + LS + DS) - \Delta V_a \] \hspace{1cm} (2)

where \(Q \) is the system flux. The percent closure error for the water balance was calculated as:

\[\% \text{Error} = \frac{(\Delta V_a \text{ Calculated} - \Delta V_a \text{ Measured}) \times 100}{Q} \] \hspace{1cm} (3)
Modeling

The hydrology of the wetland was simulated using the hydrology model, DRAINMOD. DRAINMOD was developed to simulate the hydrology of water management systems in high water table soils (Skaggs, 1978). The model predicts, on an hour-by-hour, day-by-day basis, the water table depth, soil water content, drainage, ET, and surface runoff for given climatological data, soil properties, plant cover and site conditions.

Inputs for DRAINMOD were taken from measured soil properties and observed site characteristics. Values for drain depth, drain spacing, surface storage, and root depth were 30 cm, 800 m, 4 cm, and 45 cm, respectively. Hourly rainfall and daily maximum and minimum temperature data were used as inputs to DRAINMOD.

Figure 2. Water balance components measured biweekly at the wetland site during the three year study at Plymouth, NC. The balance component is the air volume calculated by the water balance equation (Eq 1).

(Fig. 2). A period of high rainfall occurred in the early summer of the third year of the study which resulted in runoff occurring in the summer as well as the winter and early spring of the third year.

Evapotranspiration accounted for most (86%) of the water loss from the wetland (Table 1). Surface runoff accounted for 19% of the rainfall and ranged from 11% of rainfall for the first year of the study to 25% of rainfall for the third year. Lateral seepage accounted for less than 1% of the rainfall. Closure errors for the three years of the study were 5.0%, 9.0%, and 1.4%. The greater potential sources for errors probably lie in the measurement of rainfall and the assumption that ET is equal to PET. Differences in measured annual rainfall between the rain-gauges were 5%
data were those collected at Plymouth, NC from 1933 to 2000. The daily PET values were calculated by the Thornthwaite method and adjusted using monthly factors developed by Amatya et al. (1995).

Results and discussion
Water table levels ranged from being above the soil surface during winter and spring seasons to being as much as 1.9 m below the soil surface during the dry summer of 1993. Annual rainfall amounts for the first two years were below average (1008 mm and 1226 mm compared to the annual average, 1288 mm). Rainfall for the last year was above average (1321 mm). Periods of higher rainfall occurred in the winter for the first two years of the study which resulted in runoff flow only occurring in the winter and early spring for the first year, 10% for the second year and 7% for the third year.

Annual flow duration curves were different for the three years of the study (Fig. 3). Flow only occurred for 73 days (20% of the year) for the first year of the study. Flow occurred for longer periods during the second year (169 days, 46% of the year) and the third year (232 days, 63% of the year). Flow rates were greater than 12 mm/d for six days during the second year while flow rates never exceeded 8 mm/d during the wetter third year. The larger storm events occurred in the winter during the second year while the larger storms occurred in the summer during the third year; consequently higher flow rates occurred from the large winter storms that were not preceded by periods of high ET that would occur in the summer.

Table 1. Annual water balance components measured at the wetland site during the three year study at Plymouth, NC. Calculated water balance and closure error are also shown.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Rain mm</th>
<th>ET mm</th>
<th>Runoff mm</th>
<th>Seepage mm</th>
<th>Water Balance mm</th>
<th>Air Volume mm</th>
<th>Closure Error mm</th>
<th>Closure Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/25/93</td>
<td>1008</td>
<td>982</td>
<td>109</td>
<td>0</td>
<td>-84</td>
<td>-30</td>
<td>-54</td>
<td>5.0</td>
</tr>
<tr>
<td>5/24/94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/25/94</td>
<td>1226</td>
<td>1066</td>
<td>250</td>
<td>12</td>
<td>-103</td>
<td>11</td>
<td>114</td>
<td>9.0</td>
</tr>
<tr>
<td>5/24/95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/25/95</td>
<td>1321</td>
<td>1012</td>
<td>332</td>
<td>2</td>
<td>-26</td>
<td>-7</td>
<td>-19</td>
<td>1.4</td>
</tr>
<tr>
<td>5/24/96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/25/93</td>
<td>3554</td>
<td>3060</td>
<td>692</td>
<td>14</td>
<td>-213</td>
<td>-26</td>
<td>-187</td>
<td>5.1</td>
</tr>
<tr>
<td>5/24/96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

470
Table 2. Distribution of monthly and annual flows predicted by a 68 year DRAINMOD simulation of the wetland using historical weather record (1933 to 2000) for Plymouth, NC.

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>164</td>
<td>175</td>
<td>165</td>
<td>124</td>
<td>136</td>
<td>99</td>
<td>214</td>
<td>113</td>
<td>235</td>
<td>232</td>
<td>190</td>
<td>170</td>
<td>642</td>
</tr>
<tr>
<td>90th</td>
<td>114</td>
<td>116</td>
<td>107</td>
<td>55</td>
<td>28</td>
<td>25</td>
<td>45</td>
<td>43</td>
<td>66</td>
<td>42</td>
<td>55</td>
<td>76</td>
<td>517</td>
</tr>
<tr>
<td>75th</td>
<td>90</td>
<td>88</td>
<td>74</td>
<td>27</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>14</td>
<td>2</td>
<td>3</td>
<td>53</td>
<td>432</td>
</tr>
<tr>
<td>50th</td>
<td>40</td>
<td>52</td>
<td>47</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>262</td>
</tr>
<tr>
<td>25th</td>
<td>2</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>178</td>
</tr>
<tr>
<td>10th</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Mean</td>
<td>50</td>
<td>57</td>
<td>48</td>
<td>20</td>
<td>10</td>
<td>9</td>
<td>14</td>
<td>12</td>
<td>22</td>
<td>15</td>
<td>16</td>
<td>27</td>
<td>299</td>
</tr>
</tbody>
</table>
Mean annual outflow predicted by the DRAINMOD simulations was 299 mm (Table 2) which was consistent with the measured outflows for the second year (250 mm) and the third year (332 mm). Rainfalls for these years were near the annual mean with rainfall being 62 mm below mean for the second year and 33 mm above mean for the third year. Predicted annual flows ranged from 0 mm to 642 mm with an interquartile range from 178 mm to 432 mm. Predicted monthly outflows reflect the variability of monthly rainfall in the region and the cycle of low ET in the winter and high ET in the summer. The wetland generally goes through an annual wetting and drying cycle with a period of drying from April through October and a wetting period from November to March. Mean monthly rainfall is greatest in July and August; however, year to year variability of rainfall is also great due to the convective nature of the storms. Rainfall is also high and variable in September due to intermittent tropical storms. In response to these variable summer rainfall patterns, the probability of flow increases in September and the highest predicted monthly outflows occurred in September and October. Tropical storms did not occur during field study.

Conclusions

Evapotranspiration accounted for most (86%) of the water loss from a natural forested wetland near Plymouth, NC, USA. Surface runoff accounted for 19% of the rainfall and ranged from 11% of rainfall for the first year of the study to 25% of rainfall for the third year. Lateral seepage accounted for less than 1% of the rainfall. Water balance closure error over the 36-month period was 5%. The hydrology model DRAINMOD predicted that average annual outflow from the wetland was 299 mm (23.3% of the average annual rainfall, 1288 mm) during the 68 year period from 1933 to 2000. Predicted annual flows ranged from 0 mm to 642 mm with an interquartile range from 178 mm to 432 mm. DRAINMOD predicted that the wetland would generally go through an annual wetting and drying cycle with a period of drying from April through October and a wetting period from November to March.

References

