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Abstract 

This project addresses the U.S. Department of Transportation Southeastern Sun 

Grant priority “Impact of the emerging bioeconomy on transportation infrastructure and 

related concerns.” The impact of the emerging bioeconomy on truck transportation 

network flow was modeled for the southern United States.  The study applied Bayesian 

logistic regression and GIS spatial analysis to estimate site locations for biorefineries in 

the presence of uncertainty as related to resource competition, delivered costs at the plant 

gate, and trucking transportation flow.  Procurement zones assumed a one-way haul 

distance of 80 miles as a function of the available road network and interrelated resource 

as estimated from the BioSAT model www.biosat.net. “Median Family Income”, 

“Timberland Annual Growth-to-Removal Ratio”, and “Transportation Delays” were 

highly significant in influencing mill location.  Transportation delays for trucks greatly 

impact the cost of trucking biomass resources.  In some areas of the southern U.S., it 

increases trucking costs by as much as 60%.  The logistic model using Bayesian 

inference is a good predictive model for predicting preferred site locations and 

identifying non-preferred locations.  The sensitivity of the Bayesian logistic regression 

models in the validation data set was 89% and specificity was 92.3% for small capacity 

mills and 88.1% in sensitivity and  89.2% specificity for larger capacity mills similar to 

pulp and paper mills.  The higher probability locations for smaller biomass mills are in 

southern Alabama, southern Georgia, southeast Mississippi, southern Virginia, western 

Louisiana, western Arkansas, and eastern Texas.  The higher probability locations for 

large capacity mills are in southeastern Alabama, southern Georgia, central North 

Carolina, and the Mississippi Delta regions. 
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Executive Summary 

This project addresses the U.S. Department of Transportation Southeastern Sun 

Grant priority “Impact of the emerging bioeconomy on transportation infrastructure and 

related concerns.” The impact of the emerging bioeconomy on truck transportation 

network flow was modeled for 13 southern states.1  Bayesian “priors” were developed 

from the network flow models for these regions to estimate “posterior distributions” for 

probabilistic-based prediction of network flow for the emerging bioeconomy.  A 

macroscopic analysis and micro simulation, based on two performance measures, were 

used to solve the capacity problem. The two objectives of the model were minimizing all 

travel times for all delivery movement while maximizing number of deliveries to the 

biofuel plant.  A Synchro/SimTraffic model for the vicinity of Vonore TN was developed 

to model a ‘real world’ scenario; road network and signal timing was completed for 

Vonore TN assuming different scale capacities.  The model for the Vonore, TN biofuel 

plant was used for the Bayesian logistic modeling for the southeastern U.S. 

This study also involved organizing large volumes of data collected from various 

sources for the Bayesian logistic modeling (e.g., U.S. Census Bureau, U.S. Forest Service, 

U.S. National Land Cover Database, U.S. National Elevation Dataset, U.S. Department 

of Agriculture National Agricultural Statistic Service, U.S. Environmental Protection 

Agency, and state mill directories).  

The BioSAT model (Perdue et al. 2011) was used in this study to estimate the 

availability of woody biomass for procurement zones within a 128.8 km (80 mile) one 

                                                            
1 Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, 
Oklahoma, South Carolina, Tennessee, Texas, and Virginia. 
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way travel distance which was not always concentric, i.e., the shape of such zones rely on 

the available transportation network and location of biomass supply in the surrounding 

area.  National forests, parks, urban areas, and other restricted areas were not considered 

in the study.  All records were organized at the U.S. Census Bureau 5-digit ZIP Code 

Tabulation Area (ZCTA) level.  There were 10,016 ZCTAs in the 13-state study region 

which corresponded to 10,016 potential analytical polygons or potential sites for woody 

biomass-using facilities.  The average area size for 5-digit ZCTAs in the 13-state study 

regions was 209.84 km2.   

This study applied Bayesian inference for estimation of the parameters in the 

logistic regression models. Bayesian inference allows for incorporation of prior beliefs 

and the combination of such beliefs with statistical data which are well suited for 

representing the uncertainties in the value of independent variables (Hilborn et al. 1994).  

The statistical software package WinBUGS® 3.0.2 (“Windows Bayesian Inference Using 

Gibbs Sampling”) was used for Bayesian inference analysis. 

Bioenergy and biofuel plants were defined as facilities that integrate woody 

biomass conversion processes, and equipment to produce wood pellets for energy, 

biofuels, biopower, or value-added biochemicals (National Renewable Energy 

Laboratory 2009).  Only sixty such facilities existed in the study region.  Given the large 

amount of ZCTAs that did not contain bioenergy or biofuels mills (which is problematic 

for logistic regression) more traditional wood-using facilities in the study area were used 

as surrogates (e.g., sawmills, OSB mills, and pulp and paper mills).  The mills were 

segregated into two groups: smaller mills such as sawmills (Group I) and larger mills 

such as  pulp and paper mills, OSB mills and wood pellets mills (Group II). 
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“Median Family Income”, “Timberland Annual Growth-to-Removal Ratio”, and 

“Transportation Delays” were highly significant in influencing mill location (p-values 

<0.0001 for both mill groups).  Other statistically significant variables to a lesser extent 

for both groups were “Urban Land Area Ratio” and “Water Area Ratio.”  A higher family 

income, and larger urban area had negative coefficients which suggested that urban areas 

were not suitable for siting mills.   

Four ordinal levels for ranking were used to estimate the probability from the 

logistic model.  The higher probability locations for Group I mills were clustered in the 

southern Alabama, southern Georgia, southeast Mississippi, southern Virginia, west 

Louisiana, west Arkansas, and east Texas regions.  The higher probability locations for 

Group II mills were clustered in the southeast Alabama, south Georgia, central North 

Carolina, and the Mississippi Delta regions. 
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1. Introduction 

As noted in BRDI (2008) the national fuel transportation and storage 

infrastructure must accommodate the current and future growth of domestic biofuels 

production and transportation.  However, investment in the transportation system is not 

keeping pace with the expected growth in freight transportation in the coming decades.  

This is leading to rapid increases in congestion and delays along freight corridors 

(Council of State Governors 2010).  Highway bottlenecks impacting freight delay large 

numbers of truck shipments and is problematic to the emerging bioeconomy.  “Truck-

idling” consumes nearly one billion gallons of diesel fuel annually and produces 11 

million tons of CO2 (Council of State Governors 2010).  Trucks are still the only 

available method for delivering freight for 80% of American companies given the 

decades of freight rail industry consolidation and the abandonment of rail lines. 

This project addresses Southeastern Sun Grant priority “Impact of the emerging 

bioeconomy on transportation infrastructure and related concerns.” We modeled the 

impact of the emerging bioeconomy on truck transportation network flow.  Regions with 

major truck freight were modeled for increased flow and contrasted with regions without 

comparable flow rates.  Bayesian “priors” were developed from the network flow models 

for these regions to estimate “posterior distributions” for probabilistic-based prediction 

(Guess 1996).   

1.1 Objectives and Scope 

There were five study objectives: (1) Identify regions in the southern U.S. that 

have high potential for emerging bioeconomies in the presence of high transportation 
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flow; (2) Assess the current transportation flow for these regions and model the impact of 

increased truck transportation flow for select types of bioenergy feedstocks and end 

products, if applicable, e.g., biofuels, etc.; (3) Estimate the transportation costs in the 

select regions and compare such costs with other potential bioeconomy regions that do 

not have transportation flow bottlenecks; (4) Develop Bayesian “prior” and “posterior” 

distributions for transportation flow times for the above regions and biomass types; and 

(5) Incorporate the aforementioned objectives in optimal siting locations for biorefineries 

using Bayesian spatial logistic regression models developed by Huang et al. (2011), 

Young et al. (2011).  The scope of the proposed study was the 13 southern states.2   

2. Methodology 

2.1 Transportation Network Simulation Flow Model 

2.1.1 Overview 

The rural versus urban location of biofuel plants was examined to determine at 

what volume-to-capacity ratio a road network should be omitted from the location 

selection.  The computation experiments were implemented using simulation software 

ARENA 13.5 and OptQuest.  A macroscopic analysis and micro simulation, based on two 

performance measures, was used to solve the capacity problem. The two objectives of the 

model were minimizing all travel times for all delivery movement while maximizing 

number of deliveries to the biofuel plant. 

The time horizon was set to a three hour peak period and the plant’s natural 

processing capacity is in terms of the number of deliveries processed within a given time 

                                                            
2 Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, 
Oklahoma, South Carolina, Tennessee, Texas, and Virginia. 
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interval that is set to be five minutes. The various travel times, vehicle speeds, and traffic 

signal timing were all estimated statistically based on general transportation data 

collected.  Various assumptions were made to control the size of the problem, namely: 

1. Biofuel plant requires a delivery of renewable materials every five minutes 
to continue operation; 

2. One traffic signal was simulated with a cycle length of 100 seconds (60 
seconds for the major road and 40 seconds for the minor road); 

3. The road network consisted of high-quality arterials and the maximum 
capacity of all arterials was 1500 vehicles per lane per hour. 

To measure the effect of the existing traffic volume the volume to capacity (v/c) 

ratio was the constraint.  The v/c ratio was calculated by dividing the existing traffic 

volume by the maximum capacity of the road (in this case 1500 vehicle per lane per 

hour).  In Table 1, a description of driving characteristics and Levels of Service (LOS) 

are listed with correlating v/c ratios. The existing traffic volumes with the resulting 

arrival times (sec/veh), and v/c ratios are shown in Table 2.  General traffic volumes 

experience two peaks, AM and PM, during a weekday.  These peaks range in lengths of 

one to three hours depending on location and capacity constraints.  Each simulation is 

designed to reproduce a three hour long peak hour.   

 Using the Arena Process Analyzer, each arrival rate from Table 2 was replicated 

60 times as a scenario to determine the average truck travel time and number of deliveries 

to the biofuel plant.  The ranges in arrival times appeared to have a minimal effect on the 

number of deliveries to the biofuel plant.  The maximum average of deliveries was 32.78, 

while the overall average was 32.62.  The effect on travel time appeared to have the same  
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Table 1. Level of service criteria for arterials based on volume-to-capacity ratios.  

 

 

Table 2.  V/C ratio, arrival time, and LOS for existing traffic. 

 

  

600 1500 0.40 6.00
800 1500 0.53 4.50
900 1500 0.60 4.00

1000 1500 0.67 3.60 B
1100 1500 0.73 3.27
1200 1500 0.80 3.00
1300 1500 0.87 2.77 D
1400 1500 0.93 2.57
1500 1500 1.00 2.40
1600 1500 1.07 2.25
1800 1500 1.20 2.00

F

ARRIVAL 
TIME 

(sec/veh) LOS

A

C

E

EXISTING 
VOLUME 

(vplph)

ARTERIAL
CAPACITY 

(vplph)
v/c 

RATIO



9 
 

effect, with a maximum average of 523.018 and an overall average of 518.179 seconds; 

giving a difference of only 4.839 seconds.   

 It was important to establish whether there was a limit for the v/c ratio for a road 

network when plant locations were considered.  ARENA’s OptQuest was utilized to 

determine the optimal truck travel time and the number of deliveries and the 

corresponding v/c ratio.  The optimal travel time was 479.33 seconds and was caused by 

a v/c ratio of 0.64.  This was a reduction of 38.84 seconds from the overall average 

determined using the Process Analyzer.  The reason for showing the best 25 

optimizations versus showing the single best is to point out the varying v/c ratios used to 

achieve the optimizations.  The third best optimization was actually the result of a 0.99 

v/c ratio, which is a difference of 0.35 from our optimal travel time’s v/c ratio.  The same 

occurs with the number of deliveries to the biofuel plant, with an optimal number of 

34.33 deliveries achieved with a v/c ratio of .61.  This was an increase of 1.71 deliveries 

from the Process Analyzers overall average.   

The average v/c ratios for the top 25 OptQuests travel time and number of 

deliveries were .57 and .63, respectively.  With the inability to run an optimization for the 

v/c ratio, the results indicated that with optimization of travel time and number of 

deliveries the best LOS to have on a road appears to be scenarios A and B (Table 2).  

Though with the Process Analyzer the most successful v/c ratio was 0.93.  The location 

selection of a biofuel plant was not as simple as determining the ideal v/c ratio for the 

surrounding road network.  A detailed road network simulation was required to model the 

true effects of freight bottlenecking.  Though our model was detailed, the roadway 
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network was simple with only three routes and two intersections based on the Vonore, 

TN biofuels plant. 

The team had multiple meetings with Dr. Samuel Jackson of Genera Energy, LLC 

and at the Vonore, TN biofuel plant and acquired operational information and traffic 

volumes for existing research and projected commercial facilities.  Farm-routing 

information was also acquired and imported into Google Earth for projecting a ‘real-

world’ traffic assignment of Switchgrass bio-products.   The team followed several hay 

trucks in the Vonore area to study their routes and potential height, weight, and width 

concerns that need to be considered in the traffic modeling effort.  The team compared 

traffic modeling tools including TransCAD, Synchro/SimTraffic, and MATSim and 

decided to use Synchro for the modeling task.  The team met with US DOT/RITA official 

and presented progress.  The team developed a Synchro/SimTraffic model for the vicinity 

of Vonore.  Road network and signal timing was completed.   

The team built the transportation simulation framework with a schematic roadway 

network over aerial photos with proper traffic control devices.  With SimTraffic, we 

simulated the traffic operations in the vicinity of the Vonore biofuel plant.  Because the 

study site sits between a couple of counties, the traffic volumes (AADT) were not easily 

extracted.  Nevertheless, the baseline data were acquired and used for the simulation with 

a K factor of 10% and a D factor of 0.5.  The remaining task was to use realistic increases 

of traffic resultant from a full size biofuel plant for scenario simulations.   Three screen 

captures of the simulation in action are given in Figures 1, 2 and 3. 
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Figure 1.  City of Vonore TN network model. 

 

 

Figure 2.  Simulation of a signal controlled intersection. 
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Figure 3.  Simulation of two STOP controlled intersections. 

 

2.2 Logistic Regression Model for Siting Biorefineries  

2.2.1 Dataset  

This study involved organizing large volumes of data collected from various 

sources, including the U.S. Census Bureau, U.S. Forest Service, U.S. National Land 

Cover Database, U.S. National Elevation Dataset, U.S. Department of Agriculture 

National Agricultural Statistic Service, U.S. Environmental Protection Agency, and state 

mill directories.  

Another resource that was used in the study was the integration of the BioSAT 

model (Perdue et al. 2011).  The BioSAT model was used to estimate the availability of 

woody biomass for procurement zones within a 128.8 km (80 mile) one way travel 

distance which in most cases was not concentric, i.e., the shape of such zones rely on the 

available transportation network and biomass supply.  National forests, parks, urban areas, 
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and other restricted areas were not considered in BioSAT when estimating availability.  

Road networks in MapPoint® were a combination of the Geographic Data Technology, 

Inc. (GDT) and Navteq data.  GDT data were used for rural areas and small to medium 

size cities (e.g., rural paved two-lane roads, privately owned driveway, pedestrian 

walkway).  Navteq data were used for major metropolitan areas (e.g., roads with turn 

restrictions, physical barriers and gates, one-way streets, restricted access and relative 

road heights).  In the BioSAT model, estimates of all-live total biomass, as well as 

average annual growth, removals, and mortality were obtained from the Forest Inventory 

and Analysis Database (FIADB) version 3.0.  

All records were organized at the U.S. Census Bureau 5-digit ZIP Code 

Tabulation Area (ZCTA) level.  There were 10,016 ZCTAs in the 13-state3 study region 

which corresponded to 10,016 potential analytical polygons or potential sites for woody 

biomass-using facilities.  The average area size for 5-digit ZCTAs in the 13-state study 

regions was 209.84 km2. 

2.2.1.1 Biomass Estimation using GIS -- Forest biomass annual growth and removal 

quantity data were collected at the county level from Forest Inventory and Analysis 

Database (FIADB) version 3.0 (Figure 4a), and reallocation was done for each of the 

10,016, 5-digit ZCTAs using a geographic information system (GIS) technology.  

National land cover data and digital raster map were used to identify forestland.  In the 

digital raster map, each pixel represents one particular land cover class, i.e., water, urban, 

forest, or cropland, etc. (Figure 4b).  Forest biomass annual growth and removal 

                                                            
3 Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, 
South Carolina, Tennessee, Texas, Virginia. 
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quantities were proportionally allocated to each 5-digit ZCTA using the county boundary, 

5-digit ZCTA, and the land cover image data with GIS spatial overlay techniques.  

Due to the mismatch of county boundary and 5-digit ZCTA (i.e., some 5-digit 

ZCTAs cross county), each forest biomass county was split into multiple area parts via 

the 5-digit ZCTA area shape and assigned a unique 5-digit ZCTA identifier.  By 

overlaying each area part with the land cover image layer, the numbers of pixels in all 

land cover classes within each area were estimated (Figure 4c).  By summing up the 

pixels of deciduous forest, evergreen forest and mixed forest, which together represented 

forestland, in the unit of county, a forestland pixel ratio for each area part to its belonging 

county was calculated and the forest biomass quantity in every area part was derived for 

this pixel ratio (Figure 4d).  A summed quantity value for all area parts belonging to the 

same 5-digit ZCTA were then calculated as the forest biomass quantity in this 5-digit 

ZCTA. 
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a. Illustration of county forest biomass quantity  b. Land cover map and county boundary 

c. Land cover for 5-digit ZCTA boundary d. Forest biomass allocation by 5-digit ZCTA 
 
Figure 4.  Illustration of forest biomass allocation at the level of 5-digit ZCTA. 
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2.2.2 Logistic Regression 

 The logistic regression methodology was inspired by Young et al. (2011).  In 

Young et al. (2011) logistic regression was used to identify site locations for biorefineries 

and significant factors associated with these site locations.  This study applied Bayesian 

inference for estimation of the parameters in the logistic regression models. Bayesian 

inference specifies the probability distribution for the underlying categorical or 

continuous variables and estimates parameters  (see equations [1] and [2]).  Bayesian 

inference allows for incorporation of prior beliefs and the combination of such beliefs 

with statistical data which are well suited for representing the uncertainties in the value of 

independent variables (Hilborn et al. 1994).  In practice, Bayesian inference expresses the 

uncertainties of parameters in terms of probability distributions called prior probability 

distributions and derives posterior estimate probability distributions from the priors.  For 

example, by expressing the uncertainties in parameter vector  for a given model M as 

the posterior probability distribution pሺβ|M, Dሻ, where D is the observed data, we have, 

pሺy ൌ 1|x,M, Dሻ ൌ ׬ pሺy ൌ 1, β	|x,M, Dሻdβ ൌ ׬ pሺy ൌ 1|x, β,Mሻpሺβ|M, Dሻd
ୟ
ஒ

ୟ
ஒ β,          [1] 

where,  pሺy ൌ 1	|x, β,Mሻ ൌ
ଵ

ଵାୣ୶୮	ሺ஑ାஒభ୶భାஒమ୶మା⋯ାஒ౤୶౤ሻ
  .    [2] 

The key of Bayesian inference is to choose the parametric family for the prior 

probability distributions. Two categories were used: non-informative prior distributions 

and informative prior distributions. A non-informative prior distribution expresses vague 

or general information about a parameter. A common non-informative prior distribution 

is the uniform distribution, which assigns equal probabilities to all possible values, and 
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always yields similar results as classical statistics. Thus, Bayesian and classical statistics 

are not exclusive, yet overlapped to some extent. In fact, classical approaches are 

approximate Bayesian using certain priors. An informative prior distribution reflects 

specific and definite information about a parameter. If both prior and posterior 

distributions belong to the same family, the prior distribution is called a conjugate prior 

distribution, which is a case in informative prior distributions. In this study two prior 

distributions were selected from non-informative and informative prior distributions and 

were constructed on parameter : 

 Prior 1: Uniform prior distributionpሺβሻ 	∝ 	constant,                  [3] 

 Prior 2: Gaussian prior distribution ሺβ	|μ, σଶሻ ∝ ଵ

ඥଶ஠஢మ
exp	ሺെ

ሺஒିஜሻమ

ଶ஢మ
ሻ .     [4]      

The statistical software package WinBUGS® 3.0.2 (“Windows Bayesian 

Inference Using Gibbs Sampling”) was used for Bayesian inference analysis. It provided 

a convenient environment to conduct a Markov Chain Monte Carlo simulation (MCMC) 

of a random walk in the space of parameters  , which converges to a stationary 

distribution approximating the joint distribution. In each analysis, one independent chain 

was run for 10,000 iterations.  Convergence was assessed by visual inspection of the 

chain and by the Gelman et al. (2000) shrink factor.  In addition to providing a posterior 

estimate of the mean β෠ , the stationary distribution also provided a posterior standard 

deviation, the median and a 95% credibility interval (CI) 4  of β෠  via the estimated 

                                                            
4A powerful tool that provides a measure of the uncertainty of classification performance based 
on the current available information is the Bayesian CI.  To obtain such an interval, a binary 
classifier is designed using Nd samples per class, and tested using Nt class-specific holdout test 
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covariance for  (Jaynes 1976).  The data were partitioned into two parts using a 

stratified random sampling technique for each state which ensured a spatially 

proportionate data allocation across the study region: 80% for training and 20% for 

validation. The training data were used to develop the models while the validation data 

were used to evaluate the model performance by constructing classification tables.  

2.2.3 Study Group 

Bioenergy and biofuel plants were defined as facilities that integrate woody 

biomass conversion processes, and equipment to produce wood pellets for energy, 

biofuels, biopower, or value-added biochemicals (National Renewable Energy 

Laboratory 2009). Only 60 such facilities are known to exist in the study region.  Given 

the large amount of ZCTAs that did not contain bioenergy or biofuels mills (which is 

problematic for logistic regression) more traditional wood-using facilities in the study 

area were used as surrogates (e.g., sawmills, OSB mills, and pulp and paper mills).  The 

assumption is that similar factors will influence site preference and suitability given the 

commonality in feedstocks and procurement systems (Patari 2010, Knight 2009, Stewart 

2009, Cohen et al. 2010, Moon et al. 2008). The groups were: 

 Group I: Sawmills; 

 Group II: Pulp and paper mills, OSB mills and wood pellets mills. 

 
Groups I locations are illustrated in Figure 5. Group II mills were illustrated in Figure 6.  

                                                                                                                                                                                 
examples that results in kt errors. Bayes’ theorem is used to transform the test result into the 
posterior (a posteriori) pdf. Based on the posterior pdf, an % Bayesian CI is defined as any 
interval of the posterior that covers % of its probability mass (Gustafsson et al. 2010). 
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Figure 5. Illustration of Group I woody biomass-using mills. 
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Figure 6. Illustration of Group II woody biomass-using mills. 

 

2.2.4 Response and Explanatory Variables 

Two separate response variables were considered for modeling and ranking 

potential sites.  For Group I, the response variable, yi1 equals one if ith ZCTA had at least 

one woody biomass-using facility, and yi2 equals one was defined similarly for Group II 

mills. Thirteen explanatory variables for data available in the public domain were 

examined in the Bayesian logistic models (Table 3). 
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Table 3. Explanatory variables organized by ZCTA. 

Variable 
Original Data 

Resolution Unit Data Sources 

Population Density 5-digit ZCTA People/mile2 
U.S. Census Bureau (2010) population 
density in each 5-digit ZCTA. 

Household Density 5-digit ZCTA Household/mile2
U.S. Census Bureau (2010) household 
density in each 5-digit ZCTA. 

Household Unit Density 5-digit ZCTA 
Household 
unit/mile2 

U.S. Census Bureau (2010) household 
unit density in each 5-digit ZCTA. 

Median Family Income County Dollar 
U.S. Census Bureau (2010) median 
family income in each county 

Farm Net Income County Dollar 
USDA NASS Census Agriculture (2007) 
farm net income in each county. 

Road Density 5-digit ZCTA km/km2 U.S. Census Bureau (2010) road length 
Crop Cultivated Land 
Area Ratio 

5-digit ZCTA percent 
U.S. National Land Cover Database 
(2006) 

Forest Land Area Ratio 
Urban Land Area Ratio 
Water Area Ratio 

Slope 5-digit ZCTA percent 
U.S. National Elevation Dataset (2010) 
NED 1arc second 

Timberland Annual 
Growth-to-Removal 
Ratio* County - 

Forest Inventory and Analysis – The 
Timber Products Tools (TPO) (2009) 

Number of Primary Wood 
Processing Mills in Each 
ZCTA* 5-digit ZCTA - 

U.S. Forest Service (2009) and state mill 
directories 

Transportation Delays 5-digit ZCTA seconds 

Average traffic total delays within in a 
10-mile distance using the transportation 
network simulation flow model 

* No timberland growth value available in the west Oklahoma and Texas  
** As an independent explanatory variable only in Group II subset. 

 

2.2.5 Modeling Scoring and Interpretation 

Given a specific response variable and set of predictor variables, the fitted 

Bayesian logistic regression model provided an estimated probability that a ZCTA will 

contain a woody biomass-using facility.  The probability was used in the validation data 

set to compare ZCTAs with actual mill locations.     
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3. Results and Discussion  

3.1 Group I  

Five out of the possible fourteen predictor variables were statistically significant 

(p-value < 0.05) from the stepwise logistic regression (Table 4).  To compare the MLE 

and Bayesian inference estimation methods for parameter coefficients, the classification 

tables as well as ROC and lift charts for training and validation data sets were displayed 

in Tables 5 and 6, and Figures 7 and 8.  The classification tables confirmed that the 

logistic regression with Bayesian Inference assuming a uniform prior had good predictive 

power for the siting locations of the Group I woody biomass-using facilities (Tables 5 

and 6).   Graphically, ROC and lift charts confirmed that Bayesian inference assuming a 

uniform prior had a better overall prediction performance since the ROC curve was closer 

to the left-corner optimal point and the lift value was higher across the training and 

validation data sets (Figures 7 and 8).  The sensitivity of this model using Bayesian 

inference assuming a uniform prior in the validation data set was 89% (e.g., the model 

predict a mill location correctly 89% of the time in validation), and specificity (e.g., 

predicting no mill location where no mill by 2010) was 92.3% (Tables 5 and 6).  The 

sensitivity rates in training and validation data sets were acceptable, which was higher 

than 75% based on the stringent criteria of medical radiology screening (Carney et al. 

2010).  It indicated a good performance of the model that had a significant power for 

correctly predicting a mill location.  However, the specificity rates of the model in the 

training and validation data sets were lower than the points5 used by the medical industry 

                                                            
5 In medical research (see Carney et al. 2010) final cut points to identify low performance for 
screening mammography were: sensitivity less than 75%, specificity less than 88% or greater 
than 95%, recall false positive rate (Type I error) less than 5% or greater than 12%. 
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but close to acceptable.  This logistic model for Group I appeared better at predicting 

preferred site locations than at predicting where not to location a plant.  

 
Table 4. Significant variables for Group I mills. 

Significant variables p-value 
Median Family Income <0.0001 
Urban Land Area Ratio <0.0012 
Water Area Ratio <0.0010 
Timberland Annual Growth-to-Removal Ratio <0.0001 
Transportation Delays <0.0001 

 

 

Table 5. Summary of classification table for training dataset for Group I mills. 

Parameter 
Estimation Method 

Training Data Set (y = Prediction Value |Actual Value) 

y=0|0 y=1|0 y=0|1 y=1|1
Specificity 
ˆ( 0 | 0)P y y   

Sensitivity
ˆ( 1 | 1)P y y 

Maximum 
Likelihood 

Estimation (MLE) 
3136 202 90 820 93.9% 90.1% 

Bayesian 
Inference 

Uniform 3140 198 86 824 94.1% 90.5% 

Gaussian 3136 200 88 822 93.9% 90.3% 

 
 

Table 6. Summary of classification table for validation dataset for Group I mills. 

Parameter 
Estimation Method 

Validation Data Set (y = Prediction Value |Actual Value) 
y=0|0 y=1|0 y=0|1 y=1|1 Specificity Sensitivity

Maximum 
Likelihood 

Estimation (MLE) 
769 65 27 200 92.2% 88.1% 

Bayesian 
Inference 

Uniform 770 64 25 202 92.3% 89.0% 

Gaussian 769 64 27 200 92.2% 88.1% 
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Figure 7. ROC charts for model assessment of Group I woody biomass-using mills. 

 

Figure 8. Lift Charts for model assessment of Group I woody biomass-using mills. 
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“Median Family Income,” “Timberland Annual Growth-to-Removal Ratio,” and 

“Transportation Delays” were highly significant in influencing mill location (p-values 

<0.000, Table 7).  Other statistically significant variables were “Urban Land Area Ratio,” 

and “Water Area Ratio.”  A higher family income and larger urban area had negative 

coefficients (Table 7), which suggested that urban developed areas were not suitable for 

siting mills.  This result is in agreement with other studies that mill locations were nearer 

the rural biomass supply.  “Timberland Annual Growth-to-Removal Ratio” and “Water 

Area Ratio” had positive coefficients. This indicates that landscape with abundant 

forestland and water areas are preferred.  “Transportation Delays” had a positive 

coefficient, which shows the mill location may have significant impacts on the local 

transportation networks.  This result suggests the importance of landscape suitability and 

woody biomass availability on mill location as well as mill location influence on the 

adjoining transportation system.  

 

Table 7. Analysis of variable estimates from Bayesian inference with a uniform prior for 
Group I mills. 

Significant Variables     Mean Estimates 
Median Family Income -0.3080 
Urban Land Area Ratio -1.3204 
Water Area Ratio 0.7580 
Timberland Annual Growth-to-Removal 
Ratio 

3.7814 

Transportation Delays 6.3087 
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Four ordinal levels for ranking the estimated probability from the logistic model 

(Bayesian Inference with a uniform prior) in the study region are given in Figure 9.  The 

higher probability locations for Group I mills were clustered in the southern Alabama, 

southern Georgia, southeast Mississippi, southern Virginia, western Louisiana, western 

Arkansas, and eastern Texas regions. 

 

 

Figure 9. Estimated probability locations for Group I. 
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3.2  Group II 

Five out of fifteen predictor variables were statistically significant (p-values <0.05) 

from the stepwise logistic regression (Table 8).  The classification tables as well as ROC 

and Lift Charts for training and validation data sets were constructed to compare the 

MLE and Bayesian inference estimation methods for parameters (Tables 9 and 10, 

Figures 10 and 11).  The classification tables confirmed that the logistic regression with 

Bayesian inference assuming a uniform prior had good predictive power for the siting 

locations of the Group II woody biomass-using facilities (Tables 9 and 10).  ROC and 

Lift Charts graphically suggested the predictive performance of three methods were close 

but Bayesian inference with a uniform prior had a better overall prediction of siting 

Group II mills for validation data set.  The classification table for the model using 

Bayesian Inference with a uniform prior had a sensitivity of 88.1% and specificity of 89.2% 

for Group II training data (Table 8).  The sensitivity of this model in the validation data 

set was 90.5% and specificity was 87.7% (Table 9).  The sensitivity rates of the model for 

the training and validation data sets were acceptable.  The specificity rates of the model 

in the training and validation data sets were very close to acceptable.  The logistic model 

using Bayesian Inference with a uniform prior for Group II was a good predictive model 

for predicting preferred site locations and identifying non-preferred locations.  
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Table 8. Significant variables for Group II mills. 

Significant variables p-value 
Median Family Income <0.0001 
Urban Land Area Ratio 0.0001 
Water Area Ratio <0.03 
Number of Primary Wood Processing Mills in Each ZCTA <0.0001 
Transportation Delays <0.0001 

 

Table 9. Summary of classification table for training dataset for Group II mills. 

Parameter 
Estimation Method 

Training Data Set (y = Prediction Value |Actual Value) 

y=0|0 y=1|0 y=0|1 y=1|1
Specificity 
ˆ( 0 | 0)P y y   

Sensitivity
ˆ( 1 | 1)P y y   

Maximum 
Likelihood 

Estimation (MLE) 
519 66 12 72 88.7% 85.7% 

Bayesian 
Inference 

Uniform 522    63 10 74 89.2% 88.1% 

Gaussian 519 66 12 72 88.7% 85.7% 

 
Table 10. Summary of classification table for validation dataset for Group II mills. 

Parameter 
Estimation Method 

Validation Data Set (y = Prediction Value |Actual Value) 
y=0|0 y=1|0 y=0|1 y=1|1 Specificity Sensitivity

Maximum 
Likelihood 

Estimation (MLE) 
125 21 3 18 85.6% 85.7% 

Bayesian 
Inference 

Uniform 128 18 2 19 87.7% 90.5% 

Gaussian 125 21 3 18 85.6% 85.7% 
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Figure 10. ROC charts for model assessment of Group II woody biomass-using mills. 

 

Figure 11. Lift Charts for model assessment of Group II woody biomass-using mills. 
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“Median Family Income,” “Urban Land Area Ratio,” “Number of Primary Wood 

Processing Mills in Each ZCTA,” and “Transportation Delays” were highly significant 

influencing mill location, p-values < 0.0001 (Table 10).  Another statistically significant 

variable was “Water Area Ratio.”  “Median Family Income” had negative influences on 

mill location for Group II.  “Urban Land Area Ratio,” “Water Area Ratio,” “Number of 

Primary Wood Processing Mills in Each ZCTA,” and “Transportation Delays” had 

positive influences on mill location. This may indirectly reflect that this group is located 

in an area that has better transportation road network which may be somewhat closer to 

the urban area relative to Group I because of the synergistic relationship that exists 

between primary wood processing mills and larger-size Group II facilities which may 

depend on the residue feedstock from primary wood processing mills.  It also confirms 

the local transportation system impacts from Group II facilities.   

Four ordinal levels for ranking the estimated probability from the logistic model 

(Bayesian Inference with a uniform prior) in the study region are given in Figure 12.  The 

higher probability locations for Group II mills are clustered in the southeast Alabama, 

southern Georgia, central North Carolina, and Mississippi Delta regions. 

Table 11. Analysis of significant variables estimates from Bayesian inference with a 
uniform prior for Group II mills. 

Significant Variables     Mean Estimates 
Median Family Income -3.388 
Urban Land Area Ratio 2.343 
Water Area Ratio 1.344 
Number of Primary Wood Processing Mills 
in Each ZCTA 

1.814 

Transportation Delays 2.597 
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Figure 12. Estimated probability locations for Group II. 
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3.3    Trucking Costs and Delay Times 

Delay times for each state were estimated from the study using the Synchro and 

SimTraffic models.  Average trucking costs ($/dry ton) were estimated using the trucking 

cost model of BioSAT, www.biosat.net.  Descriptive statistics of the trucking costs from 

the BioSAT model are given in Table 12.  Average trucking costs varied from 

$15.52/dry-ton to $17.34/dry-ton across the 13 southern states study region.  The 

coefficient of variation (CV) for these trucking costs varied from 5.09% in South 

Carolina to 30.59% in Florida and Tennessee. 

Table 12. Descriptive statistics of trucking costs ($/dry ton) by state as estimated from the 
BioSAT model. 

 
State 

 
Average (̅ݔ) 

 
Median ሺߤ෤) 

Standard 
Deviation (s) 

Coefficient of 
Variation (CV) 

Alabama 15.74 16.00 1.25 7.92% 
Arkansas 16.27 17.05 4.57 28.10% 
Florida 15.88 15.25 4.86 30.59% 
Georgia 16.00 16.40 1.54 9.65% 

Kentucky 16.35 16.38 0.88 5.37% 
Louisiana 16.12 16.31 1.39 8.59% 

Mississippi 16.11 16.24 0.96 5.98% 
North Carolina 16.32 16.33 1.10 6.74% 

Oklahoma 17.34 17.03 1.77 10.19% 
South Carolina 15.91 15.90 0.81 5.09% 

Tennessee 15.52 16.36 4.75 30.59% 
Texas 16.34 17.13 3.62 22.13% 

Virginia 15.83 15.98 1.15 7.27% 
 

The costs associated with transportation delay times for trucks were derived from 

Gillett (2011).  Average delay minutes per state varied from 1.12 minutes in Oklahoma to 

17.93 minutes in Tennessee (Table 13).  Delay times had significant influences on 

trucking costs by state.  Delay times have the potential to increase trucking costs by as 

much as 61% in certain states within the study region.  Recall the statistical significance 
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of transportation delays in the Bayesian logistic regression models determining site 

location. 

Table 13. Statistical interval of trucking costs ($/dry ton) by state adjusted for average 
delay time per state. 

 
 
 

State 

 
 

Average Cost 
($/ton) 

 
 

Average Delay 
(minutes) 

 
Delay Standard 

Deviation  
(minutes) 

Statistical 
Interval* cost 

with delay times 
($/ton) 

Alabama 15.74 15.11 36.86 [12.26 , 17.96] 
Arkansas 16.27 16.80 43.75 [13.27 , 20.32] 
Florida 15.88 13.92 17.70 [12.81 , 15.03] 
Georgia 16.00 17.68 42.92 [14.59 , 20.78] 

Kentucky 16.35 16.62 47.70 [13.25 , 19.99] 
Louisiana 16.12 5.85 21.56 [10.98 , 21.26] 

Mississippi 16.11 12.55 34.03 [11.96 , 20.26] 
North Carolina 16.32 15.13 28.08 [13.49 , 19.15] 

Oklahoma 17.34 1.12 8.96 [6.64, 28.05] 
South Carolina 15.91 8.91 29.31 [10.93 , 20.89] 

Tennessee 15.52 17.93 42.46 [12.66 , 18.38] 
Texas 16.34 2.84 15.45 [12.38 , 20.30] 

Virginia 15.83 12.58 35.18 [12.94 , 18.73] 
*Statistical interval was the 95% confidence interval assuming the t-distribution and 
unknown variance. 
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4. Conclusions 

 The analysis of mill locations for the emerging bioeconomy using Bayesian 

logistic regression in the presence of trucking delays had several important outcomes. 

 Transportation delays for trucks are statistically significant in influencing site 

location of bioenergy plants. 

 Transportation delays for trucks can greatly impact the cost of trucking 

biomass. 

 The logistic model using Bayesian inference is a good predictive model for 

predicting preferred site locations and identifying non-preferred locations. 

 The higher probability locations for larger biomass using mills are clustered in 

southeast Alabama, southern Georgia, central North Carolina, and the 

Mississippi Delta regions. 

 The higher probability locations for smaller biomass mills are clustered in 

southern Alabama, southern Georgia, southeast Mississippi, southern Virginia, 

west Louisiana, west Arkansas, and the east Texas regions. 
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Figure A1. Estimated probability locations for Group I in Alabama. 
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Figure A2. Estimated probability locations for Group II in Alabama. 
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Figure A3. Estimated probability locations for Group I in Arkansas. 
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Figure A4. Estimated probability locations for Group II in Arkansas. 
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Figure A5. Estimated probability locations for Group I in Florida. 
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Figure A6. Estimated probability locations for Group II in Florida. 
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Figure A7. Estimated probability locations for Group I in Georgia. 
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Figure A8. Estimated probability locations for Group II in Georgia. 
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Figure A9. Estimated probability locations for Group I in Kentucky. 
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Figure A10. Estimated probability locations for Group II in Kentucky. 
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Figure A11. Estimated probability locations for Group I in Louisiana. 
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Figure A12. Estimated probability locations for Group II in Louisiana. 
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Figure A13. Estimated probability locations for Group I in Mississippi. 
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Figure A14. Estimated probability locations for Group II in Mississippi. 
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Figure A15. Estimated probability locations for Group I in North Carolina. 
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Figure A16. Estimated probability locations for Group II in North Carolina. 
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Figure A17. Estimated probability locations for Group I in Oklahoma. 
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Figure A18. Estimated probability locations for Group II in Oklahoma. 
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Figure A19. Estimated probability locations for Group I in South Carolina. 
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Figure A20. Estimated probability locations for Group II in South Carolina. 
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Figure A21. Estimated probability locations for Group I in Tennessee. 
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Figure A22. Estimated probability locations for Group II in Tennessee. 
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Figure A23. Estimated probability locations for Group I in Texas. 
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Figure A24. Estimated probability locations for Group II in Texas. 
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Figure A25. Estimated probability locations for Group I in Virginia. 
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Figure A26. Estimated probability locations for Group II in Virginia. 
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Figure B1. Sample results of travel simulation with 25MG local trucks at intersections near 
Vonore, TN 
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Figure B2. Sample results of travel simulation with 50MG local trucks at intersections near 
Vonore, TN 

 

 

 

 

 

 

 

 

 

 

 



68 
 

 

 

Figure B3. Sample results of travel simulation with 75MG local trucks at intersections near 
Vonore, TN 
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Figure B4. Sample results of travel simulation with 100MG local trucks at intersections near 
Vonore, TN 

 

 


