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Forest  herbicide experiments are increasingly being designed to evaluate smaller treatment differences when comparing
existing effective treatments, tank mix ratios, surfactants,  and new low-rate products. The ability to detect small differences
in efficacy is  dependent upon the relationship among sample size.  type I  and II  error probabili t ies,  and the coefficients of
variation of the efficacy data The common sources of variation in efficacy measurements and design considerations for
controll ing variation ate reviewed, while current shortcomings are clarif ied.  A summary of selected tr ials estimates that
coefficients of variation often range between 25 and lOO%,  making the  number of observations necessary to detect  small
differences very large, especially when the power of the test (1 - l3) is considered. Very often the power of the test has been
ignored when designing experiments because of the difficulty in calculating f3. An available program for microcomputers is
introduced that allows researchers to examine relationships among sample size, effect size, and coefftcients  of variation for
specified designs, a and p. This program should aid investigators in planning studies that optimize experimental power to
detect anticipated effect sizes within resource constraints.
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Les experiences sur les herbicides forestiers. sent  de plus en plus structtmfes  pour evaluer  de petites  diff&ences  entne  les
traitements lorsqu’on compare les traitements actuellement utilis& les  rapports des m&anges  dam les  reservoirs,  les  surfac-
tants et les nouveaux  produits utilis&  8 faible dose. La cap&u5 de d&ecter  de p&es  differences d’effkaciti  d&pend  de la
relation entre la dimension des &iantillons,  des eneurs en probabik?  de types I et II  et des coeffkients  de variation des
doM6es  d’effrcacid.  Les  sources communes de variation dans  les  mesurea  d’efIicacit6,  et les consid&ations  de structure pour
contiler  la vatiatio~  sont revis& pendant que les dkfauts courants  sont clarifi&~  A l’aide d’un  sununaim d’l%&S
s&ctio~&s,  on estime que les coefficients de variation se situent souvent eatre 25 et 100%. ce  qui n&es&e un t&s  grand
nombre d’observations pour d&e&r  de pet&es  differences surtout lorsque  la puissance du test (1 - B) est consid&&. Tti?s
souvent la puissance du test, a &?  &nor& dans la structure des experiences a cause de la difficuld  &  cakuler  p. Nous
inuoduisens un prograuuue disponible  sur mko-oniinateur  qui permet aux chercheurs d’examiner lcs  relations entre la’
dimension des kchaatillons, les effets de la dimension et des coefficients de variition  pour des structures do~&s, <z et f3.

Ce programme devrait aider les chercheurs B plan&r  des experiences qui optimiseut la capacid de detecter expkimentale-
ment les  effets de dimension anticip&  avec  des ressources  limit&s. .

frraduit  par la redaction]

Introduction
One  of the most critical steps in designing forestry herbi-

cide trials is determining the number of experimental units
(trees, rootstocks, plots) for replication. The land area avail-
able for experimentation, the money, time, and personnel
resources, and the number and type of chemical applications
to be tested are usually considered, with the most limiting
variable determining sample size (n). Little attention is
directed toward the resolution with which differences in effi-
cacy (measured as 6i (the “effect size” of treatment i, or
fi - l.t) Cohen 1988) among chemicals, rates, and (or) appli-
cation techniques might be detected, and the probability that
differences might exist but would not be found. This is
unfortunate, since many decisions as to which herbicide or
herbicide mix to use, at what rate, and using which equipment
hinge on the detection of marginal differences in the control
and cost of treatment. The utility of different measures of
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efficacy for woody plant herbicide trials has been analyzed
and reviewed in numerous reports (Knowe 1991; Zcdaker  and
Miller 1991; Knowe et al. 1990; Zcdaker  and Frcyman 1988;
Zedaker and Lewis 1983; Neill et al. 1982). However, none
of these studies addressed the variation in efficacy measures
relative to their impact on sample-size adequacy. Nor do the
current manuals of methods research for forestry and agricul-
ture weed science address the procedures for the determina-
tion of an appropriate sample size (cf. Camper 1986; Miller
and Glover 1991).

Statistical procedures necessary to determine the adequacy
of a particular sample size for simple experimental designs
have been weII known for some time (Steel and Tot-tie 1960;
Co&ran and Cox 1957):The adequacy, or precision, of an
experiment refers to its ability to detect treatment effects. In
general, the more precise an experiment is, the smaller the
difference it is capable of detecting between treatments (Little
and Hills 1978). Sample size and precision are related by the
probabilities associated with type I (a) and type II @)-errors
for hypotheses testing, the variability or dispersion .of the
variable of interest (variance, coefficient of variation (CY),
etc.), and the experimental design (completely randomized,
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randomized block, etc.). Unfortunately, the variation asso-
ciated with efficacy measures in forestry herbicide trials is
rarely published in a useful form, and agricultural statistics
texts generally give only the most basic methods of determin-
ing sample size for simplistic scenarios. Calculating sample
sizes for some statistical tests can be very difficult (Menden-
hall and Scheaffer 1973). and although complex graphs and
computer programs are available for this task (Odeh and Fox
1975; Dallal 1986). none that the authors have found allow
direct comparison of the relationship between sample size and
precision without multiple iterations of use. In this paper we
discuss the sources of variation in herbicide trials, present
typical CVs of efficacy measures observed in herbicide trials
with woody plants, and provide graphs from a publicly avail-
able computer program that allow direct comparison of
sample size - precision trade-offs for stipulated levels of vari-
ability, 01 and p.

Variation in efficacy measures
Variation in efftcacy measures is influenced by the exper-

imental unit, the sample’s&,  properties inherent to the effi-
cacy measures themselves, and even the range of efficacy
found as a consequence of the herbicide trial design. For
woody plant herbicide trials, the experimental units are either
individual rootstocks  or plots (Glover 1991). Intuitively, the
use of iudividual rootstocks  as an experimental unit seems
appropriate for treatments applied to individuals such as basal
sprays, injection, soil spot-around, and directed foliar spray
applications. With sufficient care, the application to each indi-
vidual will be relatively uniform and the sources of variability
associated with different chemical treatments will be those
inherent to the rootstocks,  the treatments, and their interac-
tion. By convention, variation not associated with treatments
is considered error (E),  .and whatever the source of experimen-
tal errors. replication, steadily decreases the nonsystem-
atic error &sociated  with the difference  &et+e&  the qxage
response for different treatment+ (Co&ran  and Cox 1957). A
number of authors suggest that 30 to 50 individuals is an
appropriate number of woody rootstocks to sample for each
treatment (Kline et al. 1985; Glover 1991). without specific
justification. Although no data have been published on the
effect of sample size on variance for woody plant herbicide
trials, the variance -and CV observed in samples from popu-
lations of normally distributed individuals begins to stabilize
(change very slowly) as n increases. Figure. 1 depicts the
change in CV with increasing sample size for two populations
of 100 randomly selected observations. Population A simu-
lates observations from a herbicide trial with widely ranging
efficacy results (20-100%)  and a mean of 56% control; pop-
ulation B simulates observations from a trial with a narrow
range (80-100%)  and mean of 89%. In both cases CVs begin
high and decrease with decreasing rates of change as n
increases. CVs seemingly become stable at similar n-values,
even with these very different populations.

For broadcast applications of herbicides (both liquid and
dry formulations), the use of plots of land as experimental
units may be more appropriate. Most often, observations or
measurements of efficacy are still made on individual root-
stocks, which are treated as subsamples. Individual rootstock
data may be averaged or summed to provide a plot-wide
efficacy estimate. Other sources of error, in addition to those
mentioned for individual rootstocks, are introduced as a result
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Fro.  1. Coefficients of variation. for the first  30 observations drawn
at random from two simulated (100 random, normally distributed
numks) pqndations of herbicide &cacy  obsgvations with ranges
of20-100%  control (population A) and 80400%  control (popula-
tion B).

of herbicide application and (or) are inherent in the properties
of an individual plot. Even with the utmost care, broadcast
applications result in swath skips, overlaps, variation in appli-
cation rate across the swath, and cases where individual root-
stocks receive less chemical as a result of shielding by other
plants. Double applying at one-half rates, use of only one
swath, and (or) measuring only rootstocks that “‘appear” to
have received a full dose; as is practiced for many experi-
ments, still cannot completely eliminate these additional
sources of variation. Variability in soil physical properties
between plots may be a particularly large source of variation
in soil-active herbicide trials. Lacking specific variance data,
three to five plots in which 10 or more individual rootstocks
per species have been measured (summing to the 30 to 50
individuals) have been recommended (Glover 1991).

The size of each plot can influence the variation associated
with estimates of the per-unit-area efficacy responses. In
mensurational studies, small sample plots usually exhibit
larger CVs (relative variability) than large plots (Avery and
Burlchart  1983). Larger plots tend to average out local varia-
tion in the spatial distribution of efficacy effects. Within-plot
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TABLE 1. Example, experiment-wide coefficents of variation (%) for woody plant herbicide trials, with individual plants as the experimental unit

Study type Application

Release Backpack, basal
directed

Site preparation Backpack, fohar
broadcast

Right-of-way Backpack, basal
directed

Site preparation Backpack, soil
broadcast

Site preparation Backpack, soii
b r o a d c a s t

Species”
No. of Efficacy

Treatment levels variable BC BG BL CO DW  HI LP SG RM RO WO YP

Visuatly  estimated efficacy

Rate 3 Top kill 45 92 25 73 52 16 71 46 2’7 96

Mixes and 14 Top kill 24 9.5 26
rates

Mixes 9 Crown volume 5 76

Rat&S 9  Crown  v o l u m e 52 70 58 89

Formulation 2 Top kill 90 83

Measured efiicacy

Site preparation Backpack, foliar Mixesand  1 3 Cmwn volume 29 37 36 41 36
broadcast rates

Right-of-way Tractor, foliar Ratesand  11 Height growth 77 64 92
broadcast adjuvants

Release Backpack. foliar Rates 4 Crown volume 17 48 55 115 22
broadcast

Release JJackpack foliar Mixes 5 Crown volume 56 43 14 41 18 18 15 57
directed

Site preparation Backpack, Mixes and 13 Height growth 37 39 46 53 43
foliar broadcast rates

- -
%C. bhck cherry  (Pnuucs  ~emfino  Ehttt.1.  L3G.  black gum (h’yssa  @dca Marsh.);  BL black locust  (Robini  psorckurcocicr  L); CO, dxcstwt  oak (Qwrus  pimu  Lx DW.

dogmod  @Llwruajloti  L); Hl, bickoty  (bya spp.);  LP, loMdly pioe  (pinur  kzcak  L); SO. wddgum  (Qddambarrfyraci~  L); Rhf.  nd  mqle  (her rulwwn  L): RO, no&an
d oak (Quema ratbra  L); WO, wbhe oak (Qwrc~  al& L);  YF’.  yell~~-ppla.r  (Liriodrndmn  tuUpipi/em  L).

variation may be particularly importaut,  for example, when
determining the effects of treatment on survival or mortality
of target or crop  species in heterogeneous stands. As plot size
increases, it may be difficult to identify and fit an adequate
number of plots iu a study location.

Efficacy can be estimated visually or measured (Zedaker
and Miller 1991). Visual assessments entail the estimation of
percent of rootstock’s top that is damaged or killed by treat-
ment (percent defoliation, crown reduction, etc.: see Miller
and Clover 1991). With practice, observers can become rea-
sonably consistent (minimizing repeat sampling error) at cat-
egorizing or estimating the condition of crowns of even very
large trees (Zedaker and Nicholas 1991; Nicholas et al. 1991).
However, a source of variation that has not been addfessed  is
observer bias. Bias, in this case, is the systematic difference
between the mean of a visually estimated or observed effect
and the mean of that effect when actually measured. For
example, if, after looking at a large number of trees; an
observer estimates that treated trees had 50% smaller (aerial
volume) crowns after treatment, when the actual change in
crown volume of those trees measured was 60%,  the observer
has underestimated the efficacy of the treatment by 10% (bias
is -10%). If that bias was consistent across the full range of
treatments and the observer had no vested interest in any of
the treatments or never knew which treatment he or she was
observing, this bias would not impact the experimental
outcome. Any violation of these assumptions would invalidate
the experiment. Even in the absence of a violation, compara-
bility of experimental results is jeopardized unless observer
bias is constant; to the authors’ knowledge, no estimates of

observer bias (checks of observations against measured stan-
dards) have been published in any study using visually esti-
mated woody plant herbicide efficacy raSsessments.

Measured attributes (height, diameter, crown volume index
(diamete?  x height), etc.) used for efficacy assessment do not
suffer fkom observer bias but are not necessarily inherently
less variable. A survey of 10 herbicide trials did not indicate
consistent patterns between the CVs observed when efficacy
was visually estimated and when it was measured (Table 1).
Observed CVs (on the basis of individual rootstocks as rep-
licates) within species, pooled across treatments, varied
mostly between 24 and 96, with few less than 20 or exceeding
100. Although the survey is not exhaustive, it provides a
suitable range of CVs for different types of studies, applica-
tion techniques, efficacy variables, and woody plant species
that should enable researchers to design experiments better
suited to account for the variability of efficacy data. For both
measured and visually estimated assessments, any efforts to
reduce the error associated with the observation of individual
rootstocks (consistently holding a height pole straight, mea-
suring DBH at exactly 4.5 ft  (1 ft = 0.30 m) each time, prac-
ticing visual estimation on plants with measured attributes,
etc.) will be rewarded with lower CVs and increased experi-
mental accuracy.

Finally, the design of the herbicide trial itself, or more
specifically the concentration of treatments relative to the
expected efficacy range, affects the variability of the results.
For example, an experiment designed (using high herbicide
rates, very effective herbicides, easy to control species, etc.)
so that the range of treatment efficacy varied only between
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(a) <b)

FIG.  2.  Sample-s& curves  for a one-factor eornpletely  randomized design (a) Base case sample-size cnrves  when a = 0.05 and 8 = 0 .20 ,
wi th  two treatment  levels.  (6) Sample-size curves when a = 0.05 and fi = 0.50. with two treatment levels.  (c) Sample-size curves when a =
0.20 and @  = 0.20, with two treatment levels. (d) Sample-size curves when a = 0.05 and fi = 0.20, with five treatment levels.

80 and 100% control will have smaller experiment-wide CVs
than one in which the expected range of control varied
between 20 and 100%.

Obtaining an adequate sample
Forestry herbicide researchers have many different objec-

tives for obtaining efficacy data (Giover 1991); however, the
unifying goal is the detection of differences in efficacy
between treatments. Although experiments are conducted that
produce widely varying results (50 to 80% differences in
efficacy), tightly controlled, statistically adequate experi-
ments are needed for the detection of small differences in
treatment efficacy. Well-replicated and carefully measured
experiments are not necessary for the detection of large treat-
ment differences (see Fig. 2). It is for experiments attempting
to detect the effect of treatments within 30% of the mean that
CVs, hypotheses testing error probabilities, and sample size
are so important. Such “fine-tuning” experiments (known as
secondary field evaluations, Glover 1991) are most common
once gross differences in chemicals or rates have been dis-
covered (in primary field evaluations). Woody plant herbicide
efficacy experiments in which the major objective is to detect

small (125%) differences in effect due to differences in active
ingredient rates, herbicide mixes of two chemicals in various
ratios, different surfactant types and rates, and different for-
mulations of the same active ingredient are commonplace.
Such experiments often have inadequate power to detect sta-
tistically significant .differences between treatments due to
inadequate sample size and the inherent variability in the
observat ions.

In efficacy experiments,. researchers usually test the null
hypothesis that herbicide treatments are not different (Ho:
ul = p2  = p3.  . . pi).  Researchers focus on the probability of
committing a type I error (a, i.e., the probability of rejecting
a true II,,)  with little attention to the probability of committing
a type II error (p, the probability of accepting a false I+$
(Gregoire and Driver 1987). However, the objectives of many
studies dictate that protection from a type II error, failure
to find a difference of some meaningful magnitude, is as
important, if not more so, than false claims of a disparity
between treatments. Small differences in efficacy could result
in large differences in profitability as a result of changes in
growth and yield. For example, the volume yield of loblolly
pine is reduced disproportionately by small changes in the
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CABLE  2. Means and coefficients of variation (CV) for
percent control of crown volume on eight Virginia tracts
1  year after aerial application for release with glyphosate

Individual
trees * Tracts *

Mea+ CV Mean CV
(96) (%I WI (%I

Loblolly  pine 14 300 15 193
Red maple 48 110 53 55
Yellow-poplar 47 119 5 9 4 1
White  oak spp. 65 83 80 26
Sweetgum 71 5 5 92 13

NonzDouuefmmD’Auiid-(1990).
%ulmswsueacucombiucdwitiaspadcs.
%uafortrustivirhicadlbadwasud~thc~obsavacial

forrspacia.~theame meaaaMdcvsfaau~~compu(ed.
cMcsmdiffaforindividualtrasAndfortncLrbmuKtraclmcans

ur  uuwcighti  ir.  the number  of individuals lueamedweacbtlaa
vsricdbdwcm20sJJd40.

percent of total basal area made up by hardwoods in planta-
tions (Burkhart  et al. 1987). As a result, both landowners and
chemical compadies  would be eager to detect small differ-
ences betw=n  herbicides or herbicide treatments  in the effi-
cacy of hardwood control. The ability to sell a chemical
depends on a company’s ability to .differentiate  it from those
of its competitors. In herbicide efftcacy  studies, the conven-
tional definitions of a and /3 errors as representing producers’
and consumers* risks, respectively, mav be inaupmpriate
(SokaI and Rohif 1981).

Statistical texts regard the precision, or ability to detect a
difference of some stipulated magnitude between treatments,
as the power of a test to detect that difference (see Steel and
Torrie  (1960).  C&mm  and Cox .(1957),  Sokal and Rohlf
(1981). and Cohen (1988) for detailed discussions). By defi-
nition, power is equal to 1 - 8. Obviously, the higher the
power of a test (the smaller the b).  the more likely we are to
detect a difference between treatments. Since we are often
locked into a particular level ‘of a by convention (in many
refereed journals, 0.05). the only way to improve the power
of a given test (when CVs are also set) is to increase the sam-
ple size. Conversely, if the power or p were  fixed, increas-
ing the sample size would decrease the difference between
means of treatments at which a statistically significant dif-
ference would be found.

Unfortunately, for experiments with complex designs (fac-
torial, randomized blocks, nested, split plots) and more than
two treatment levels, the relationship between cc, & 6, and n
is complex and dependent on the calculation of different non-
centrality facto&  for different tests (Cohen 1988). The avail-
able methods allow the determination of the power of a test
for a specific sample size, a and 6, or allow the determination
of a sample size for a given power, but the relationship
between n and 6 for acceptable error rates (fixed a and p)
cannot be determined without tedious iterative solutions of
complex equations, iterative table or graph use, or multiple
runs of existing computer programs (Odeh and Fox 1975;
Sokal and Rohlf 1981; Han 1985; Cohen 1988; Dallal 1991).
Since it is likely that researchers may want to fix both a and
6. the appropriate n will be determined by compromising 6.
That is, for a given cost of obtaining larger sample sizes, what
is the difference between treatments that could be detected?

Or conversely, if a specific 6 is meaningful, we would want
to know how many individual root$tocks  or plots should be
measured. Say, for example, that to make users switch from
herbicide A to herbicide B, we must be able to detect a 10%
difference in their efficacies, if A costs 10% more than B.
Therefore, given that we are willing to set a and p probabil-
ities, and that we know generally what CV to expect, why
would we want to conduct an experiment that had little chance
of detecting a 10% difference in efficacy between the two
herbicides?

A computer program to allow direct comparisons of n’and
6 and CVs was written for IBM-compatible microcomputers.
(The program inputs and outputs axe described in the
Appendix.) The calculations are based on formulas listed in
Odeh and Fox (1975). Example graphical output from the
program is contained in Fig. 2). The graphs depict the number
of replicates, or tz,  necessary to detect a significant treatment
effect for difference ranges in size of effects and CVs for a
completely randomized design at different levels of a and 0.
In the  construction of these graphs it was assumed that

Y;;  = u + 6;  + fzo

where
Yii  is the value (efficacy)  of observation  j in treatment i

p is the grand experimeni-wide  mean

Si is the effect of treatment  i

tq is the error, & -. N (0, 0’1

and
Si, which equals  @i/p)lOO,  4 the S% of e&ct  (or

effect size) expressed  as a percent of the mean.
For an experiment with T treatment levels, we entertained

thenuUhypothesis(Ho:6;=O,i=1,2,3,...,T)againstan
alternative hypothesis (Ht: 6; # 0):To  construct the curves,
an array of specific alternatives was Considered and for each
specific alternative the noncentrality parameter was evalu-
ated. There are countless ways that this could be done. We
chose the alternative hypothesis that the 6; were uniformly
distributed over the rahge  max@$min@~).  For example, if
our experiment had five treatment levels, and the range in size
of effects was 50, the Sf would be 25, 12.5,0,  -12.5, and -25.

For discussion purposes, the conditions exhibited in Fig. 2a
represent the base case where a one-factor completely ran-
domized design with two treatment levels and a = 0.05 and
j3  = 0.20 is analyzed for three CV values (covering the
majority of values obtained in Table 1, where CV=  (4p)lOO).
With a CV of only 25%,  the number of replicates necessary
to guard against a type II error (achieve an 80% power) is
reasonable (less than 30) even for a small range of effects
(10%). Increasing the experiment-wide CV to Z50% makes
the detection of small differences exceedingly difficult with-
out very large (~100)  sample size. If we increase the proba-
bility of a type II error to 50% (decrease our power to detect
differences), we reduce the sample size necessary for detec-
tion by approximately one-half (Fig. 2b). Such low power is
likely the rule, rather than the exception, for woody plant
herbicide trials, judging by the sample sizes commonly
reported in the woody plant efficacy literature and common
CV values (Table 1). Increasing the probability of a type I
error to 0.20 (Fig. 2c)  has a nearly equivalent effect. Increas-
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ing the number of treatment levels to five (Fig. ti) increases
the necessary sample size.

When plots or tracts are used as the experimental units,
CVs  are substantially reduced (Table 2). D’Anieri  and
Zedaker (1990) found that the use of tracts, as opposed to
individual trees, as replicates reduced CVs  30 to 70%. How-
ever, it is common to install herbicide experiments on repli-
cated plots on a single tract. Since plots within tracts might
be expected to be even less variable than whole tracts, most
herbicide efficacy experiments conducted on single tracts of
land would have even lower experiment-wide CVs. For sec-
ondary field evaluations, where the range of efficacies is
expected to be high (SO-loo%),  the CVs  using plots as rep-
licates would be relatively low (perhaps 40%)  and the cor-
responding precision of the experiment would be improved.

Conclusions
To detect small differences in the efficacy of herbicide

treatments, within the range of typical variation in efficacy
observations and for generally acceptable cc  and 6 probabili-
ties, surprisingly large sample sixes are needed when individ-
uals are the experimental unit. When plots (within which
many (10 or pore)  individuals have been measured) are the
experimental units, fewer replicat2s  are needed because CVs
are reduced. However, common herbicide trials with three or
four replicate plots have relatively low power. Woody plant
herbicide researchers would greatly improve their chances of
conducting successful experiments (designing an experiment
that would be able to detect differences in the treatments they
are evaluating) if they more carefully assessed the trade-offs
between precision and sample size. A listing of the program
used to generate the sample size - range of effects graphs can
be obtained by writing the senior authors at Virginia  Poly-
technic and State University, Blacksburg.
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Appendix
The SAMSIZ  program is written in SAS. No input data are required, but prior to invocation, there are a number

of macro variables that must be initialized by the user. SAMSIZ  produces an output data file. Each data record
in the output file consists of four values. The first is the effect size expressed as a percent, i.e., the abscissa
value in Fig. 2. The remaining values are the three coordinates corresponding to the three CV levels.

SAMSIZ  invokes two SAS macro program segments that must reside on the disk drive indicated by macro-
variable DRIVE. The other macro variables stipulate (i) the value of a; (ii) 0, which is used to determine sample
size; (iii) the experimental design; (iv) the number of treatments; and (v)  the CV levels. Comments at the
beginning of the program define these variables and stipulate permissible values.


