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,4bstract: &ologists  and foresters have long noted a link between tree growth rate and mortality, and recent work sug-
gests that i&erspecific differences in low growth tolerauce’is a’itey for&-shaping forest structure. Little information is
available, however, on the growth-mortality relationship for most species. We present three methods for estimating
growth-mcrtality functions from readily obtainable field data All use annual mortality rates and the recent growth
rates of living and dead individuals. Annual mortality rates are estimated using both survival analysis and a Bayesian
approach. &owth  rates are obtained from increment cores. Growth-mortality functions are fitted using two parametric
approaches and a nonparametric approach. The three methods are compared using bootstrapped cbnfidence intervals
and likelihcod ratio tests. For two example species, Acer  rubrum L. and Comusfloridu  L., growth-mortality functions
indicate a substantial difference in the two species’ abilities to withstand slow growth. Both survival analysis and
Bayesian estimates of mortality rates lead to similar growth-mortality functions, with the Bayesian approach providing
a means to overcome the absence of long-term census data. In fitting grcwth-mortality functions, the nonparametric
approach reveals that inflexibility in parametric methods can lead to errors in estimating mortality risk at low growth.
We thus suggest that nonparametric fits be used as a tool for assessing parametric models. I
R&sum6  : Les  Ccologistes  et les forestiers ont depuis longtemps.  note le hen entre le taux de croissance et la mortalit&
des arbres. En outte,  des travaux &cents  sugg&rent  que la structure de la for&t serait  ddtermin6e  principalement par les
diff&ences  intersp6citiques  dans la capaciti  de survie a une  faible croissance. Cependant,  i l  y  a  peu d’information sur
Ja  relat ion emre  la croissance et’la mortalit  pour la plupart  des essences.  Nous  pr6sentons  t ro is  m&odes  pour est imer
les fonctions  de croissance et de mortal% B partir de don&s de terraiu facilement disponibles. Tomes  les m&hodes
ut i l i sent  le  ikaux annuel  de mortal i te  et  le  taux  de croissance recent des arbres vivants et  morts.  Le taux  aunuel  de mor-
talite  est  e&m6 a la fois par l’analyse de survie et  l’approche bayesienne. Le taux de croissance est obtenu par les ca-
rottes  de sondage.  Les fonctions  de croissance et de mortalite sont ajust& a l’aide  de deux m&odes  param&riques  et
d’une  methode  non param&rique.  Les trois methodes  sont cornpar&  B l’aide des intervalles de confiance  amorce  et
des tes ts  du  rapport de vraisemblance. A titre  d’exemple, les fonctions  de croissance et de mortalit  montrent  une  dif-
ference substantielle entre 1’Acer  rubrum  L. et le Comw  firi& L. dans leur capacite  B  survivre a une faible crois-
sance.  L’estimation du taux de mortali te par l’analyse de survie ou l’approche bayesienne conduit  a des fonctions  de
croissance et  de mortali te semblables.  L’approche bayesienne permet  cependant de pallier l’absence de domees
d’inventaire  a long terme.  Pour l’ajustement des fonctions  de croissance et de mortalit&  l’approche non param&.rique
r6vele  que l’inflexibilite  des m&hodes  param&riques  peut engendrer des erreurs dam  l’est imation du r isque de morta-
lit6  d0 a une  faible croissance. Ainsi,  nous  suggerons  que les  ajustements  non psram&riques  soient  utilisCs  comme ou-
til pour &valuer  les modeles parsm&riques.

[Traduit  par i~‘Rtdsction]

I n t r o d u c t i o n
The traditional notion of “shade tolerance” classifies spe-

cies according to their abilities to grow tid sui%ve  unZ=zr
closed canopies (Burns and Honkala  1990). While research
has long concentrated on growth responses atLow  light, at-
tention has expanded in recent years’ to increasingly consider
the relationship between growth and mortality (Buchman
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1983; Buchman et al. 1983; Fahey et al. 1998; Kobe and
Coates 1997; Kobe et al. 1995; Kobe 1996). Because growth
rate integrates the effects of many variables on vigor, it
serves as an index of mortality risk. Foresters have Eng rec-
ognized that mortal@  risk increases as growth rates decline
(Monserud  1976). Simulation models formalize the relation-
ship, incorporating a “growth-mortality function” that pre-
diets  the probability of mortality .based on recent growth
history (Botkin  1993; Pacala and Hurtt  1993; Loehle and
LeBlanc  1996). Species differences in tolerance of slow
growth may contribute to community composition (Pacala
et al. 1996).

Unfortunately, the data needed to parameterize  the rela-
tionship between growth and mortali&  and how it varies
among species are difficult to obtain. Tree mortality is not
often directly observed. Data from long-term permanent
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plots can he used both to estimate mortality rates and to fit ( p(u) = 1 -p(d), respectively. For a data set GN containing a sample
growth-mortality functions ‘(Buchman et al. 1983; Hamilton \ of N trees, the likelihood that D trees die on this interval is the
i986),  but such data sets. are few and often include only
large trees. Long or irregular sampling intervals often pre-
clude analysis of recent growth history (Sheil and May
1996). In the absence of loug-term  censuses of large popula-
tions, mortality rates can he estimated from  dead trees en-
countered in the field (Kohe  et al. 1995). This method,
however, requires knowledge of how long trees have been
dead, and uncertain decomposition rates can make it difficult
to estimate time since death. Existing methods for modeling
the growth-mortality relationship are more complex than
necessary. We are unaware of efforts to determine confi-
dence levels for the mortality rates obtained by such meth-
ods and how that confidence translates to error in growth-
mortality functions.

The paucity of data describing the growth-mortality rela-
tionship has led to simplistic assumptions in models that af-
fect predictions. For example, JABOWA-FORET models
assume that all species exhibit the same tolerance of low
growth, resulting in predictions much different from those of
models that assume species differences (Kobe  1996; Pacala
et al. 1996). These conflicting predictions suggest a need for
improved understanding.

Jn this paper, we present’ and test alternative methods for
estimating tree mortality rates and growth-mortality ftmc-
tions  from field data. Our analysis is presented in three
parts. First, we outline  tictions.  describing mortality and
its relationship to growth. Second, we present three altema-
tive statistical models of the growth-mortality relationship.
Two parametric models (A and B) entail different assump-
tions concerning how populations are sampled. Our method
C is a nonparametric approach that shows where paramet-
ric models may fail because of inadequate data or model
i n f l e x i b i l i t y .

Finally, we provide methpds  for estimating mortality rate,
which is required by ah growth-mortality models. A Bayesian
approach can be used to u date mortality  estimates as new

!ldata accumulate. To assess ow confidence in mortality rate
tiects  confidence in growth rate as a predictor of mortality
risk, we integrate the posterior density of mortality rate. We
compare the Bayesian approach with survival analysis.
To demonstrate and evaluate  the approaches we use data
that include (i) growth rates from living and recently dead
Acer  n&nun L. and Conzus florida L. trees, (ii) counts of
living and dead stems, and ~(iii)  sequential censuses of mor-
tality from permanent plotsi.  These data are part of a larger
study of the growth-morta$ty  relationship for so&em  Ap-
palachian tree populationsl  (PH. Wyckoff and J.S.  Clark
in preparation). I

The relationship between growth and
mortallty

Growth  as an indicator of risk c
A growth-mortality  function describes how mortality risk iu-

cific models in the next sectio
We preface our description of spe-
with  this  section outlining elements

the  event that an individual dies
in a given time interval, and be tire event that it survives. The
complementary probabilities f these  two events are p(d) and

binomial:

[la] QG,If$ f i)I&%;fl) x~<D - p(dlg,;fI)]
* id id

where the  growth-mortality function p(dgi;  8) is the probability of
death conditioned on a risk factor (growth rate) gi and fitted pa-
rameters f3. lf there is no relationship between growth and mortal-
ity (i.e., all iudiviiius  experience the  same risk) then eq. la
simplifies to tire bmomial

where the parameter 0 represents the overall probability of death
p(d). The maximum likelihood estimate of 8 is

[21 6=; .,

The probabilities in eq.  la can be expressed in terms of an odds
ratio

[3] d&r)  d4Q- = -
dab?)  d4

where I

.[41 ddd)e = po

. Thus, there are three elements to model (eq. l), including the over-
all probability of death p(d) = 8, which  is estimated as the  propor-
tion of dead trees in the sample (eq. 2) and the  deusities of growth
rates of dead &Id) and living p(gla) trees. These three elements
fully define the mortality function, because the  probability of death
at a given growth  rate p(&) and its complement p(ulg) are calcu-
lated from 0, p(gld), and  &!a), i.e.:

ddk) =eQ
1-ddlg)  l-0

Equation 3 “cau be cast as Bayes’ rule to express the  probability
density of deaths at growth  rate g, p(dlg,  e),  in terms of the overall
mortality probability p(d) = 9 and the  density of previous growth
rates for dead individuals, p(&f):

PI p(dlg,6)  = d4ti)ld)

where the  probability density of a growth  rate g is the weighted
average:

Eel  d& =%Wd)+O-9dM d

The relationships in eqs.  3-6 are the  basis for the models that
follow. 2.

Growth-mortality models
There are two ways to estimate the  relationship between growth

and mortality. The first is a direct estimate ‘using census data. Sur-
vival analysis is appropriate here, ahowing for direct analysis of
how a risk indicator (e.g., growth  rate) affects  mortality. Unfortu-
nately, long-term census data are rarely available. A second way to
estimate growth-mortality  functions sidesteps the long-term data
needs by extracting mortality and growth  iuformation from trees
already dead (Kobe et al. 1995). Rather than follow a population
over time, this approach focuses on pa&risk  (represented by
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growth rate). A&ysis  can be complex for reasons discussed
below.

We derive and then compare three methods for analyzing
growth and mortality. OIU
but  i t  i s  not  based on a  .inomial  l ikel ihood.  We est imate growth
functions  p(gla)  and p(gl
then calculate the growth mortality function using the odds ratio Q

9

first  method is  parametric (method A),

and mortality rate 0 independently and

(eq .  3) .  The second me od (method B),  also parametric,  uses a
single function for gro rate and mortality, and is based on a bi-
nomial likelihood (eq. 1). These methods are compared with a
third,  nonparametric  approach (method C).

Method A: a gmwth rqrte  focus
In the absence  of census data, it is still possible to estimate

a growth-mortal i ty function,  provided we know mortal i ty rate 8.
The relationship can be btained from fitted growth distributions
and 0. Equation 5 can 0rearranged to give the growth-mortali ty
function: I

[7a] ~ 8p(dlg,O)  = v
0+(1-0)/Q

and its complement:

[7b] p(alg,O)  = 1-8
l-$+eQ

where Q is a rati
trees (eq.  4). We
hood for recently

f of living and recently dead
s for growth rates, the likeli-

PI 4&j  hd, Ed)=  P(gJd)  =n-n D y’

hl l-@d)
gF-’  exp(-hdgj)

’i-4

where hd  and pd  are parameters.  The l ikelihood for growth
only in  having parameter  subscr ipts  a

ratherthandandas size of A rather than D. In summary,
this first method fits distributions to each data set (living

and then, together with the mortality
rate,  calculates the growth-mortali ty function using eq.  7a.

Unlike the growth-mo ‘ty function used in ii&hod  A (eq. 7),
eq.  9 does not explicitl

r
show the mortali ty rate 8.  However,  this

l ikel ihood depends imp ‘citly  on 0, because 8 represents the frac-
t ion of  dead trees in thf ‘sample (eq.  2) .  This  method provides a
likelihood for the entire sample and, thus, a basis for model evalu-
ation,  but  sampling co
ward application (see

4

&rations will often preclude stralghtfor-
low).

Method C:  ironpar
dir

tric
Parametric models s e the disadvantage that the mortality risk

estimated at one growl/h  rate depends on estimates at all other
growth rates and, thus,  ion  the  dis t r ibut ion of  data  points  (Lavine

1991).  Problems are especially l ikely where data sets contain few
dead trees.  To evaluate our parametric est imates we compare a
nonparametr ic  model  that  is  constrained only by the assumption
that  risk changes monotonically with growth rate (Ayer et al.
1955). The nonparametric model is binomial. It differs from
method p  in that it assumes a discrete sequence of bins 3 that de-
creases monotonically with growth rate. Cur algorithm begins with
an arbitrarily small bin width. Growth rates of all living and dead
trees are partitioned into bins j I: 1,2,  . . . . m, and a corresponding
mortali ty rate for each bin is determined as

[IO] 0, A-
ni

.r. b

where d. and n. are, respectively, the number dead and total trees in
bin j. The  alg&hm  then checks for monotonicity. Bins for which

.f!I  s  f3+r  are expanded (increased in width), data are rebinned, and
dl e process is  continued unti l  a  monotonic sequence is  achieved
having likelihood: .

. . .

where bl is the boundary (growth rate) between bins j - 1 and j. Al-
though the estimate of mortality risk in any one bin depends on ad-

jacent bins (to achieve monotonicity),  the dependency is weak
relative to that of parametric models.

Relatiqnship  to a previous method
A previous method for estimating the growth-mortality function

(Kobe  et al. 1995) uses a likelihood function that can be written as

The method involves maximizing the likelihood aasuming  a para-
metric (e.g., exponential) growth-mortality function p(dig)  with
fit ted parameter set  pi  and the growth rate densit ies (e.g. ,  gamma
densities) of living and dead trees @(g&r)  and p(gJd))  with param-
eter set &. Equation 12 embodies confl ict ing assumptions regard-
ing how mortality relates to growth rate. The form of the growth-
mortality function p(dlg)  is already defined by the choice of func-
tional forms for growth p(gla) and &Id) (eqs. 3-5). Imposing a
new model, in the form of p(dlg),  amounts to adopting a new (and

conflicting) assumption concerning how mortality varies with
growth.  Cur methods A and B demonstrate how one can adopt ei-
ther a growth-rate (method A) or a direct mortalityJmethod  B)
function, each of which is ~internally  consis tent  ,and  less  complex
than eq.  12.

1 .

Mortality rate
Our three methods depend implici t ly  or  expl ici t ly  .on  morta l i ty

rate 8. For a single sample, eq;  2 represents the maximum likeli-
hood (ML) esthnate  of 8, but multiple censuses or large sample
sizes are needed to ,produce  acceptable confidence intervals.  In
practice,  multiple censuses are rarely available.  One alternative to
direct  observation involves counts of  l iving and recently dead
stems along transects (Kobe  et al. 199%.  To -estimate 8 from such
data, one must determine when dead trees died. Kobe et al. (1995)
judge trees to be recently dead based on twig suppleness and leaf
mention.  This method has the advantage of providing rapid estimates.
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We found criteria for judging time since death difficult to apply
and sought other means for estimating  8. The two methods we out-
line here use different data wes  and determine parameter confi-
dence based on different  trite ‘a. Our Bayesian analysis is applied

titto  two data types (s tem cotm and census data) to est imate 0 and
to determine how our belief i1$6 affects estimated mortality func-
tions. The survival analysis that follows is an adaptation of start-
dard methodology to tree census data,  where census intervals can
span multi$e  years or.be  of  uneven durat ion.

A Bayesian @im.ator  for rrjortality  rate
Our Baye&n approach treats mortality risk 8 as a random vari-

able described by a brobabtity  density.  The “spread” of that den-
sity reflects our  knowledge iof  9, which, in practice, depends
primarily on sample size. We ’ begin with a prior estimate of this
density,  with broad spread re becting  limited insight. Data refine
our understandmg,  which is manifest in a posterior density concen-
trated about  our  best  est imate.  The analysis  entai ls  specifying a
prior density for 8, which is subsequently “updated” with data. We
assume a prior beta density for the parameter 8:

Cl31 f(e)  =
(yw(+9&-W
Jwo, No - Do)

where B()  is the beta function,  and Do and Nc are prior estimates of
dead and total trees, respectively. The mean for this prior is eq. 2:

[14] E(e) =J$

with variance

Cl51 w9=!$-3
0

Additional data are used to sequentially update our density of 8.
Suppose a data set  yields numbers of dead and total  t rees Dr  and
Nl. The posterior density of 8 is also a beta density:

[16] f(CQ) = 1 f(9f(q!ei

I fof(4~9de
0

. (e.g., OWagan  1994). By sequential application the posterior den-
s i ty  fol lowing m censuses  is

This posterior can be integra ’
T

to obtain Bayesiau confidence in-
tervals  on the growth-mortal i function  itself: ‘5

D81 p(dlg,D,,J  = jp(dlg~9f@QJd~
0 .  .

where the mortality fnnction  is eq. 7a  (method A) or eq.  9
(method B).

Survival analysis from sequential censuses
Survival  analysis  can  be applied where long-term census data

are available from permanent plots. Consider au initial sample of N
trees at time to  that will be censused  at successive intervals j = 1,
2 , . . . . m. The duration of census interval j, 5, is the elapsed, time be-
tween census  j - 1 and j: Dj individuals die during interval j, and
N - ~~zl Di remain to be tallied at the next census. Let fit)  be the
probabi l i ty  densi ty  for  mortal i ty  with  corresponding dis t r ibut ion
f u n c t i o n :

- -  2
F(ti-1,  tj)  = J’ fW

.-. - tj-1

F(t r, ti>  is  the probabii ty of  death during census interval  j .  Eachi .A.m vtdual  has one of m + 1 possible fates: it can die during one of
the m census intervals, or it can survive to the end of the study.
The likelihood can be written in terms of census intervals:

..

j-1

The product  series  incorporates the contr ibutions of  individuals
that die over the successive censuses, and the survivor function in-

ckporates  those that  remain al ive at  the last  census.
Now assume a constant mortality rate 8 that is continuous in the

sense that mortality is not limited to a specific time during  the cen-
sus interval. The ML estimate of 8 satisfies $hL=O, where

[20] InL  = $01 ln(e+-l -e-&l)
j - l

-( N-CyclDj  )%n

is  obtained by solving for  the dis t r ibut ion funct ion for  constant
mortality risk 8. For a single census interval of duration t we obtain
a closed form solution for risk:

6
There is no closed form solution for multiple censuses, but eq. 19
is readily solved numerically.

Combining mortality  rate estimates with  growth-mortality
$UlCtiO?ZS

Because recently dead trees are often rare, they are infrequent in
stem counts and census data. Impossibly large sample sixes may be
needed to obtain sufficient dead trees for confident growth-mortsl-
i ty f i ts .  Whereas a modest  number  of dead trees may be%ifficient
to est imate mortal i ty rate,  large nmnbers  are needed to est imate
growth-mortal i ty functions.  For example,  a  mortal i ty rat9 of  8 =
O.Ol/year,  would require growth rates for 2000 live  trees to. obtain
20 from dead trees. Although 20 dead trees may yield acceptable
est imates of  mortal i ty rate ,  this  sample size  may be too small  for
est imating the distr ibution of growth rates of recently dead trees
(e.g., eq.  8). If we actively search for dead trees, then we lack the
proportions of living and dead trees that determine mortality rate.
Our sampling scheme (see Field data below) involves active search
for dead trees,  which provides growth rates disproportionate to
their  representat ion in the f ield.  To f i t  binomial  models  to such
data, we describe a bootstrap procedure for weighting effects of
growth data according to.the  est imate of  their  contr ibut ion to the
likelihood as implied by eq. 2 (see Estimation below).
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S t u d y  a r e a
Data were obtained fr+.the  Coweeta Hydrologic Laboratory in

the southern Appalachian Mountains (35”03’N,  83”27’W).  Mean
annual  temperature is approximately 13°C and average annual
rainfall  is  220 cm (Swift  et  al .  1988).  Temperature decreases and
precipitation increases with increasing elevation. Soils are primar-
ily Ultisols and Inceptisols  (Velbell988). Dominant overstory  veg-

Quercus prinus L., Quercus
(Mill.) Sweet, and Liriodendron tulipi-

species include Cornusfiridu,  Acer
pennsylv&i&m  L., and ?2hododetuinm  manmum L.

Methodii-

Field data
Data derive from two study areas at elevations of 800 and

1100 m. Growth rates were obtained from increment cores of l iv-
ing and  recently dead Aher rubrum and Cornus  jlorida trees. “Re-
cently dead” trees were defined as standing individuals without

trees with intact
resul t from cata-

transects at each of two study areas. Within approximately
10 m of each dead we cored and measured diameters of
conspecif ic  l ive indi of similar size. Growth increments
were measured with th
measuring system. We i

WINDENDRO (Regent Instruments Inc.)
port radial growth rates averaged over the

five most recent growth ~years.  Long-term growth histories are con-
sidered in a companion paper (P.H.  Wyckoff and J.S. Clark, in
preparation). I

To est imate mortali
I

rates, we used three censuses from five
permanent mapped plo . Plots were 40 m x 20 m when estab-
lished in 1991. All tree over 2 m tall  were measured in 1991, and
survival was checked d the survivors remeasured in 1993. Trees

I

were censused  again . 1995. Also in 1995, the plots were ex-
panded to 60 m x  60 m and a’recensus of the expanded plots was
done in  1996.

For our  Bayesisn  m e od , we used three types of prior mortality
estimates.  Our fhst  pri is based on a stem count method similar
to that of Kobe et al. (1 95),  where Nc is the total number of indi-

lviduals and Dc  is an es a te of the number that die per year. Stem
counts were conducted fin  5  m radius plots  located at  20 m inter-
vals  along transects  us for increment core sampling. Based on
the characteristics of dtad ‘trees in our census plots,  which died
during a known interva$  we estimated that trees remained idemifi-
able to species for an erage of 5 years. Do is therefore the total
number of observed de stems divided by five. Our second prior
was taken from USDA orest  Service Forest Inventory and Analy;
sis (FIA)  plots located * the seven North Carolina counties nearest
our field site 1(http:// .srsfia.usfs.msstate.edu/scripts/ew.htm).
We used only FIA plo in stands of similar age aud elevation as
our study sites. Our ’

+
prior is taken fromriiormhty rates of

Acer  rubrum from Mis ouri  (Shifley and Smith 1982).

Estimation
To examine how es ates changed with accumulation of data,
we estimated mortality
suses as “new”  data se

estimates are based on 500 resamples.  For method A, we first  ob-
tained ML estimates for growth densit ies (eq.  8) using resamples
of the growth data weighted by the proportion of dead trees im-
plied by our mortality estimates. Each resample included (i) a sam-
ple size  of dead trees equal to the number of dead trees in the data
set, and&i) a sample of size  of living trees of size

[21] A%&+

where D i s  the  nFb9r  of dead trees for which growth rates have
been obtained, and 0 is the posterior mortality estimate from
eq. 17. For each resample, we calculated the growth-mortality
functipp,  substiB&ing  for Q in eq. 7, and we examined the effect of
etror  in 8 on the growth-mortality function by numerically inte-
grating eq.  18. Thus, we accommodate both sampling error in

growth and confidence in the est imated mortali ty rate.
For method B, we used the resampling procedure to weight the

contributions of l iving and dead trees.  ML parameter estimates
were obtained for each resample usiiigeq. 9. The ML for the
model is  taken as the mean ML over the bootstraped sample,  be-
cause the underrepresentation of live growth rates means that there
is no likelihood for a raw data set. For method C, the algorithm de-
scribed by eqs.  10 and 11 was implemented on a data set  having
bins  weighted by the proportions of living and dead trees (eq. 21).
The fi ts  of methods B and C were compared with one another and

to the null model (eq. lb) based on likelihoods taken over the same
weighted sample size. The likelihoods estimated by this weighting
procedure are an approximation to the Likelihood  that would be ob-
tained had we sampled growth rates for al l  l ive trees.

Comparisons of the binomial models (B and C) are based on
Akaike’s  information criterion, AIC = 2(-m L + number of param-
eters), where L is the likelihood of the model (eq. 9 or 11). For
method B, there are two fitted parameters,  b and c. For method C,
the number of f i t ted parameters is  2m,  where m is the number of
bins. The fitted parameters consist of 0, and a boundary for each of
the .m bins, b,.

Binomial models. (methods B and C) were tested against the null
hypothesis  of no growth rate effect using the likelihood L(G#) =

0 (1  -B~%nd  a likelihood ratio test. Method B has one degree
of freedom (two fitted Weibull parameters minus one parameter for
the mll l ikel ihood,  e).  Method C has  2m - 1 degrees of freedom
(two for each bin minus one for the null  model) .

RWUltS

We use data from Acer rubrum  and Comw floria’u  to
demonstrate our methods, because they yield contrasting

mortality functions. At our study site, Comus  jloridiz con-
tracts dogwood anthracnose  disease, which accounts for the

poor tolerance of low growth we see iu this classically ‘tol-
erant” species (Burns and Ho&ala  1990). Growt&ates  were
measured for 107 living and  41 recently dead Acer rubrum
trees and for 26 living and  28 recently dead Co~~usflorida
trees.

Estimating annual mortality (0)
Because all three methods for relating growth and  mortal-

ity require an estimate of mortality rate, we begin with our
estimation of 0. To determine whether Bayesian confidence
intervals  are strongly influenced by prior estimates, we used
three priors from sources other investigators might use. Our
first prior is based on stem counts. For Acer rubrum,  our
initial stem counts yielded DO = 4.6 dead (23 deaths in 5
years for an  average of 4.6 dead trees/year) from a total of
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Fig. 1. Survival analysis and Bayesiau estimates of the annual
mortality rate 0 for both Acer @rum  and Comusflorida  change
with the iterative addition of more field data. Note the tighteniug
of confidence intervals (thin lines) with each iteration. The
Bayesian prior is based on stem count data which are not in-
cluded in the survival analysis,
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No = 142 trees. The Acer n&nun  prior has a .mean of
D,,/N,-,  = 0.032 and broad spread (var 8 = 0.015) (Fig. 1). Se-
quential application of our Bayesian method (eq. 17) using
permanent plot data progressively reduces the estimated
mean mortality rate to 8 = 0.023 (Da = 17.6 and No  = 751)
and reduces the confidence interval (Fig. 1). Cornusflorida
suffers higher mortal@  than Acer rubnun.  Mtial stem
couuts  yielded DO = 10 and IV,,  = 68 for a prior Bayesian es-
timate of 8 = 0.15. The posterior Bayesian es*te of mor-
tality is 0 = 0.17 (DO = 36.5 and No  = 217).

Our second prior was taken from Forest Service FL4 data.
In 1984, FL4 plots near our field site, at similar elevations,
and in forest stands of s$nihu  age, contained 68 Acer
rubrum trees 12.7-20.3 cm lin diameter. In 1990, 67 of&the
68 individuals remained ali+, for an average annual mortal-
ity of 0.17 trees (DO = 0.17 d No & 68) (Fig. 2). Using our
census data, the posterior e + te
0.0’19, lower than that ob

k

of mortality rate was 0 =
* ed using the prior based on

steti  counts. The FIA-bas  d prior for Comus florida in-
cluded 16 trees in 1984, fiflteen of which survived to 1990

Fig. 2. The effects of three alternate priors on the posterior
Bayesian estimate of mortality rate for Acer rubrum and Comus
flOrida.
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(DO = 0.17 and No  = 16). Addition of census data yielded a
posterior mean mortality rate of 8 = 0.16, slightly less than .
obtained using a prior based on stem counts (Fig. 2). Our
third prior for Acer rubrum  DO = 4.7 and Na  7 224 comes
from Shifley  and Smith (1982). Addition of our census data
does not change the mean mortality estimate (posterior 8 =
0.021).

Survival analysis of permanent plot data showed that most
Acer rubrum  mortality was confmed to the initial cohort.
The initial high estimate of 8 = 0.039 declinedwith the  addi-
tion of the second and third cohorts to a final estimate of 8 =
0.013 (Fig. 1). The estimated rate for Cornus  jZorida_ is 8 =
0.16 (Fig. 1).

Relating growth and mortality
Fitted growth rate densities from method A (eq. 8) show a

distinction between parameter estimates (h and p) for live
and dead trees (Table l), but parameter estimates are corre-
lated (Fig. 3). Recently dead trees tend tb  have lower growth
rates in the years just prior to death (Fig. 4). The mortality
fuuctions  derived from these fits (eq. 7a) show the risk of
death decreasing with increasing growth for both species;
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‘Ihble  1. Parameter
models (method B).

for gamma (method A) and Weibull

Pa&meter value 95% CI

Acer  tubrum ~

Gamma model (method /A)
Living trees h, ~

Pl

Dead trees -: hd,

.i Pd

Weibull model (methodiB)
b ~
c ~

comusjloridu
Gamma model (method ~A)
Living trees. h, ~

Pl

Dead trees
Pd ~

Weibull model (methods  B)

1.95
1.91
1.74
4.42

0.018
0.39

4.44

6.51

3.28
8.37

0.24
0.87 .

1.62-2.34

1.61-2.29
1.25-2.68
2.40-8.55

2.80-7.74

3.92-11.79
2.17-5.81
4.50-18.00

this decrease is stee for Comus jloriai~ (Fig. 5). Boot-
strapped 95% !confid  rice intervals show significant differ-
ences between the t$~o species’ abilities to survive radial
growth rates below 017 mm/year.

The Weibull growb-mortality  function (method B; see
Table 1) and the no$aratnetric  mortality function (method
C) predict relationshi s similar to those  obtained by method
A (Fig. 6). For bo Acer rubrum  and Comus j7oridu,
likelihood ratio tests of methods B and C versus the null
model are highly si *

mortality for Acer 1

cant (Table 2). Similar AK! values
(Table 2) indicate tb two methods fit the data equally well.
Because Bayesian an survival analysis estimates of annual

brum  and Comus florida were nearly
identical (Fig. l), there ‘is little difference in the owth-
mortality functions predicted using either approachfig. 7).

of agreement between
smoother to estimate

p(glu)  (Silverman
The  joint density
nparametric  condi-

The resulting smoo ed data are compared with the Weibull
function (method B in Fig. 8. Unlike our method C, the
smoothed kernel ne

i

not be monotonic.
The nonparametri method C and the smoothed data indi-

cate that the parame ‘c models (A and B) fail to capture the

Fig. 3. Gamma parameters h and p (eq. 8) from each of 500
bootstraps for the growth rate distributions of (a)  living and re-
cently dead Acer  rubrum show differences in parameter p. For
(b) living and recently dead Conwsflorkfa,  parameter values
show broad overlap.

(ai Acer rubrum

1.5
Q -I 'C

(b) Comus florkia
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steepness :of the increase .in mortality risk that oqurs  at low
growth rates (Figs. 6 and 8). Figure 9 shows this low-growth
region for Acer rubrum.  The parametric models are inflexi-
ble and do not reflect the abmpt increase in risk below
0.1 mm annual radial growth.

Discussion .
A growth-mortality function is an empirical summary of

the complex relationship involving environmental stress,
growth, and mortality risk. Slow growth indicates low vigor
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Fig.  4.  Growth rate distr ibutions (histograms) of (a)  recently dead and (b) l iving Acer  nrbnun  and (c) recently dead and (d)  l iv ing
Comurfloridu  with their respective gamma fits (solid lines). Note that living trees grew faster than recently dead trees for both
species. -

(a) Acer r&rum  - dead trees (c) Comus florida - dead trees

15-

(b) Acer rubrum  - live tees (d) Comus florida - live tries
25.

20.

8
$15.
3
tii
f IO.

5
5,

0

J

I

0
5 year average radial gro_wth (~JI)  e 5 year average radial growth (mm) i ,.

and risk from a variety of agents. The value ofxese  empiri-
cal relationships is evident from a long tradition of their
use in simulation models <Botkin et al. 1972; Shugart and
West 1977; Huston and Smith 1987) and from the more
direct evidence they provide concerning successional status
(Kobe  et al. 1995; Pacala et al. 1996). Because of tbeir im-
plications for the overall dynamics of forest communities,
the availability of confident estimates extends insight into
how life history affects succession and diversity. The difti-
cnlty  obtaining such es *

Fir
s is reflected in the simplistic

(e.g., step) functions tionally used in such models

(Botkin  1993) and development of creative new field meth-
ods (Kobe  et al. 1995). We contribute modeling approaches
that permit estimates under the sampling constraints that are
typical for such data. Our three methods for analyzing the
relationship between growth and mortality derive from dif-
ferent statistical models, but they give similar results
(Pig. 6). Each method has its advantages, and there are im-
portant differences. Before discussing the relative merits of
our three approaches, we evaluate our ability to estimate
mortality rate, 0, because each of.  our three methods depend
on it. .
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Fig. 5. Fitted mortality functions for Acer  rubrum  and Comus
florida based on method A. Broken l ines are bootstrapped 95%
confidence intervals. -

C o m u s  florida

Acer  rubrum

0 0.251 0 . 5 0 . 7 5 1 1.25 1.5
5 year kverage  radial growth (mm)

,,.
How well can we esthate  mortality rate?

Although there are ~many  published studies of tree mortal-
ity, model comparison is rare, and statistical inference tends
to be neglected (Clart et al. 1999). For the case where mor-
tality can occur at an time during a census interval (it is not
discrete), survival an ysis (based on eq. 20) offers ,a less bi-
ased estimate of 0 th does the traditional method of using
the fraction of trees at die divided by the duration of the
interval. Survival an1ysis with our census data provide con-
fident estimates (Fig! 1).

The Bayesian approach is valuable when data are limited,
because it exploits &or  information that can be;extracted

thout affecting the mean.

the area, so mortality rates
prior from FL4 data). Standard meth-

Can. J. For. Res.  Vol. 30,200O

Fig. 6. Mortality functions based on parametric methods A and
B and the nonparametric method C for (a) Acer  rubnun  and
(b)  Comusj7oridu.  Broken l ines are bootstrapped 95% co&
dence  intervals for method A.
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The beta posterior that we obtain from our conjugate beta
binomial prior is .especially valuable for error propagation. It
represents a parametric function that can be inserted in
eq. 18 and used to produce the confidence intervals on the
growth-mortality function itself (Fig. 5).

Which growth-mortality model? -
Estimating growth-mortality functions is frustrated by the

relative rarity of dead trees. In the case where full sampling
is possible (when the growth rates of live and dead trees are

~2oooNRccanada
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Table  2,. Model comparisons.

_

!-

- p value of
Negative log likelihood ratio test No. of

Model likelihood vs. null model parameters AIC
Acer rufwum z
Nllll 194.4 - 1 391.0
Method IB 168.0 -GO.0001 2 340.0
Method IC 162.7 <o.OOOl 8 343.3
col7lus jlo& -.
Null 78.5 - 1 158.9

a Method B 64.5 <0.0001 2 133.1
Method C 63.3 <o.OOOl .*. ~8 142.6,

Fig. 7. Method B survival functions based on both survival anal-
ysis and Bayesian estimates of annual mortality rate 8

0.67 7 Survival analysis

Comus florida -

0 0.25 0.3 0.75 1 1.25 1.5
5 year average radial growth (mm)

sampled in proportion to their natural abundances), method
B provides the most direct estimate of the growth-mortality
relationship. Large and long-term data sets (e.g., Condit et
al. 1993a, 1993b) are best suited for analysis by method B.
Iu the case where growth rates cannot be sampled in propor-
tion to their relative abunhces,  mortality. rate might be es-
timated from other inform&on and used to calculate the
growth-mortality relationship by method A..

Because all three mo@els  give similar.  predictions
(Figs. 6u and 6b), we expect that parametric maods (A and
B) will perform equally well for data sets comparable in size
with those analyzed here. I~I  the Acer rubrum  example, the
Weibull mortality function (Method  B) more closely matches
the nonparametric  fit in low growth regions than does; our
method A (Fig. 64,  but for Conrus  Jzorida, the opposite is
true (Fig. 6b).

Although the nonparame@ic approach is least likely to be
biased by the distribution of data, it is best used as a means
for evaluating parametric fjts, qther  than as a replacement
for them. Our analysis indicates parametric models are least

Fig. s.  Deviation between smoothed data and parametric method
A for Acer  rubrum  shows that method A.$‘s to capture the
sharp  increase in mortality risk seen at low growth  rates.
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0 0.25 0.5 0.75 1 1.25 1.5
5 year average radial growth (mm)

accurate at the lowest growth rates (Fig. 64.  The
nonparametric method helps id&ify  the problem and may
suggest alternative parametric forms. Nonetheless, paramet-

tic  models are needed for forest simulation models, and they
are more analyzable than are nonparametric models.

-i:
Implications  for forest models , ”

Gap-deamic  forest simulation models have traditionally
included the assumption that all species exhibit the same tol-
era&e of low growth. JABOWA- FORET  models assume
that trees only experience growth-related mortality when ra-
dial growth rate falls below 0.5 mm/year (Fig. 10). Our mor-
tality functions show mortality risk at higher growth rates.
Preliminary results show that incorporation of our mortality
functions into the LINKAGES gap-dynamic model (Pastor
and Post 1985) substantially alters that model’s predictions
of successional dynamics of southern Appalachian forests
(P.H. Wyckoff and J.S. Clark, in preparation). Pacala et al.
(1996) also found that growth-mortality functions calculated
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Fig. 9. Deviation betwee parametric methods A and B and
nonparsmeuic method C

1
ortality functions for Acer  n&urn at

very low growth  rates. A mal data points are shown as 0 (for
recently dead) and X (for live trees).
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00
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by Kobe et al. (1995) affect predictions of forest succession.
Continued improvemept  in forest simulation models requires
more data. The methods described here provide a basis for
analysis  and inference.

Conclusions a

Our three approaches provide tools for estimating the
growth-mortality rela ‘onship  for tree species in the absence
of large, long-term 4 sets. Our Bayesian approach accom-
modates prior mortal$y  iuformation  and yields a parametric
posterior. We propagate.error  in estimates of mortality rate
and assess the effect ;on the confidence in the growth-mor-
tality function. Our nonparametric method C provides a tool
to assess the performance of parametric approaches iu cap-
turiug  the vital Idw  $owth - high mortality regions of the
growth-mortality ctie.  Accurate simulation_of  fore$. dy-
namics depends on the field estimates of mortality risk that
these methods can provide.
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Fig. 10. Mortality function from JABOWA-FORET models com-
pared with method A mortality functions for Acer  rubrum  and
Cornusflo&fu.  In JABOWA-FORET models, all species experi-
ence the  same slow-growth mortality risk TWO consecutive years
of radial growth  below 0.5 mm leads to a 37% mortality risk.
After fi$e consecutive years of growth  below 0.5 mm. trees ex-
perience an 84% mortality risk There is no risk of growtb-
related mortality at growth rates above 0.5 mm, and one good
yea of growth resets the  mortality risk to xero  no matter how
long a tree has b_een suffering from poor growth
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