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ABSTRACT

Wilson, A. D., Lester, D. G., and Oberle, C. S. 2004. Development Of
conductive polymer analysis for the rapid detection and identification of
phytopathogenic microbes. Phytopathology 94:419-43 |,

Conductive polymer anadysis, atype of electronic aroma detection
technology, was evauated for its efficacy in the detection, identification,
and discrimination of plant-pathogenic  microorganisms on  standardized
media and in diseased plant tissues. The method is based on the acquisi-
tion of adiagnostic electronic fingerprint derived from multisensor re-
sponses to distinct mixtures of volatile metabolites released into sampled
headspace. Protocols were edtablished to apply this technology specifi-
cally to plant disease diagnosis. This involved development of standard-
ized culturd methods, new instrument architecture for sampling, sample
prepardtion, prerun procedures, run parameters and schedules, recognition
files and libraries, data manipulations, and validation protocols for inter-
pretations of results. The collective output from a32-sensor array pro-

duced Uunique eectronic aroma signature patterns diagnostic of individual
microbial species in culture and specific pathogen-host combinations
associated with diseased plants. The level of discrimination applied in
identifications of unknowns was regulated by confidence level and sens-
tivity settings during construction of application-specific reference librar-
ies for each category of microbe or microbe-host combination identified.
Applications of this technology were demonstrated for the diagnosis of
specific disease systems, including bacterid and fungal diseases and de-
cays of trees, for host identifications: and for determinations of levels of
infection and relatedness between microbia species. Other potential
applications to plant pathology arc discussed with some advantages and
limitations for each type of diagnostic application.

Additional keywords: artificial neural network, artificia olfaction, bact-
erid wetwood, early detection, electronic nose, homeland security, oak
wilt.

Recent advances in biochemistry, sensor technology, electronics,
and artificia intelligence have made it possible to develop devices
capable of measuring and characterizing volatile aromas or odors,
produced by a multitude of sources, for numerous applications.
These devices, known as electronic noses, were developed in an
attempt to mimic a mammalian olfactory system within an instru-
ment that obtains repeatable digitd measurements, alowing de-
terminations of aroma identifications or classifications while
eliminating operator fatigue (6,9,29-3 1,38,39). The technology of
artificial olfaction had its beginning with the invention of the first
gas multisensor array in 1982 (9), but usc of the term “electronic
nose” for instruments made with this technology was not coined
until 1988. Since then, more than a hundred different prototypes
of artificia nose devices have been developed to discriminate aro-
matic mixtures containing many different types of volatile or-
ganic compounds (27,50), The prototypes represent several types
of electronic aroma detection (EAD) technologies that utilize dif-
ferent sensor types, including metal-oxides (1 | ,26,40), semicon-
ductive polymers (22,34,5 1), and conductive €lectroactive poly-
mers (12,17,2 1,33), that are capable of direct electronic detection
and identification of complex mixtures in sampled air. Electronic
noses originally were not designed for the purpose of identifying
individual chemical species within the sample mixture, but were
engineered to recognize the sample as a whole, or as a collective
smple or complex air mixture released by any source that is
identifiable by its unique electronic signature.
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The typica electronic nose instrument consists of a multiscnsor
array, an information-processin g system such as an artificial
neural network (ANN), software with digital pattern-recognition
algorithms, and reference libraries to discriminate samples by
their unique aroma signatures (1,13,15,20,27). The sensor array is
composed of incrementally different sensors chosen to respond to
a wide range of different chemicals or chemica classes. This sen-
sor architecture is capable of discriminating diverse mixtures of
possible analytes. Each sensor in the array produces an output
that, when assembled collectively, forms a distinct pattern of re-
sponses (digital fingerprint) called an electronic aroma signature
pattern (EASP), which allows classification and identification of
the anaiyte. In this way, the array of sensors is integrated to yield
a unique signal for a complex of digtinctive aromas without
requiring the mixture to be separated into its individual compo-
nents prior to or during analysis. To use the instrument, a refer-
ence library of known EASPs must first be constructed by assign-
ing descriptor names (identifiers) to patterns of known origin. The
ANN is configured through a learning process (neural-net train-
ing) using pattern recognition agorithms that look for differences
between the patterns of all the descriptor types to be included in
the reference library. This process continues until a previously
specified level of discrimination (determined by preset param-
eters) is met. The results from these comparisons are validated
and then collectively assembled into the reference library to
which unknown samples can be compared for classification and
identification based on the distribution of aroma attributes or
elements that the analyte pattern has in common with patterns
present in the databases of the reference library.

Most applications of EAD technology hitherto have been in
industrial food production, processing, and manufacturing (2,3,
10,1 6,27.33,34). Some of the more common applications have
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been in the areas of quality control and grading, detection of mi-
crobial contamination in food products, food freshness and stor-
age. gas leak detection, processing controls, and environmental
monitoring (7,8,27,32,41,43,47,50). One notable example is the
routine use of EAD technology by the U.S. Department of Agri-
culture Food Safety and Inspection Service for quality control and
detection of contaminated meat. More recently, EAD has been
used in the biomedica field for applications in medica diag-
nostics such as detecting human pathogens in diseased tissues
{ 19,28,44), microbia mensuration (14), and waste management
(1 8,32). Using EAD technology as a means for identifying mi-
crobial species that causc diseases of plants is quite different from
other approaches that accomplish this by identifying diagnostic
structural compounds found in the cell walls or by sequencing
genomic or extragenomic DNA or RNA of the microbes them-
selves (4,23-25,35,36).

This article reports on the development of conductive polymer
analysis (CPA) for the rapid identification and discrimination of
phytopathogenic microbes based on their production of unique
mixtures of volatile metabolites recorded as diagnostic EASPs.
The composition of primary and secondary metabolites released
by individual microbes is controlled largely by the types and
combinations of metabolic pathways specific to microbial species.
These metabolic pathways are regulated by genetic, substrate, and
environments factors. Differences in types and proportions of
metabolic products released by different strains within a species
are determined primarily by genetic differences when strains are
grown under identical conditions on a standardized culture me-
dium. The objectives of this study were to (i) evaluate the feasi-
bility of using CPA as @ means of detecting, identifying, and
discriminating the presence of plant-pathogenic microbes in pure
culture and in host tissues, (ii) develop and test means and
protocols for applying CPA technology to plant disease diagnosis;
and (iii) determine some of the potential applications of this tech-
nology to plant pathology. Preliminary results of this work were
reported previously (48.49).

MATERIALS AND METHODS

Collection and culture of microbes. A number of microbia
strains, used here to construct reference libraries of EASP data
bases, were isolated from a variety of plant hosts (Table | ). Most
strains of phytopathogenic bacteria and fungi were obtained from
the American Type Culture Collection (Manassas, VA). Some
hacterial strains were acquired as a gift from D. Gross (Texas
A&M University. College Station). A few fungal strains were ob-
tained from D. Ingram (Central Mississippi Research and Exten-
sion Center, Raymond, MS), J. Bruhn (University of Missouri,
Columbia) from isolations in Ozark Mountain oak forests (5),
F. Tainter (Clemson University, Clemson, SC), and D. Appel
(Texas A&M University). Strains of wood-decay fungi were iso-
lated from contextual tissues of freshly collected basidiocarps on
4.5% malt agar (MA) with 0.1% streptomycin sulfate.

All microbes within each category (bacteria or fungi) were
grown under identical cultural conditions on a universally favor-
able standardized culture medium. Strains of plant-pathogenic
and wood-decay fungi were cultured on 4.5% MA. Phytopatho-
genic bacteria were cultured on nutrient-broth yeast extract agar
(NBY), prepared according lo Vidaver (45). Slant cultures were
prepared in screw-capped glass tubes (20 by 70 mm) with ap-
proximately 7 ml of growth medium and incubated at 25°C
(fungi) or 30°C (bacteria) until growth had covered the entire agai
surface, approximately 665 mm°.

Collection and storage of diseased tissue samples. All of the
diseased plant samples collected in this study were taken from
woody plants using & Haglof tree increment borer (Forest
Suppliers, Inc., Jackson. MS). Tree cores of standard dimensions
(5 mm in diameter by 5 cm in length) were collected from either
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heartwood, sapwood, or both of individual trees, depending on
where the diseased or colonized tissues were located. Extracted
cores were placed either in plastic straws with bent and taped
ends or in 14.8-mm glass vials used to place samples into the
sampling bottle. The cores were frozen a -20°C in long-term
storage and thawed immediately prior to sample analysis. Cores
that became desiccated due to sublimation during storage were
rehydrated by soaking in sterile distilled water for |5 min fol-
lowed by blotting on Chemwipc tissue paper to remove excess
moisture immediately prior to analysis.

Sample preparation and prerun procedures. Sample cultures
in 14%ml glass vials were uncapped and placed into a 500-ml
glass sampling bottle fitted with reference air, sampling, and ex-
haust ports on a polypropylene bottle cap. Reference air entered
the sampling bottle through a 3-mm polypropylene tube extend-
ing to just above the bottom of the sampling bottle. The sampling
bottle was held in the sampling chamber within the instrument at
a constant air temperature of 25°C. The sampling bottle was
purged with filtered, moisture-conditioned reference air for 2 min
prior to building headspace. The sampling bottle was sealed and
volatiles from the sample were allowed to build headspace and
equilibrate for 30 min prior to each run. Prerun tests were per-
formed as needed to determine sample air relative humidity (RH)
compared with that of reference air. Reference air was set at 4%
RH for most runs and adjusted to within 2% below sample air at
25°C. The sampling bottle cap and exhaust port were opened be-
tween runs to purge the previous sample with conditioned refer-
ence air.

Instrument configuration and run parameters. All analyses
were conducted with an Aromascan A32S (Osmetech, Inc.,
Wobum, MA) instrument fitted with a conventional 32-sensor
array designed for general-use applications with 15 V across sen-
sor paths. Prior to analysis of known and unknown analytes in
this study, individual sensors in the sensor array were character-
ized by testing sensitivity responses to representative compounds
from nine classes of organic compounds potentially relevant to
microbial identifications. The response sensitivities of individual
sensors, measured in percent as relative differential electrical-
resistance changes (%AR/R,,), varied with the type of plastic
polymer used in the sensor matrix coating, the type of ring-sub-
stitution used to modify its conductive properties, and the type of
metal ions used to dope the matrix to improve and modulate
sensor response (Table 2). The detection limits of the instrument
were dependent on the classes of organic components present in
the sample and the combined sensitivities of the sensor array. The
sensors generally were most sensitive to amines and sulfur-contain-
ing compounds. However, highly polar compounds like carboxylic
acids tended to bind and accumulate on some sensors, causing
negative responses in some cases at higher concentrations.

The block temperature of the sensor array was maintained at a
constant 30°C. Reference air was preconditioned by passing room
air sequentialy through a carbon fitter, silica gel beads, inline
filter, and Hepa filter to remove organic compounds, moisture,
particulates, and microbes, respectively, prior to humidity control
and introduction into the sampling bottle. The flow rate (suction)
of sample air at the sampling port was maintained at -702 ml/min
using a calibrated ADM 3000 flow meter (Agilcnt Technologies,
Wilmington, DE). Sensors were purged between runs using & 2%
isopropanol wash solution. The instrument was interfaced with a
personal computer via a RS232 cable and controlled with Aro-
mascan (version 3.5 1) software. The instrument plumbing was
altered from conventional architecture and specifically configured
for static sampling of the headspace by alowing air flow, main-
tained at 605 ml/min flow rate, coming out of the external vent
(bag-fill) port of the instrument during analytica runs, and clos-
ing the exhaust port on the sampling bottle so that headspace
volatiles were removed from a homogeneous static air mass with-
in the sampling bottle.



Data acquisition parameters and run schedules. Data from
the sensor array were collected at I-s intervals using a 0.2 de-
tection threshold (y units), a 15- to 20-y-max graph scale, and a
pattern average of five data samples taken per run during data
acquisition. A uniform run schedule (one valve sequence) was
used and consisted of reference air, 20 s; sampling time, 90 §; and
wash, 20 s; followed by 90 s of reference air; for a tota run time
of 220 s. A 2-min reference air purge followed by a 30-min equi-
libration period was allowed between runs.

Construction of reference libraries and validation. Separate
reference libraries were constructed for each specific category of
microbes (bacteria and fungi) from known reference strains of
each species included in each library. All database files of refer-
ence strains were linked to specific (designated) aroma classes for
each sample type. A separate neural-net training session was con-
ducted to create a unique reference library appliceble for each
microbe category analyzed. A minimum of [0 replicate runs per
strain and multiple strains (2 to 10 per species) were used to
construct each reference library. The following recognition net-
work options (neura-net training parameters) generaly were used
for each training session: training threshold = 0.60, recognition
threshold = 0.60, number of elements allowed in error = 3, learn-
ing rate = 0.10, momentum = 0.60, error goal = 0.010 (P £ 0.01),

hidden nodes = 5, and maximum iterations (epochs) = 10,000,
using normalized input data, not actual intensity data. Some of
these parameters were modified as described in the results for
specific applications or for improvement of recognition accuracy.
A typical neural-net training required 2 to 35 min, depending on
the size of the database applied, using an IBM-compatible personal
computer with a minimum of 64 MB of RAM and 350 MHz run
speed. Neura net trainings were validated by examining training
results that compared individual database files for compatibility
with its defined aroma class, and displayed similarity matches
using aroma class distributions (percentages) among al aroma
classes included in the recognition file, created by the training.
Identification of unknowns using recognition files. Refer-
ence libraries of signature patterns of headspace volatiles from
known microbes were used for identification of unknown samples.
This was accomplished using a recognition fjje (that defines each
reference library) either in real time or in offline andysis. In
either case, the neural net compared the response pattern of the
unknown sample with databases found in the reference library
chosen for comparison. The recognition algorithms quickly de-
termined the best match that most closely fijt the aroma elements
found in the unknown sample. The closeness of the match was
expressed as a percentage value assigned to different global

TABLE |. Some representative bacterial and fungﬂ] strains used to build reference libraries of electronic aroma signatures for detections and identifications o1

microbes isolated on standardized culture media

Microbe Strain,’ Host origin Disease Location
Bacteria
Brenneria quercina ATCC 29281 Quercus agrifolia Drippy nut California

Clavibacter michiganensis subsp. michiganensis I s2
C. michiganensis subsp. nebraskensis ATCC 27794

Bacterial canket North Carolina
Corn stunting Nebraska

Lycopersicon esculentum
Zea mays

Curtobacterium flaccumfaciens var. violaceum CVo
Erwinia amylovora E9
ATCC 1S.580
E. chrysanthemi A310
Pantoea ananatis Iy
Pectobacterium carotovora subsp. arroseplica W3C431
(=Erwinia carotovora subsp. atroseptica)
P. carotovora subsp. carotovora W3C827
(=Erwinia carotovora subsp. carotovora) ATCC 15713
Pseudomonas putida W4PS5
P. syringae pv. morsprunorum ATCC 13395
P. syringae pv. syringae B-3A

Ralstonia solanacearum
Rhizobium rhizogenes (=Agrobacterium rhizogenes)
R. radiobacter (=Agrobacterium tumefaciens)

Rhodococcus fascians

Streptomyees scabies

Xanthomonas arboricola pv. juglandis

(=X. juglandis pv. juglandis)

X. fragariae

X. oryzae pv. oryzae
Fungi

Armillaria mellea

A. tabescens

Ceratocystis fagacearum

Cryphonectria parasitica

Daedalea quercina

Ganoderma lucidum

Hericium erinaceus

Inonotus dryadeus

Laetiporus sulphureus

Ophiostoma piceae

O. pluriannularum

Pleurotus ostreatus

Pythium graminicola

P. oligandrum

P. ultimum sporangiferum

Schizophyllum commune

Trametes versicolor

ATCC 11696
ATCC 11325
NCPPB 2437
ATCC 23308
ICPB CF107
ATCC 49173
ATCC | 1329
W5CI

ATCC 33239
ATCC 35933

INB-0Z298
INB-MOABI
ADW-TX IS
FHT-SC |
ADW-930103
ADW-962501
ADW-922204
ADW-993001
ADW-97 |80 |
DNA-TX |
DNA-TX2
ADW-070308
DMI-WAI
DMI-WA:!
DMI-WA.3
ADW-070.305

ADW-970301

Phaseolus vulgaris Bacterial wilt Nebraska
Pyrus communis Fire blight Idaho

P. communis Fire blight United Kingdom
Saintpaulia ionantha Bacterial blight Idaho

Malus domestica Root gallg United Kingdom
Solanum ruberosum Black leg Washington

S. tuberosum Soft rot Washington

S. tuberosum Soft rot Denmark

S. tuberosum Root saprophyte Washington
Prunus avium Leaf spot New Zealand

P. persica Bacterial canker California

L. esculentum Southern  wilt North Carolina
M. domestica Hairy root Wisconsin

L. esculentum
P. persica

Crown g3l
&

Crown gul]

Fasciations

United States
United States
United States

S. tuberosum Common scab New York
Juglans regia Bacterial blight United States
J. regia Bacterial blight Washington

Fragaria chiloensis

Oryza sativa

Angular leaf' spot
Leaf hiight

United States
India

Quercus velutina Root rot Missouri

Q. rubra Root rot Missouri

Q. fusiformis Oak wilt Texas
Castanea dentata Chestnut blight South Carolina
Q. mutallii Bole rot Mississippi
Carya illinoensis Root and hut rot Mississippi
Q. nigra Bole rot Mississippi
Q. phellos Bole rot Mississippi
Q. nuttallii Butt rot Mississippi
Pinus sp. Endophyte Minnesota
Quercus sp. Endophyte Minnesota
Salix nigra Butt rot Mississippi
T. aestivum Root rot Washington
T. aestivum Root rot Washington
T. aestivum Root rot Washington
Q. falcata Bole rot Mississippi
Q. falcara Bole rot Mississippt

+ Strain sources. ATCC = American Type Culture Collection, Manassas. VA: [CPB = International Collection of Phytopathogenic Bacteria. University of
California. Davis: NCPPB = National Collection of Plant-Pathogenic Bacteria, Central Science L;tb()rul()ry. Sand Hutton. York, UK.
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classes represented in the sample. A value greater than 95% was
considered to be a good match. Once separate reference databases
were developed for bacteria and fungi growing on their respective
growth medium, unknowns were identified using separate recog-
nition files linked to a specific reference library. This was accom-
plished by specifying a recognition file, linked to the specific
reference library selected for comparison, in the data acquisition
window. This additional specification was added and saved as a
separate run method from that used for scans of known samples
used in building reference libraries for specific types of microbes.
The neural net software had settings that allowed for training to
any level of dgnificance that was desired in discriminating
samples. A significance level of 0.05 or lower was used in these
applications depending on the level of specificity desired in the
discrimination.

Detection of infection status in living tissues. Headspace
volailes from living sapwood cores from the outer sapwood of
live oaks were used to test the ability of CPA to diagnose oak wilt
in living trees at various stages of infection. Mean globa class
distributions provided indications of the percentages of aroma
elements in the unknown sample that matched those in the
reference library. Three aroma global classes (healthy, infected,
and unknown) were defined in the reference library to represent
the infection status categories for classifying these unknown
samples.

Instrument reliability in identifications. The reliability of the
instrument and methods to accurately identify sample unknowns
was tested with double-blind tests. Analyzed samples were deter-
mined to be either correctly identified, not identified (indetermi-

nate), incorrectly identified, or ambiguoudly identified. Determi-
nations falling outside of the domain of defined globa classes
were recorded as unknown. Ambiguous determinations resulted
when different strains of a given microbial species were identified
in different global classes from separate runs.

Data processing, manipulations, and statistical evaluations.
Data dices for processing and analysis were taken from a con-
ventional 20-s sampling interval (85 to 105 s) near the end of the
sampling segment of each run, before the sampling-valve closed.
The data slice from the raw data file was used to create a repre-
sentative descriptor database file. A minimum of 10 descriptor
datebase files were created from separate cultures of each mi-
crobia strain or sample type. Aroma signature patterns of indi-
vidual aroma classes (descriptors) were reported from calculated
means * standard errors of the mean of raw relative resistance
sensor values from 10 replicate runs of 2 to 10 different samples
for each aroma class. Real-time determinations of unknowns util-
ized recognition files with normalized sensor intensity responses
and pattern recognition algorithms and matrices.

Detailed comparisons of relatedness of aroma classes were
determined using principa component analysis (PCA) algorithms
provided in the Aromascan (version 3.5 1) software. Three-dimen-
siona PCA was used to distinguish between headspace volatiles
released from related species of Ceratocystis and Ophiostoma
fungi on MA culture medium, and between headspace volatiles
released from live oak sapwood tree cores a various levels of
infection by Ceratocystis fagacearum, the oak wilt fungus. for
disease diagnosis. The mapping parameters for three-dimensional
PCA were as follows: iterations = 30, units in Eigen vaues (%),

TABLE 2. Relative sensitivity responses of individual sensors in the Aromascan A32S sensor array to representative members of nine classes of organic
compounds**

Short-chain Long-chain Carboxylic Short-chain Long-chain Aliphatic Aromatic Chlorinated Aliphatic
Sensot alcohols alcohols acids esters esters ketones hydrocarbons hydrocarbons amines
| + + - - W +
2 t + + t t + + +
3 + W + W w W W W +
4 + W W t - W W W W
3 + W t W w W - t
6 + W w - - W - W
7 + w tt w ™ W ++
8 t W + W - W - - +
9 + t + t + t t +
10 t t + t + t + t t
I + t t t W t t W t
12 t + + t + t + t t
13 + t t t t + t t t
14 t W t W - W - n +
15 t w + \ w w W t
16 t - t W - W - ™ t
17 + t+ + t+ o tt tt ++ t
IX + +++ t 44 tt+ +4 +++ ttt +
19 t t + t W t W w t
20 + t t t t t t t +
21 t W t t w t W W t
22 + ttt W ++ ttt ++ ttt ++t W
23 t tit M tt +t+ tt ttt ttt W
24 t tt w +4 ttt 4+ ttt ttt -
25 t + t t + tt + t t
26 + t t + t + t t t
27 t + t t W t + t t
2x + t t ++ + tt t t t
29 t W t W - w - n t
30 + W t W - W W W t
3 + W W t - W W W W
32 W - W - - - - - W

© Sensor sensitivities defined by electrical resistance response, percentage deviations (% AR/Ry.) ACT03S sensor paths relative to base resistances. produced by
adsorption and interaction of analytes (odornnts) from each specified chemical class. to the surface of the sensors, according to the following scale: +++ = very
strong (R > 9%); tt = strong (3% < R < 9%), t = moderate (2% < R < 5%); W = race to weak (1 % < R < 2%); and = = negligible (R < 1 %) response. Sensors in
the array are coated with conductive polymers produced by clectropolymerization of either polypyrrole, polyannlinc. or polythiophene derivatives which have
been modified with ring-substitutions of different functional groups that impart unique conductive propertics (electrical resistance responses 10 different clusses
of compounds). These polymers are d()pcd with specific metal ions to improve and modulate polymer conductivity and sensor sensitivity.
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and with normalized input data. Two-dimensional Sammon map-
ping analysis (SMA) of headspace voldtiles released from cul-
tures of five bacterial species, formerly placed in the genus Er-
winia and grown on standardized NBY growth medium, was used
to construct aroma maps for comparisons of relatedness of aroma
classes and indications of taxonomic relatedness. The mapping
parameters utilized for two-dimensional Sammon mapping were
as follows. maximum iterations = 100, minimum error = 0.001,
scaling factor = 2.0, using normalized input data.

RESULTS

Run characteristics and pattern analysis of microbial
species. Unique EASPs were produced by CPA of headspace
volatiles from cultures of phytopathogenic bacteria and fungi.
Noticeable differences were observed between the A32S multi-
sensor outputs and run characteristics for these two types of mi-
crobes during data acquisition. Headspace volatiles from plant-
pathogenic fungi produced relatively flat, low-resistance response
curves («<5% above baseline electrical resistance of each sensor)

with tightly clustered outputs of individual sensors (Fig. IA).
Runs of volatiles from bacteria produced multisensor outputs that
were much more diffuse, and with higher intensity responses (up
to 15% or more) above baseline resistances (Fig. 1B). Compari-
sons of normalized sensor outputs as histograms indicated low
variability and lower sensor responses to volatiles from fungi
compared with the generally stronger intensity and more variable
sensor responses to volatiles of bacteria (Fig. IC and D). The
greater variability and stronger sensor-response intensities to bac-
teria relative to fungi were more evident when comparing EASPs
of pathogenic bacteria and fungi from many host sources and
locations (Table 3). Statistical analysis showed high precision and
low variability of individual sensor responses between anaytica
runs for individua strains and between sympatric strains within
microbial species. However, the variability of aroma profiles
among strains within species was greater with alopatric strains
from widely separated localities. Headspace volatiles of excep-
tiona bacteria, such as Pantoea ananatis, Pseudomonas putida,
Rhizobium rhizogenes, and Streptomyces scabies that produced
sensor intensity responses of >10% for multiple sensors within
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Fig. 1. Analytical outputs of the Aromascan A32S sensor array produced from conductive polymer analyses of headspace volatile metabolites from representative
species of fungal and bacterial microbes on standardized growth media. A, Clustered multisensor output from a typical fungal pathogen (Ceratocystis fagacearum
shown), the oak wilt fungus. B, Diffuse multisensor output from a typical bacterial pathogen (Rhizobium rhizogenes shown). Normalized intensity responses of
individual sensors (%AR/R,.) to headspace volatiles produced by C, C. fagacearum and D, R. rhizogenes.
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TABLE 3. Electronic aroma signature patterns derived from conductive polymer analyses of headspace volatile metabolites produced by plant-pathogenic microbes on standardized

culture media

Sensor number®

Microbe® 2 3 4 3 6 7 8 9 10 11 12 1? 14 15
Bacteria

B quercina 3.x to.1 28+0.133+0.132+02 23+0.12 . 1 +0.134+0132+0129+0.140+012910127+0.129% ()1371() ()!
C. michiganensis 3.7 i-O.6 27204 32+0532+04 22402 2.0i0.2 3440532405 2.x £04 3.9i0.7 28404 2.6+04 2820436 £0.619+

¢ flaccumfaciens 93+02 57+02 7.1 10.3 69+02 40+0.15.510.2 78+04 7.3i0.1 6.1 103105 +03 60+0258+02 6220293 +03 %() ()i
E amviovora 265012142012 .30 0.1 23+0119401182012420123+00214012 . s i o . 2 21+£0119+0121+0123+011.520.1
E chrysanthemi 17£0.1 13400 16201 1601 L1£00 10+01 [7+01 1.6+01 14200 1.9+01 1301 12+01 12+01 15201 08:0.1
. ananatis 12.1 i0.2 75+0293+0290+035.2 t0.2 46+0.1101+029.5i0.2 79+02133+0378+0278+03x.1 =01118+025.1 202
P. carotovora 4.0i0.5 2.9i0.3 34404 34203 2.510.2 23+0.1 37204 35+04 3.0i0.3 4.1+05 3.0+03 28+03 3.1£03 38+052.1:0.2
I’,])um/u 114404 7.0i0.i 88+04 84+04 45 403 40+0.1 94+04 89+£03 7.3i0.2 12.8 +04 7.7i0.3 7.2i0.2 7.7 i0.2 114+04 464102
1?7y yringae 18+0.1 17400 18201 19400 20+0.1 2001 1.940.119+0.01.7£011.64011 . x  =0L.7x01 17401 1601 1.8+0.]

R solanacearum  7.4+03 48200594025 7 £0.13 .5 £023240164+0160£0.151£0084£0350+£0148£0.13524027 .5 +011 .0io0.2

R. rhizogenes 1162037 . 1 io0o .2 91+0388+025020145+0.198+029 .3 to .2 78+0313.0+0276+0375£0.180+0011.7£025010.1

R radiobacter 284042 .03 £0226+0326+03224012 .1 +£0127+0326+0324-022 .7 £05242022 .3 £0224:02262041920.]
R. facian 5.1 £031.xr0.2 44+(244+0234+02 31+024740245£0239402s.0ri0.3 1.xi0.2 36+023.x10.1 444032702

S. scabic § 192405 123503151 +04148+£03872037 . x i o . 3 J60+04155+04129+03203+0613.0+0313.1202134+03184+04103103
X. arboricola 83414 5608691168210 1.3-t-0.5 39+047.2il.1 70115740889 +1.559+08s.7i0.9 59+0983+1443106
x. fragariae 2.1t0.2 20+0222+40.12.2i0.2 2.0°0 1.94+01224022.2r0.2 20+0.1 21401 21+0.11.940.2 2.0i0.2 2.0i0.2 |70l

X. OVIae 20£0.2 160118+ 0.2 192021.7 2021640120201 19+021.7£0.119¢ o . 2 174£021620116+0.11.7£0.215+0.]
NBY controf 232002 01 2023500123 £0123£0422£002 .3 10 .1 234042 .7 #0120+0123+0012 .1 £0122£0120201 [8+0.1
Fungi

il. 771(1[[0(: 19+0218+0219+0220:0220£0220+022 . 0 i o 2 2 .0i0i0 .2 |8t0218+£031940218x0218+0218£0.219t02
A. tabescens 2320120£012240123+0.1224£0.12 . 2 H)l”%+)l2%t0l7l+()12 . 1 +0.12210.12. )*()!"’l+()l22t()1’>l+)l
C fagacearum 21400 L7401 19+01 20200 1.8 £O1 18+0.120£0.120+001 . 7 FOT20401082008+0.1 18201 20201 1.8+0.1
C. parasitica 20200 L7400 19400 19+01 18+0.1 1.8+0.1 20101 20x01 17001 §{9+0.1 18201 [7£0.1 17401 20+£02 18101
D. quercina 2 .03 7 Q202012240423 +00214002014£002 . 3 0 0o .0 23+0.020+£00122200204012020020£0122+0.12.1 £001
G. lucidum 17200 14400 L6 =01 17201 15200 1600 17400 17£00 15200 1500 154200 1.5£0.0 154200 L6+01 15204
H. erinaceus 21000 E8200 20204 E‘Ii()‘] 19400 20201 212040 21400 19 £00 19+01 19401 1.8+01 1.8+01 20+0.1 19401

I drvadeus 2()2()117+(H|9t o . 1 20+0118x0118+012 . 0 i o i 19£0.11.72011820218+0117+0117£0.11.9+02180.1
L sulphureus 23201 19401 2+0.1 2‘21()‘1 20400 2.0+£0.0 22200 224010 20+00 22400 21400 20£0.1 20200 22400 2001
0. piceae 19+ 1.6102 M«to.z 1.9+0.2 17+(H 17402 18402 18£02 1.62021.7 +031.7 £0216t0.2 1.6+0.2 [.§£031.7 £0.2
0. plurianmudanem 19402 17402 1 9t02 | 0 0217401184 )ll +0219+021 . 7 £021.8£031.8+021.72021.7-02 19403 1.8 $02
I ostreants 27401 240126+012720.125+ )l 2.6 t012.7i0.2 2740.124+0126£0225+0124+0124+01 2.7 io0.2 24+0.l
P. graminicola 2.3i0.2 19£0221+£022 ‘() 19£0219+021.2i0.2 2.2t0.2 19+022.1 £032.0i0.2 [9+0219+022.2i0.2 20202
P. oligandrum 2.3 +0.119+0022+0122+20.120£012.0 to.1 2.2i0.2 22+0220+0.122+0220+0.012.0i0.2 20£02 22402 2.0i0.2

. wdtinuem 16 O 134200 15200 1601 14401 [4+01 1.6+02 1. MEoTd 200 15402 14200 142001 14+£010 16202 14101

S onumune 27+01 21401 2 . 5 pO126+0.123201244012620126x01232012620124F20124+012440.126+20124+0.1
7 versicolor 26+0.1 22401 25104 26£00 24+0.1 24401 26£00 25+0.0 23+£0.0 24402 24401 22101 23101 25202 2301
MA control 200 E00 19400 20400 224010 20+£00 202010 20400 21201 19200 20£0.0 2000 19400 1.9+001 21400 1910

ENBY = nutrient-broth yeast exiract agar, and MA = malt agar
> Mean nonnormalized sensor responses (mean t standard errors of the mean) determined from percent changes in electrical resistance relative to base resistance (AR/Rbase X 100) for
cach indiv idual sensor with 10 replicate runs per strain of each microbial species, and multiple strains (2 to 10 per species) with few exceptions.

the array, were generaly those that produced the most noticeably normalized) and normalized data (Fig. 2). Histogram comparisons
pungent, volatile aromas in culture. The headspace volatiles of using normalized EASPs of these bacteria indicated considerable
filamentous bacterium S. scabies caused consistently very high differences in sensor responses to their headspace volatiles in
Sensor responses across the sensor array. indicative of compounds superimpose mode (Fig. 2A). Relative differences in sensor re-
with high aflinity for all of the different types of conductive poly- sponses to volatiles of R. radiobacter compared with R. rhizo-
mcr coatings on sensors. Headspace volatiles from fungi rarely genes were indicated in the difference display mode (Fig. 2B).
produced nonnormalized sensor-response intensities of >3% using Comparisons using nonnormalized data as line graphs provided

the general-use A32S sensor array. Nevertheless, sufficient differ- views of actua raw-data differences in sensor responses using
ences in individual sensor responses were produced and EASPs superimpose mode (Fig. 2C) and in difference mode (Fig. 2D).
were sufficiently unique for different fungi to alow discrimi- With both normalized and nonnormalized data, difference mode
nation between fungal species. Individua nonnormalized senso indicated differences in sensor responses in the EASPs of one
intensity respons&s were rarely <} % for fungi, but intensity re- bacterium relative to those of the other bacterium. Thus, it mat-
sponses of <1 % were observed with some bacteria. Certain tered which was the EASP of the first bacterium (R,) that was
anaerobic bacteria, such as those causing wetwood in hardwoods, used as the reference pattern to which the EASP of the second

often released copious quantities of carboxylic acids into the bacterium (R,) was compared because corresponding sensor re-
sampled headspace, producing negative responses for sensors that sponses were reversed along the x axis at approximately the zero-

were sensitive to polar compounds. response line for normalized histogram data, but no change oc-
The EASPs of microbes in graphic formats were useful visua curred for nonnormalized data. This result occurred because the
references for comparing sample unknowns to known EASPs dur- analysis software selects the curve with the highest values as the

ing methods development, reference database construction, and reference curve (R,). The curve with the smaller values (R,) be-
comparisons of ¢losely related microbes. For example, the EASPs comes a flat reference line following subtraction of nonnormalized
of two closely related bacteria, R. rhizogenes (=Agrobacterium data (Fig. 2D).

rhizogenesy and R radiobacter (=Agrobacterium tumefaciens), Determinations of infection status in living host tissues.
were compared using two types of CPA signature-differentiation Headspace volatiles released from tree cores that were extracted
display modes—superimpose (simultaneous) mode and difference from the outer sapwood of live oaks were used to test the ability
mode. The EASPs were compared separately using actual (non- of CPA to diagnose oak wilt in living trees at various stages of
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TABLE 3. (Continued from preceding page)

Sensor number®

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

224001 28400 22x0. 2.8i0.1 29201 1.9+01 18200 14201 13201 21+01 31201 25+001 25+0.1 22+01 29+01 24+0.1 23+01
22402 26+04 21402 2.6-i-0.4 2.7-t0.4 1802 16201 13£0.] 1.3+0] 20102 2904 24+03 24103 22402 27404 23203 22+03
4.3i0.2 58403 42102 66+01 65+02 35+01 28201 1.7+01 12402 40402 69+03 53403 53403 43402 60103 52+02 45+02
1.7+01 20201 1.7£01 L7401 19£01 15201 1.4£00 13400 13+01 1.6201 21+00 1.8+01 18+01 1.7+01 21+01 1.6+0.1 1.7+0l

09£0.1 L1+01 09401 1.1+£01 1.0+01 07+00 08+01 0701 07+01 08+01 1.0+0.1 0800 08+0.1 08+01 1.0+00 08+0.1 08400
6.0i0.1 7.6+0.] 5.41t0.1 8.77F0.2 8602 4.9+0.1 3.6+0.]1 2.3F0.1 16400 56+02 92+02 72+0.0 73201 60+00 8.1+0.1 7.1+0.1 63+0!

24402 29%03 2.3i0.2 27103 29203 20+01 1.8+0.1 15201 14+00 22+02 3.1+03 26+£02 26+02 24402 3.0+03 24102 24102
55+02 75+03 5.1j10.2 9.21t0.4 85+03 44102 3202 1.9£02 1201 52£03 88204 68+03 69103 55+02 76203 67+03 58+02
18401 17400 1.7-i-0.1 15201 1.8£0.1 1.8+01 17401 18+00 1.9+01 17401 20+£01 1.8+01 1.9+0.1 20+01 21401 1.6+0.1 21+0)

36402 48402 3.7k0.2 5.2i0.1 5.2i0.2 2.9rf0.1 2502 1.8+0.1 14200 34+0.]1 56+03 44+02 43202 3.6+0.1 5002 42401 380!
58402 7.8-t0.2 55400 92£00 86403 47400 35£01 23+02 1.6£01 54402 90201 7.1+01 71201 58+01 78+00 69+00 6.1+01
2.110.1 2.3i0.2 2001 19+02 2.2i0.2 1920.] 1.8£00 1701 1L.7£0.1 19401 25402 22+01 22+0.1 22+01 25+02 20+02 2240l
30402 3.41t0.2 28£(.] 3.1fF0.2 33+£02 2.5i0.1 23£0.1 2001 2101 26+02 36302 3.0+02 31202 29+02 35+02 29+0.1 30+0l
11240, 126£04 8.6-t0.3 160204 150203 93+03 58103 3.7£02 2.5+£0.2 103403 156404 129403 134403 114+03 141104 125+03 11.8£03
4.9f0.7 56+0.8 4.2i0.5 6.5i1.1 64+10 4.1i0.6 3.0+03 2.310.2 20+0.] 44406 66+10 55+08 5408 48+07 61109 54+08 50+07
182401 1.8+02 1.7-F-0.1 16201 18202 [7£0.1 16201 1L.6£01 17202 17+0] 20202 19402 19401 19+02 21402 16+0.1 1.9+02
15401 14401 1.3-t-0.1 1301 14+0.1 14401 1301 1401 15401 13+£00 1.6+01 15401 15201 1.6+01 1.7402 13+01 1.7+01
20£0.1 20401 19+0.1 1.5-i-0.1 1801 1.8f0.1 ]840 1.7+0.1 1801 19401 22401 20+£01 20£01 20+£01 23+0.1 1.8+0.1 21+01

19202 18402 1.7+02 1.6£02 1.9£02 1.8:02 17£02 19202 20+02 1.7£02 20202 19£02 19+02 2002 21402 17402 2102
21204 20401 20201 19201 22£0.1 20+0.1 2.0k0.1 2.1k0.1 22402 19401 2301 22401 22+01 23+01 24101 20+01 24+0]
1.840.1 17401 16£0] 1.8+01 20+01 1701 1501 16+0] L7104 16201 1901 18400 19201 20101 20+01 16201 2020t
18301 1.7§0.1 1.620.1 17£02 19401 [7+01 15401 16201 1.6+01 16+01 1901 18+01 19+01 1.9+01 20+01 1.6:01 190l
21200 20£00 19200 21201 22£01 20£01 18100 18+00 19400 18401 22+01 21+01 21401 22101 23+01 1.8+01 2220l
1.510.1 15201 142001 14201 1601 1.5+01 13401 14+01 14+01 14401 17401 15401 1.6+01 17201 18+0.1 14+01 170l
19401 1.8i0.1 1.710.1 18£0.0 2.1+0.0 1.8£01 16201 1.7+01 1.820.] L7401 20+01 19401 19401 20+0.1 21£01 1.7£01 20%0l
18401 1.7+0.1 16401 17402 19202 17+01 15+0.1 16401 16+01 1.6+01 1.9+01 1.8+0.1 18+01 19+01 20+01 1.6+01 1901
21401 2.0tr0.1 18+01 2.0i0.1 22401 1.9+0.1 1.8%£01 18+01 1.9+01 1.820.1 22+01 21+01 22+01 2301 23£01 1.8+0.1 23+0.1
L7402 16402 15400 16403 18202 1601 1.5£01 1.5+01 1.6+01 1.5+£02 18402 17+02 17402 1.9+02 19402 1501 19402
18402 17402 16401 17203 19403 17402 15£01 1.6t0.1 16+01 16202 19+02 18+02 18+02 19+02 20+02 1.6£01 1.9+02
25400 24400 23401 24402 2.7i0.2 23400 22404 23400 24£01 22401 2601 25401 2510 2701 28101 2201 2701
2.0t0.2 1.9+02 1.7£0.1 2.0-t0.3 2.1-to.2 19402 1.7£0.1 1.7+0.1 1.82£0.1 17402 21402 20+02 21+02 22+02 2202 1.8+0]1 2.1+02
2.1ir0.2 20+0.0 1.8+0.1 2.0i0.3 22+02 19401 1.7+0.1 18+01 1.9+0.1 18201 22+01 20+01 21201 22+01 23101 1.8+0.1 220!
1.510.1 14401 13£00 15202 1.6£01 1401 1.2£01 13401 1.3£01 13401 16401 1.5+01 1.5+01 1.6+01 17401 13+01 1.6+01
24101 23+£0.1 2101 2.4i0.1 2.6i0.1 2.310.1 21+01 21201 2201 2.1+01 26+0.0 24+01 25+01 26101 27+0.1 22201 26101
2.3i0.1 2.210.1 21400 2.3i0.2 26402 22101 21201 22401 23201 20401 25400 23401 23401 25401 2601 21401 25401
20£0.1 19400 1.8+0.1 19404 2.110.1 18+0.1 1.7£0.1 1701 --*-F-0.1 17+01 21+01 19200 19+01 21+01 2201 1.7+0.1 2140}

infection. Mean global class distributions provided indications of
the percentages of aroma elements in the electronic signature that
matched those of three aroma global class categories (healthy, in-
fected, and unknown) in the reference library. Global class mem-

bership values of >90% were strong indicators of sample identity,

in this case, oak wilt infection status. Aroma profiles of sapwood
cores from healthy and inoculated controls had very high levels of

global class membership in the infection categories healthy and
infected, respectively, consistent with their source and infection
status (Table 4). All aroma elements of EASPs from healthy non-
host control cores were predominantly unknown, with only minor
membership distributions among healthy and infected global
classes. Healthy (uninfected) live oak cores produced results con-
sistent with healthy controls, having almost all aroma elements
identified in the healthy global class category. Sapwood cores
from weakly symptomatic, oak wilt-infected live oaks had high
global class membership (almost 80%) in the infected category,
with a significant portion remaining in the healthy category. Thus,
a mean global class membership value of <90% indicated that
core samples from weakly symptomatic trees were not always re-

liably diagnosed. Cores from strongly symptomatic infected trees
were identified in the infected category, but had minor elements

in the unknown and healthy categories.

Reliability of sample identifications and disease diagnoses.
The efficacy of CPA in providing accurate microbial identifica-
tions in vitro, identifications of host tissues in vivo, and diagnoses
of specific diseases were tested using headspace volatiles from
cultures and excised sapwood cores from healthy and diseased

host plants, respectively. All strains of pathogenic and wood-
decay fungi were identified correctly at high levels of confidence
(Table  The only exception was Ganoderma lucidum, for which
only 89% of strains were correctly identified. The remaining
strains of G. lucidum could not be identified. Mean global class

distributions indicated >95% correct identifications for microbes
in the proper category. Similar results were obtained for the
identifications of plant hosts for most plant species tested. Identi-
fications of Diospyros virginiana (American persimmon) and
Prosopis glandulosa (mesquite) sapwood cores using CPA were
somewhat less reliable at 90 and 80%, respectively. The remain-
ing specimens from these two species could not be identified
(Table 5). Global class distributions in the correct categories also

were very high among the host species tested.

The results for tests of infection status or diagnosis of specific
diseases in host tissues were more variable than for analysis of
volatiles from microbes or host tissue samples individually (Table
5). The reliability of diagnoses of oak wilt infections in live oaks
was dependent upon infection status and levels of infection.
Identification of infection status in healthy controls and unin-
fected samples was most reliable (100% identified correctly) with
samples containing only host volatiles to affect discrimination.
Correct identification of inoculated control samples was next in
reliability (97%). In this case, host tissues initially were over-
whelmed by inoculum and subsequent col onization by the oak
wilt pathogen, C. fagacearum. Infected cores from strongly
symptomatic plants also were detected reliably in 93% of speci-
mens tested. However, only =80% of core samples from weakly
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symptomatic plants were identified as infected. None of the ana-
lyzed samples for which an identical global class existed in the
reference library were incorrectly or ambiguously identified. The
identity of all such samples that could not be determined was
classified as unidentified (Table 5). Most healthy control samples
from nonhost plants were classified as indeterminate or not identi-
fied. Approximately 4% of samples each were either misidentified
as infected live oak or ambiguously identified. Ambiguous identi-
fications indicate that separate samples of the same type were de-
termined to have majority ownership in different global classes.
Nonhost samples that lacked representative databases in the refer-
ence library were the only sample type that had determinations in
these categories.

Tests of CPA reliability for the diagnosis of bacterial wetwood
in Populus deltoides (cottonwood) using volatiles from sapwood
cores provided more discrete results. Freshly excised sapwood
core samples collected from trees in cottonwood plantations and
at the saw mill were either strongly symptomatic (visibly dark,
wet, and with ring shakes in annual rings) or healthy (white, dry,
and structurally intact without ring shakes). However, it was
harder to distinguish symptoms and visually discriminate be-
tween healthy and infected cores once they had dried after exci-
sion. The infected cores tended to lose the dark pigmentation and
drying tended to strengthen structural rigidity. Both healthy and
infected sapwood cores from cottonwood were identified with
high levels of confidence based on differences in EASPs. The
mean global class ownership of healthy and infected samples was
very high in corresponding categories of proper identity.

Mean global class memberships of all microbial species, host
tissues, and disease diagnoses were very high in the correct cate-
gory of identification. Most samples that were not correctly
identified could not be categorized to an identifiable global aroma
class. No samples were identified incorrectly or ambiguously for
which an aroma class category existed in the reference library.

TABLE 4. Mean globa class membership of validated aroma profiles for sap-
wood cores of live oak trees in various categories of oak wilt infection, and of
nonhost hardwood species

Mean global class distribution (%)°

Infection status of sample’ n Healthy Infected Unknown
Hedthy (uninfected) 15 99.9 0.0 0.1
Weakly symptomatic infected 15 195 79.8 0.7
Strongly symptomatic infected 15 18 93.8 44
Healthy control 39 99.9 0.0 0.1
Inoculated control 30 0.0 99.6 0.4
Hedlthy nonhost control 24 14 1.3 97.3

@ All samples were sapwood cores of Plateau live oak, Quercus fusiformis,
except nonhost samples which were gapwood cores of various hardwood
species immune to C. fagacearum infection.

Global classes distributions indicate the percentage of aroma elements in the
electronic signature that match elements found in the electronic signatures
of known hedthy and infected samples in the reference library. Distribution
vaues of >90% are strong indicators of sample identity (infection status).
Unknown designations indicate the percentage of elements in the sample
that could not be identified or matched to any global classes found among
databases included in the reference library used for sample determinations.
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Fig. 2. Comparisons ¢f actud and normalized intensity responses (%AR/R;,..) of the Aromascan A32S sensor array to hcadspace volatiles produced by Rhi-
zobium rhizogenes and R. radiobacier on nutrient-broth yeast extract agar using two types of conductive polymer analysis signature-differentiation modes. Histo-
gram comparisons of the normalized electronic aroma signature patiern of R. radiobacter (green bars) compared with (relative to) the R. rhizogenes (red bars)
reference pattern in A, superimpose mode. and in B, difference mode. Graphed comparisons of actual (non-normalized) electronic aroma signature pattern of
R. radiobacter (bottom orange or purple line) compared with R. rhizogenes (top dark gray line) in C, superimpose mode, and in D, difference modes. In the
normalized and actual difference-mode comparisons. Ry = electronic aoma signature pattern of R. rhizogenes and R, = electronic aroma signature pattern of

R. radiobacter.
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PCA of related microbial speciesand for disease diagnoses.
A critical comparison in all possible combinations of EASPs from
headspace volatiles of closely related microbial species using
three-dimensional PCA allowed quantitation of the relatedness of
headspace mixtures produced and an indication of the relative
taxonomic relatedness of compared species based on the volatile
metabolites produced. These measurements were quantified with
a quality factor (QF) of significance value. The higher the QF sig-
nificance, the greater the difference or less related the analytes
compared. A quality factor value of 2.0 generally was considered
to be a significant discrimination equivalent to approximately P =
0.05. Analysis of four species of phytopathogenic fungi in the
Ceratocystis-Ophiostoma complex indicated high levels of sig-
nificant difference between these species (Table 6). The EASP of
C. fagacearum was significantly different from C. jmbriata,
Ophiostoma piceae, and 0. plurignulatum (P < 0.01). Even greater
differences were determined between C. jimbriata and 0. piceae

TABLE 6. Three-dimensiona principa component analysis of headspace
volatile metabolites released from cultures of Cerarocystis and Ophiostema
spp. growing on standardized malt-agar growth medium

Analyte 1 Analyte 2 QF significance”
Ceratocystis fagacearum C. fimbriata 11.83%#
Ophiostoma  piceae 11.93#*
0. pluriannulatum 11.74#*
C. fimbriata 0. piceae 19.70%%+*
0. pluriannulatum 14.98#%*
0. piceae 0. pluriannulatum 36,574+

¢ QF = quality factor. Discrimination between anaytes (aroma classes) was
significant at the following levels: ** and *##¥ indicate P < 0.01 and 0.001,
respectively. A QF vaue of 2.0 indicates a significant discrimination at-P =
0.05. The percentages of the total variance, accounting for the variability ex-
plained by each orthogona principal component (PC), are as follows: PC 1 =
76.62%, PC 2 = 8.93%, and PC 3 = 4,27%, representing the x, y, and ; axis
of the aroma map, respectively.

TABLE 5. Réliability of microbia identifications in culture, host identifications from tree cores, and disease diagnoses as determined by conductive polymer
analysis with the Aromascan A32S using recognition files constructed from sample-specific reference libraries

Correctly Indeterminate, not Incorrectly Ambiguously
Sample unknowns?® n identified (%)° identified (%)° identified (%)¢ identified (%)¢
Microbe identification in vitro
Armillaria gallica 13 100.0 (98.0) 0.0 0.0 0.0
A. mellea 14 100.0 (96.7) 0.0 0.0 0.0
A. ostoyae 18 100.0 (99.2) 0.0 0.0 0.0
A. tabescens 100.0 (9X.4) 0.0 0.0 0.0
Ceratocystis fagacearum X 100.0 (99.7) 0.0 0.0 0.0
Cryphonectria parasitica 100.0 (97.9) 0.0 0.0 0.0
Daedalea quercina 9 100.0 (99.6) 0.0 0.0 0.0
Ganoderma lucidum 9 8X.9 (88.2) 1.1 0.0 0.0
Hericium erinaceus 9 100.0 (9X.2) 0.0 0.0 0.0
Plant host identification in vivo
Acer rubrum 10 100.0 (99.5) 0.0 0.0 0.0
Carya illinoensis 10 100.0 (98.7) 0.0 0.0 0.0
C. tomentosa 10 100.0 (99.7) 0.0 0.0 0.0
Carpinus caroliniana 10 100.0 (99.5) 0.0 0.0 0.0
Celtis laevigata 10 100.0 (98.4) 0.0 0.0 0.0
Cornus florida 10 100.0 (98.4) 0.0 0.0 0.0
Diospyros virginiana 10 90.0 (89.7) 10.0 0.0 0.0
Hex opaca 10 100.0 (99.3) 0.0 0.0 0.0
Liquidambar styraciflua 10 l00.0 (98.4) 0.0 0.0 0.0
Platanus occidentalis 10 100.0 (97.8) 0.0 0.0 0.0
Populus deltoides 10 100.0 (99.2) 0.0 0.0 0.0
Prosopis glandulosa 10 80.0 (79.8) 20.0 0.0 0.0
Quercus alba 10 100.0 (99.7) 0.0 0.0 0.0
Q. fulcata 10 100.0 (98.4) 0.0 0.0 0.0
Q. marilandica 10 100.0 (99.0) 0.0 0.0 0.0
Q. nigra 10 100.0 (99.3) 0.0 0.0 0.0
Salix nigra 10 100.0 (99.1) 0.0 0.0 0.0
Taxodium distichum 10 100.0 (98.7) 0.0 0.0 0.0
Sassafras albidum 10 100.0 (9X.9) 0.0 0.0 0.0
Ulmus crassifolia 10 100.0 (98.7) 0.0 0.0 0.0
Disease diagnosis in vivo
Oak wilt in Q. fusiformis
Hedlthy (uninfected) 15 100.0 (99.9) 0.0 0.0 0.0
Weakly symptomatic infected 15 80.0 (79.8) 20.0 0.0 0.0
Strongly symptomatic infected 15 93.3(93.8) 6.7 0.0 0.0
Healthy control 39 100.0 (99.9) 0.0 0.0 0.0
Inoculated control 30 96.7 (99.6) 3.3 0.0 0.0
Hedlthy nonhosts control’ 24 0.0 (0.0 91.7 4.2 4.2
Bacterial wetwood in Populus deltoides
Healthy sapwood 15 100.0 (99.6) 0.0 0.0 0.0
Infected sapwood 10 100.0 (99 X) 0.0 0.0 0.0

! Microbes identified in vitro consisted of cultures in sample tubes on standardized growth media Plant host identifications and disease diagnoses were deter-

mined from sapwood tree core samples.

b Percentage of unknown samples identified correctly. Values in parentheses indicate the mean global class distribution percentage attributed to the correct identi-

fication category for that sample type.

¢ Unidentified samples resulted from a global class distribution that had <7()% ownership in any one globa class.

1 Misidentified samples indicate that the identity was incorrectly attributed to the wrong global class.

¢ Ambiguous identifications indicate that separate samples of the same type were determined to have majority ownership in different global classes.
Signature files of healthy nonhosts controls, consisting of sapwood cores of healthy hardwood species immune to C. fagacearum infection, were excluded from
the oak wilt-live oak reference database, resulting in the inability to identify the aroma signatures of these analyte (odor) species.
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and 0. plurianulatum with QFs of 15 to 20 (P < 0.001). The
greatest difference was found between 0. piceae and 0. pluri-
anulatum. Three principal components of the aroma signa-
tures (PC 1 to 3) accounted for 89.8% of the variability in the
analysis.

Aysimilar comparison in all possible combinations using three-
dimensional PCA of headspace volatiles from sapwood cores of
live oaksin various levels of infection by C. fagacearum demon-
strated how relatedness of sample volatiles could be used as an
indication of infection status for the purpose of disease diagnosis
(Table 7). Healthy and inoculated control categories were samples
of known origin (infection status) used as a reference against un-
known samples. No significant difference or a close relationship
was found between EASPs of nonsymptomatic and healthy con-
trols. However, moderately significant differences were found be-
tween nonsymptomatic and weakly symptomatic samples, healthy
controls and weakly symptomatic samples, inoculated and strongly
symptomatic samples, and weakly and moderately symptomatic
samples. Strong significant differences were determined between
samples at different levels of infection and symptomatic cate-
gories within the extremes of the infection range. Highly signifi-
cant differences were found between nonsymptomatic and strongly
symptomatic and between healthy controls and strongly symp-
tomatic samples at opposite ends of the infection range. The three
principal components of aroma signatures accounted for 88.3% of
the vaiahility in the anayss.

Three-dimensional PCA of EASPs of sapwood volatiles also
differentiated healthy from wetwood-infected cores of cotton-
wood for diagnosis of bacterial wetwood infectionsin standing
trees and in unprocessed logs at the lumber mill (Fig. 3). Al-
though the aroma map of healthy and infected samples indicated
a somewhat diffuse distribution for both aroma classes based on a
two-dimensional view, the analysis indicated a strong significant
difference between these aroma classes (QF > 6.0). The differ-
ence and clustered distributions of these aroma classes were more
apparent when observed by rotating the map graphic in three-
dimensional space using the analysis software. The three princi-
pal components (PC 1 to 3) for each aroma class accounted for
98.8% of the variability in the analysis and were plotted as Eigen
values on the y, x, and z axis, respectively, expressed as a percent-
age. The PC value for each axis indicated the proportion of the
difference explained by that PC. The relatively high percentage of

TABLE 7. Three-dimensional principal component analysis of headspace
volatiles released from live oak sapwood tree cores a various levels of infec-

tion by Ceratocystis fagacearum, the oak wilt fungus

Analvte | Analvte 2 QF significance”

Hedlthy control 0.81
Inoculated control 7.82%%

Nonsymptomatic

Strongly symptomatic 9.26%**
Weakly symptomatic 2.53%*
Moderately symptomatic 5.10%*
Healthy control Inoculated control 7.74%*
Strongly symptomatic 9.05% %%
Wesakly symptomatic 2.49%
Moderately symptomatic 5.02%*
Inoculated  control Strongly symptomatic 2.59%
Weakly symptomatic 3.50%*
Moderately symptomatic 4.02%*
Strongly symptomatic Weakly symptomatic 4.72%*
Moderately symptomatic 5.09%*
Weakly symptomatic Moderately symptomatic 2.41%

i QF = quality factor, Discrimination between anaytes (aroma classes) was
significant at the following levels: * ** and ### jndicate P < 0.05, 0.01,
and 0.001, respectively. A QF value of 2.0 indicates a significant discrimi-
nation a =P = 0.05. The percentages of the total variance, accounting for
the variability explained by each orthogonal principal component (PC), are
as follows: PC | = 63.66%, PC 2 = 14.92%, and PC 3 = 9.73%, representing
the x, y, and 7 axis of the aroma map, respectively.
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difference (89.1%), accounted for by the first two PCs (PC 1 and
2) in this analysis, was a good indication that a significant degree
of difference was determined between aroma classes without the
need to specify rigorous discrimination parameters for neural-net
training in the construction of the reference library.

SMA of related bacteria. The relatedness of volatile metabo-
lite mixtures produced in the culture headspace of five related
phytopathogenic bacteria, formerly placed in the genus Erwinia,
provided further indications of a correlation between the chemical
relatedness (metabolic pathways) of microbial species and their
taxonomic rel atedness. Comparisons of these five speciesin all
possible combinations using two-dimensional SMA indicated a
low significant difference between Brenneria quercina and Er-
winia amylovora, and between B. quercina and Pectobacterium
carotovora (=Erwinia carotovora), with Euclidean distance (ED)
values of <1.5 implying distinct species, but a fairly close re-
lationship (Table 8). A higher level of significant difference was
indicated between B. quercina and E. chrysanthemi, between
B. quercina and Pantoea ananatis, between E. amylovora and
E. chrysanthemi, and between E. amylvora and Pectobacterium
carotovora. Similar differences were observed between E. chry-
sunthemi and Pantoea ananatis, between E. chrysanthemi and
Pectobacterium carotovora, and between Pantoea ananatis and
I? carotovora. These comparisons indicating greater differences
(ED > 2.0) suggest that the analytes come from more distantly
related species, perhaps supporting the separation into different
genera (P < 0.01). The highest level of difference (ED > 3.0) was
determined between E. amylovora and Pantoea ananatis, indi-
cating that these species are most distantly related or least related
among the species tested (P < 0.001).

Factor s affecting instrument performance and analyses. In-
strument operation was most affected by sample air RH. Sensors
were overloaded by excess moisture in the sample. Most prob-
lems with excessive moisture were controlled by setting the refer-
ence air at 4% to maintain arelatively dry carrier stream with
minimal impact on sensor sensitivity. Maintaining low reference-
air relative humidity assured positive sensor responses in most
cases because any additional moisture added to the analyzed

en values (%)
o888

. 0 5 1o
Eigen values (%)10

& = Healthy cottonwood A = Infected coftonwood

Fig. 3. Principa component (PC) analysis of electronic aroma signature pat-
terns differentiating headspace volatiles released from hedthy and wetwood-
infected sapwood cores of cottonwood (Populus deltoides) for disease diag-
nosis. Eigen vaues, describing the amount of variance captured in the data of
each individua PC axis, were caculated by decomposing the covariance or
correlation matrix representing the data. The correlation matrix was a scaled
version of the covariance matrix such that every individua element in the
covariance matrix is divided by the product of the standard deviations of the
two covarying quantities to obtain the percentage Eigen values. The PC value
for each axis indicates the proportion of the difference explained by that PC;

QF = quality factor.



headspace came from the sample. Effective control of reference
air RH by the instrument humidity control device required that
sample hydration was maintained properly. Samples such as tree
cores that became too dry during cryostorage resulted in negative
(below baseline) responses for all sensors throughout data acqui-
sition. Negative responses were corrected by rehydrating the
sample and air-drying immediately prior to data acquisition. Sen-
sor response intensities also were affected by sample mass and
preparation, equilibration time and temperature, and reference air
quality. Sample mass and equilibration times affected the concen-
tration of headspace volatiles. Standardizing sample preparation
and equilibration methods controlled the sample size releasing
volatiles and headspace accumulation. Reference air prefilters
provided assurances of air quality introduced into the sampling
chamber. Instrument precision was very high when these controls
were strictly maintained. The accuracy of analytical determina-
tions and disease diagnoses were improved for in vivo sampling
by taking samples from several diseased parts of the plant.

DISCUSSION

The electronic nose is a chemical-sensing device containing
aroma-reactive detectors capable of producing a digital finger-
print of volatiles released from any source. Conductive polymer
sensor arrays take advantage of differential responses of different
conducting plastics (within each sensor) to various chemical
species in the sample headspace by producing a unique EASP
specific to the analyte mixture. The multisensor array provides an
output response pattern analogous to a combination lock that re-
flects the collective responses of all sensors in the array. However,
unlike a combination lock, the sensor outputs are in continuous
values. The pattern-recognition algorithmsin the analysis soft-
ware compare signature patterns stored in the reference library to
those of unknown samples to look for similarities and differences
in these patterns. The differences are expressed digitally as nu-
merical vaues that are compared in matrix format. The ago-
rithms assign distributions of similar elements found in PCs of
the sample that are in common with known patterns in the refer-
ence library and make a determination of identity based on that
distribution. Unlike gas chromatography, there is no stationary
phase or retention time involved because the response of each
sensor is based on the collective effect of the entire mixture of
compounds in the headspace on electrical-resistance changes gen-
erated by adsorption of analytes to the sensor. Sensor adsorption
is determined by the specific affinity of unique polymers in each
sensor, the specificity of chemical types, quantities, and molar
ratios of chemicals present in the sample mixture. Thus, using
CPA avoids the need to extract specific components of microbial
ceils such as nucleic acids or cell wall fatty acids for microbial
identifications (23), although known reference strains are required
in the development of reference libraries.

CPA is a relatively new EAD technology that offers consider-
able potential for a wide range of applications in plant pathology
from disease diagnosis and pathogen and host identification in
vitro to detection and identification of plant pathogens in plant
tissues as well as mixed infections, toxic metabolites (toxins), and
pesticides (unpublished data). Some advantages of CPA include
short analysis time (run time 90 to 220 s), high level of precision,
sensitivity of detection, control of sample discrimination speci-
ficity, flexibility of sensor array selection, and custom database
capabilities. Our results indicate the reliability of CPA as a diag-
nostic tool for plant pathology, and demonstrate an advantage
over other types of diagnostic methods in that CPA methods
rarely identify unknown samples incorrectly or ambiguously
when an aroma class category exists for the unknown in the refer-
ence library. The absence of false positives and ambiguous deter-
minations with CPA assures that a sample will be identified either
correctly or unsuccessfully. Another significant advantage of CPA

is the capability of distinguishing between sources of sample mix-
tures containing the exact same chemical components, but with
different molar ratios of those components.

We have developed methods for the application of CPA asa
new diagnostic tool for the detection and identification of diseases
caused by plant-pathogenic bacteria and fungi. These methods
have been used to acquire reproducible, unique EASPs useful for
the identification of plant-pathogenic microbesin pure culture,
the identification of host tissues, and for disease diagnosis in ex-
cised infected plant tissues. These results demonstrate the efficacy
of CPA as ameans of identifying individual phytopathogenic
prokaryotic and eukaryotic microbes by the unique mixtures of
volaile metabolites they produce in vitro and in host tissues. This
technology also was used to identify the plant species from which
host tissue were collected. Theoretically, it should be possible to
detect obligate parasites in vivo such as viroids, viruses, nema-
todes, and protozoa that produce abnormal and foreign volatiles
in diseased tissues or cause alterations in the types of volatile
metabolites produced in diseased tissues from those found in
healthy tissues. This has been the basis for the recent use of CPA
by the medical diagnostics industry in the detection of cancers,
ulcers, and urinary tract and upper respiratory infections in hu-
man and animal tissues (28,44). Identification of EASPs indicative
of specific combinations of microbial species or strains present in
a sample is possible with specialized reference libraries. CPA also
offers the potential for discriminating specific mixtures of patho-
gens and specific host-microbe combinations within host tissues.
Finally, the rapid analysis possible with this technology could
prove useful in the detection of plant and human pathogens for
homeland security applications as real-time identifications be-
come feasible using portable EAD devices (37).

Three-dimensional PCA of EASPs of sapwood volatiles effec-
tively differentiated healthy from bacterial wetwood-infected cores
of cottonwood for diagnosis of this disease (infection status) in
standing trees. The application is potentially useful in commercial
lumber production by allowing the early detection of wetwood
logs coming into the lumber mill. Early detection of wetwood
could mitigate economic losses by reducing or precluding lumber
degrades during the drying process through adjustments in lum-
ber drying schedules. CPA also was used effectively to determine
the infection status of live oaks suspected of being infected with
the oak wilt pathogen. The occurrence of unknown elementsin
aroma profiles of strongly symptomatic tissue could have been
dueto volatiles released by saprophytic microbes into necrotic
diseased tissues. However, weakly symptomatic plantsin early
stages of oak wilt disease development did not have saprophytic
contamination due to the absence of necrotic sapwood tissues.
Artificially inoculated tissue tended to be overwhelmed by the

TABLE 8. Two-dimensional Sammon mapping analysis of headspace vola-
tiles released from cultures of five bacteriad species, formerly placed in the
genus Erwinia, growing on standardized NBY growth medium

Euclidean

Anayte | Analyte 2 distance”
Brenneria quercina Erwinia amylovora 1.45%
E. chrysanthemi 2.68"

Pantoea ananatis 2. 10

Pectobacterium carotovora 1.14”
E. chrysanthemi 191"
Pantoeq ananatis 307
Pectobacterium carotovora 171

E. amylovora

E. chrysanthemi Pantoen ananatis 235
Pectobacterium carotovora 174"
Pantoea ananatis Pectobacterium carotovora 2,37k

# Discrimination between analytes (aroma classes) was significant at the fol-
lowing levels: # #% and *%* indicate P < 0.05, 0.01, and 0.001, respec-
tively. The two-dimensional Sammon mapping model used in this anaysis
was significant a P < 0.002.
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higher inoculum density, resulting in faster colonization by the
pathogen that inhibited growth of competing saprophytes in
necrotic tissues. Some occasional low-level misidentifications and
ambiguous identifications may have resulted from the collection
and analysis of poor or nonrepresentative tissue samples from the
host. This demonstrates why it is important to take diseased tissue
samples from several locations on the plant in order to increase
confidence in the results.

The Aromascan A32S instrument, like most other conductive
polymer instruments, was sensitive to sample size (total amount
of organic volatiles present) and differencesin RH between the
sample and reference gases. Control of sample gas RH to within a
specific range (52%) above reference air RH was needed to yield
the best analytical results. High detector sensitivity to moisture
and certain polar compounds, particularly carboxylic acids, can
cause problems in methods development for different types of
samples. Dry samples had to be rehydrated in order to facilitate
volatilization when building headspace to avoid negative signal
outputs from the sensor array. Specificity in detection was
controlled by the number of iterations used (training duration),
confidence level, and other parameters selected during neural-net
training. Thus, it was possible to detect differences in strains of
microbial species if high specificity was used, but this could re-
sult in indeterminations if reference library specificity is set too
high. Some limitations of CPA included the inability to identify
individual chemical species within complex mixtures of meta-
bolic analytes from microbes, to make reliable quantitative deter-
minations (only semiquantitative), and the time requirement for
building head space volatiles prior to analyses. Signal intensity
generally was proportional to the quantity of volatiles present, but
not predictably quantifiable. Sample preparation variability and
time requirements for headspace building have been largely
eliminated by the use of autosamplers.

Several factors affected quality, stability, and uniformity of runs
during data acquisition. Sampling methods had a large impact on
uniformity of signal output from the sensor array. Static sampling
provided more uniform and stable data output than dynamic
stripping and equilibration sampling because it avoided the dilu-
tion of headspace volatiles (increasing sensitivity) and precluded
perturbations of sampling air that caused temporal variability in
sample concentration during the run. Instrument architecture was
modified so that reference air could be vented during sample
introduction to avoid dilution effects. Samples were introduced
from a closed sampling bottle without reference air introduction
to maintain uniform sample concentrations during data acquisi-
tion. Consistency and repeatability of results between instruments
were once a problem due to differences in sensor coating thick-
ness, requiring calibration of sensor arrays, and correction of data
between individual instruments. This problem has been resolved
by improved sensor manufacturing methods that control coating
thicknesses to a high tolerance. Some additional ways of impro-
ving discrimination and increasing accuracy of determinations
include: (i) taking more than one sample from different parts of
the plant and teking samples over time to confirm infection status,
(ii) using category-specific reference libraries (developed for
specific host-pathogen combinations), (iii) increasing neural-net
training specificity for recognition and increasing the number of
elements allowed in error before unknown identity is declared,
(iv) tweaking discrimination parameter values, and (v) putting
more strains into the reference library to better represent the
range of strains encountered. It is very important that reference
libraries are constructed using strains that originate from the geo-
graphical area where unknown samples are to be collected. Strain
variability in different geographical areas can have considerable
effects on resulting EASPs. Thus, attempts to identify strains of a
pathogen at a location geographically distant from the area where
reference strains were taken (to create the reference library) can
result in ambiguous or even incorrect determinations.
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There are considerable opportunities for customization of CPA
for alarge diversity of different sample types and applications.
One such area is in the availability of a wide selection of sensor
types from which a customized sensor array can be designed. The
general-use sensor array used in this study was more useful for
distinguishing bacteria than fungi because of the production of a
greater diversity of metabolites and more oxidized secondary
metabolites by prokaryotes. For example, the new OSGP28 sen-
sor array has fewer sensors (only 28), but is designed to better
discriminate the volatiles of microbes despite the lower number
of sensor elements. Bacteria tend to produce a greater quantity of
more oxidized metabolites (aldehydes and carboxylic acids) where-
as fungi produce more reduced compounds (alcohols, ketones,
and esters). This information can be used in selecting sensor
arrays used for detecting specific groups of microbes. The flexi-
bility of a selected sensor array can be further improved by select-
ing which sensors will be used for the analysis. Specific sensors
in the array can be turned off when they do not provide signifi-
cant usefulness in the discrimination. In this way, it is possble to
refine the sensor array to limit it to the fewest number of sensors
that will provide effective discrimination for each microbial class.
However, a specific sensor combination used for identification of
unknowns must be consistent with the sensors used in building
the reference library. Control of the sensors being used in an
analysisis useful in the development of cheaper portable field
units with fewer sensors, in which only those sensors needed for
discrimination are used in each specific application. This capabil-
ity is essential for the miniaturization of hardware and electronics
necessary in portable units. There also is flexibility in develop-
ment of standardized culture media used in database development
in reference libraries. It was possible to very slightly modify stan-
dardized culture mediato allow the growth of certain microbes
requiring specific growth factors without significantly altering the
aromasignature. For example, NBY medium was amended with
1.5% (wt/vol) mannitol for culture of endosymbiotic Rhizobium
leguminosarum biovars to be distinguished from pathogenic bio-
vars. Database filcs also may be averaged or added together, if
desired, to more precisely specify sample components being
analyzed.

New emerging technologies already are providing means of im-
proving on EAD to allow rapid discrimination of individual
chemical species within aroma mixtures. Instruments are being
developed that combine EAD with optical sensors (46), fast gas
chromatography integrated with surface acoustic wave sensors,
and programmable gate arrays instead of sensor arrays (42). These
technologies will have the capability of producing recognizable
high-resolution visual images of specific vapor mixtures contain-
ing many different chemical species, as well as quantifying con-
centrations and identifying all compounds present in the mixture.
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