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ABSTRACT

Wilson, A. D., Lester, D. G., and Oberle, C. S. 2004. Development  of
conductive polymer analysis for the rapid detection and identification of
phytopathogenic microbes. Phytopathology 94:419-43  I.

Conductive polymer analysis, a type of electronic aroma detection
technology, was evaluated for its efficacy in the detection, identification,
and discrimination of plant-pathogenic microorganisms on standardized
media and in diseased plant tissues. The method is based on the acquisi-
tion of a diagnostic electronic fingerprint derived from multisensor re-
sponses to distinct mixtures of volatile metabolites released into sampled
headspace. Protocols were established to apply this technology spccifi-
tally  to plant disease diagnosis. This involved development of standard-
ized cultural methods, new instrument architecture for sampling, sample
preparation, prerun  procedures, run parameters  and schedules, recognition
files and libraries, data manipulations, and validation protocols for inter-
pretations of results. The collective output from a 32-sensor  array pro-

duced  unique electronic aroma signature patterns diagnostic of individual
microbial species in culture and specific pathogen-host combinations
associated with diseased plants. The level of discrimination applied in
identifications of unknowns was regulated by confidence level and sensi-
tivity settings during construction of application-specific reference librar-
ies for each category of microbe or microbe-host combination identified.
Applications of this technology were demonstrated for the diagnosis of
specific disease systems, including bacterial and fungal  diseases and dc-
cays of trees; for host identifications: and for determinations  of levels of
infection and relatedness between microbial species. Other potential
applications to plant pathology arc discussed with some advantages and
limitations for each type of diagnostic application.

Additiorzul  keywords: artificial neural network, artificial olfaction, bact-
erial wetwood,  early detection, electronic nose, homeland security, oak
wilt.

Recent advances in biochemistry, sensor technology, electronics,
and artificial intelligence have made it possible to develop devices
capable of measuring and characterizing  volatile aromas or  odors,
produced by a multitude of sources, for numerous applications.
These devices, known as electronic noses, were developed in an
attempt to mimic a mammalian olfactory system within an instru-
ment that obtains repeatable digital measurements, allowing de-
terminations of aroma identifications or classifications while
eliminating operator fatigue (6,9,29-3  1,38,39).  The technology of
artificial olfaction had its beginning with the invention of the first
gas multisensor array in 1982 (9),  but USC of the term “electronic
nose” for instruments made with this technology was not coined
until 1988. Since then, more than a himdred different prototypesa of artificial nose devices have been developed to discriminate aro-
matic mixtures containing many different types of volatile or-
ganic compounds (27,50). The prototypes represent several types

1 of electronic aroma detection (EAD) technologies that utilize dif-
ferent sensor types, in&din,0 metal-oxides (1 I ,26,40), semicon-
ductive polymers (22,34,5 I), and conductive  electroactive poly-
mers (12,17,2 1,33),  that are capable of direct electronic detection
and identification  of complex mixtures in sampled air. Electronic
noses originally were not designed for the purpose of identifying
individual chemical species within the sample mixture, but were
engineered to recognize the sample as a whole, or as a collective
simple or complex air mixture released  by any source that is
identifiable by its unique electronic signature.
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The typical electronic nose instrument consists of a multiscnsor
array, an information-processin g system such as an artificial
neural network (ANN), software with digital pattern-recognition
algorithms, and reference libraries to discriminate samples by
their unique aroma signatures (1,13,15,20,27).  The sensor array is
composed of incrementally different sensors chosen to respond to
a wide range of different chemicals or chemical classes. This sen-
sor architecture is capable of discriminating diverse mixtures of
possible analytes. Each sensor in the array produces an output
that, when assembled collectively, forms a distinct pattern of re-
sponses (digital fingerprint) called an electronic aroma signature
pattern (EASP), which allows classification and identification of
the anaiyte. In this way, the array of sensors is integrated to yield
a unique signal for a complex of distinctive aromas without
requiring  the mixture to be separated into its individual compo-
nents prior to or during analysis. To use the instrument, a refer-
ence library of known EASPs must first be constructed by assign-
ing descriptor names (identifiers) to patterns of known origin. The
ANN is configured through a learning process (neural-net train-
ing) using pattern recognition algorithms that look for differences
between the patterns of all the descriptor types to be included in
the reference library. This process continues until a previously
specified level of discrimination (determined by preset paran-
eters) is met. The results from these comparisons are validated
and then collectively assembled into the reference library to
which unknown samples can be compared for classiiication  and
identification based on the distribution of aroma attributes or
elements that the analyte pattern has in common with patterns
present in the databases of the reference library.

Most applications of EAD technology hitherto have been in
industrial food production, processing, and manufacturing (2,3,
IO,1  6,27,33,34). Some of the  more common applications have
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been in the arcits  of quality control and grading, detection of mi-
crobial contamination in food products, food freshness and  stor-
age. gas leak detection, processing controls, and environmental
monitoring (7,8,27,32,41,43,47,50).  One notablc example is the
routine use of EAD technology by the  U.S. Department of Agri-
culture Food Safety and Inspection Service for quality control and
detection of contaminated meat. More recently, EAD has been
used in the  biomedical field for applications in medical diag-
nostics such as detecting human pathogens in diseased tissues
( 19,28,44),  microbial mensuration (14),  and  waste  management
(1 X.32).  Using EAD technology as a means for identifying mi-
crobial species that cause  diseases of plants is quite different from
other approaches that accomplish this by identifying diagnostic
structural compounds found in the cell walls or by sequencing
genomic  or extragenomic DNA or RNA of the microbes  them-
selves (4,23-25,35,36).

This article reports on the development of conductive  polymer
analysis (CPA) for the rapid identification and discrimination 01
phytopathogenic microbes based on their production of unique
mixtures of volatile metabolites  recorded  as diagnostic EASPs.
The composition of primary and secondary metabolitcs  released
by individual microbes is controlled largely by the types and
combinations of metabolic pathways specific to microbial species.
These metabolic pathways are regulated by genetic, substrate, and
cnvironmcnts  factors. Differences in types and  proportions of
metabolic products released by different strains within a species
are determined primarily by genetic differences when strains are
grown under identical conditions on a standardized culture me-
dium. The objectives of this study were to (i) evaluate the feasi-
bility of using CPA as a means of detecting, identifying, and
discriminating the presence of plant-pathogenic microbes in pure
culture and  in host tissues; (ii) dcvclop  and test means and
protocols for applying CPA technology to plant disease diagnosis;
and (iii) determine some of the potential applications of this tech-
nology to plant pathology. Preliminary results of this work were
reported previously (48.49).

MATERIALS AND METHODS

Collection and culture of microbes. A number of microbial
strains, used here to construct reference  libraries of EASP data-
bases, were isolated from a variety of plant hosts (Table I ).  Most
strains of phytopathogenic bacteria and fungi were obtained from
the American Type Culture Collection (Manassas, VA). Some
bacterial strains were acquired as a gift from D. Gross (Texas
A&M University. College Station). A few fungal strains were ob-
tained 1‘1~on1 D. Ingram (Central Mississippi Research and Extcn-
sion Center, Raymond, MS), J. Bruhn (University of Missouri,
Columbia) from isolations in Ozark Mountain oak forests  (S),
F. Tainter (Clemson University, Clemson, SC), and D. Appel
(Texas A&M University). Strains of wood-decay flmgi were iso-
lated from contextual tissues of li-cshly  collected bnsidiocarps on
4.5%’  malt agar  (MA) with 0.1% streptomycin sulfate.

All microbes within each category (bacteria or fungi) were
grown under identical cultural conditions on a universally  favor-
ahlc  standardized culture medium. Strains of Plant-patliogenic
and wood-decay fungi were cultured on 4.5%  MA. Phytopatho-
genie  bacteria  WCIT  cultured on nutrient-broth yeast extract  agar
(NBY), prepared accordin,0 lo Vidaver (45). Slant cultures were
prepared in screw-capped glass tubes  (20 by 70 mm)  with ap-
proximately 7 ml of growth medium and incubated  at 25°C
(fungi) or 30°C (bacteria) until growth had covered the entire agat
surl;ice, approximately  665  mm’.

Collection and storage of diseased tissue samples. All of the
diseased plant samples collected  in this study wcrc taken from
woody plants using a Hagliii  tree  incrcmcnt  borer (Forest
Suppliers, Inc., Jackson. MS). Tree  cores of standard dimensions
(5 mm in diamctcr  by 5 cm in length) were collected  fl-om either

heartwood, sapwood, or both of individual trees, depending on
where the diseased or colonized tissues were located. Extracted
cores were placed either in plastic straws with bent and taped
ends or in 14.X-mm  glass vials used to place samples into the
sampling bottle. The cores were frozen at -20°C in long-term
storage and thawed immediately prior to sample analysis. Cores
that became desiccated due to sublimation during storage were
rehydrated by soaking in sterile distilled water for IS min fol-
lowed by blotting on Chemwipc tissue paper to remove excess
moisture immediately prior to analysis.

Sample preparation and prerun procedures. Sample cultures
in 14%ml glass vials were uncapped and placed into a SO@ml
glass sampling bottle fitted with reference air, sampling, and cx-
haust  ports on a polypropylene bottle cap. Reference air entered
the sampling bottle through a 3-mm polypropylene tube cxtend-
ing to just above the  bottom of the sampling bottle. The sampling
bottle was held in the sampling chamber within the instrument at
a constant air temperature of 25°C.  The sampling bottle was
purged with filtered, moisture-conditioned reference  air for 2 min
prior to building headspace.  The sampling bottle was sealed and
volatiles  from the sample were allowed to build headspace and
equilibrate for 30 min prior to each run. Prerun tests were per-
formed as needed to determine  sample air relative humidity (RH)
compared with that of reference air. Reference air was set at 4%
RH for most runs and ad.justed  to within 2% below sample air at
25°C. The sampling bottle cap and exhaust port were opened be-
tween runs to purge the previous sample with conditioned refer-
ence air.

Instrument configuration and run parameters. All analyses
were conducted with an Aromascan A32S (Osmetech, Inc.,
Wobum, MA) instrument fitted with a conventional 32-sensor
array designed for general-use applications with IS V across sen-
sor paths. Prior to analysis of known and unknown analytes  in
this study, individual sensors in the sensor array were character-
ized by testing sensitivity responses to representative compounds
from nine classes  of organic compounds potcnlially  relevant to
microbial identifications. The  response sensitivities of individual
sensors, measured in percent as relative differential elcctrical-
resistance changes (%AR/R,,,,,,),  varied with the type of plastic
polymer used in the sensor matrix coating, the type of ring-sub-
stitution used to modify its conductive properties, and the type of
metal ions used to dope the matrix to improve and modulate
sensor response (Table 2). The detection limits of the instrument
were dependent on the classes of organic components present  in
the  sample and the combined sensitivities of the sensor array. The
sensors generally were most sensitive to amines  and sulfm-contain-
ing compounds. However, highly polar compounds like carboxylic
acids tended to bind and accumulate on some sensors, causing
ncgativc responses in some cases at higher concentrations.

The block temperature of the sensor array was maintained at a
constant 30°C. Reference air was preconditioned by passing room
air sequentially through a carbon fitter, silica gel beads, iniine
lilter, and Hepa  filter to remove organic compounds, moisture,
particulates, and microbes, respectively, prior to humidity control
and introduction into the  sampling bottle. The flow rate (suction)
of sample air at the sampling port was maintained at -702 ml/min
using a calibrated ADM 3000 flow meter (Agilcnt Technologies,
Wilmington, DE). Sensors were purged between runs using a 2%
isopropanol wash solution. The  instrument was interfaced with a
personal computer via a RS232 cable and controlled with Aro-
rnasca~~ (version 3.5 1) software. The instrument plumbing was
altercd from conventional architecture and  specilically  configured
for static sampling of the  headspace by allowing air flow, main-
tained at 605  ml/min  flow rate, coming out of the external  vent
(bag-fill) port of the  instrument during analytical runs, and clos-
ing the  exhaust port on the samplin g bottle so that headspacc
volatiles  wcrc removed from a homogeneous static air mass  with-
in the sampling bottle.
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Data acquisition parameters and run schedules. Data from
the selisor array were collected at I-s intervals using a 0.2 de-
tection threshold (JJ  units), a 15  to 20-y-max graph scale, and a
pattern average of five data samples taken per run during data
acquisition. A uniform run schedule (one valve sequence) was
used and consisted of reference air, 20 s; sampling time, 90 s; and
wash, 20 s; followed by 90 s of reference air; for a total run time
of 220 s. A 2-min reference air purge followed by a 30-min equi-
libration period was allowed between runs.

Construction of reference libraries and validation. Separate
reference libraries were constructed for each specific category 01
microbes (bacteria and fungi) from known reference strains of
each species included in each library. All database files of refer-
ence strains were linked to specific (designated) aroma classes for
each sample type. A separate neural-net training session was con-
ducted to create a unique reference library applicable for each
microbe category analyzed. A minimum of 10 replicate runs per
strain and multiple strains (2 to 10 per species) were used to
construct each reference library. The following recognition net-
work options (neural-net training parameters) generally were used
for each training session: training threshold = 0.60, recognition
threshold = 0.60, number of elements allowed in error = 5, learn-
ing rate = 0.10, momentum = 0.60, error goal = 0.010 (P 5 0.01 ),

hidden nodes = 5, and maximum iterations (epochs) = 10,000,
using normalized input data, not actual intensity data. Some of
these parameters were modified as dcscribcd  in the results for
specific applications or for improvement of recognition accuracy.
A typical neural-net training required 2 to 35 min, depending on
the size of the database applied, using an IBM-compatible personal
computer with a minimum of 64 MB of RAM and 350 MHz rtm
speed. Neural net trainings were validated by examining training
results that compared individual database files for compatibility
with its defined aroma class, and displayed similarity matches
using aroma class distributions (percentages) among all aroma
classes included in the recognition file, created by the training.

Identification of unknowns using recognition files. Rcfer-
ence libraries of signature patterns of headspace volatiles  from
known microbes were used for identification of unknown samples.
This was accomplished using a recognition tile (that defines each
reference library) either in real time or in offline analysis. In
either case, the neural net compared the response pattern of the
unknown sample with databases found in the refcrencc  library
chosen for comparison. The recognition algorithms quickly de-
termined the best match that most closely fit  the aroma elements
found in the unknown sample. The closeness  of the match was
expressed as a percentage value assigned to different global

TABLE I. Some representative bacterial d fungal  stwins  used  to build rd‘erence libraries of  electronic aroma signatures for detections and identifications of
microbes isolnted on standardired  culture media

Microbe Strain,’ Host origin D isease

ATCC 2’)28 1
I s-2
ATCC 217%
C-V6
I3
ATCC IS.580
A310
I’ll 1 I2Y
w3c4.3  I

W3CX21
ATCC I.5711
W4PS
ATCC 133%
B-3A
ATCC 116%
ATCC I 1325
NCPPB 24.17
ATCC 2330X
ICPB CFlO7
ATCC -+!I  I 73
ATCC I 132’)
WSCI
ATCC 3323’)
ATCC 35933

JNB-OZ208
JNB-MOAB  I
ADW-TX IS
F H T - S C  I
ADW-‘)30103
ADW-t)h2SOI
ADW-‘)22204
ADW-r)O3OOI
ADW-97 I80  I
DNA-TX I
DNA-‘l’X2
ADW-070308
DMI-WAI
DMI-WA:!
DMI-WA.3
ADW-070.305
AD\‘-07030  I

Drippy nut Calilim~ia
Bacterial canker North Carolina
Corn stuntinlr_ Nebraska
Bacterial wilt Nehrask,b ‘
Fire blight Idaho
Fire blight United Kingdom
Bacterial hii@ Idaho
Root p;llis United Kingdom
Black Icg Washington

S o f t  r o t
Soii  rot
Root qxophytc
Leaf  s p o t
Bacterial canker
Southern wilt
Hairy  root
Crown gall
Crown sail
Fnsciations
Common vxh
Bnctet-id blight
Bacterial blight
Angular leaf’ qot
Led’  hiight

Washington
Denmark
Washington
New Zealand
California
North Cxolina
Wisconsin
llnitcd  S t a t e s
U n i t e d  S t a t e s
United states
New York
llnited  State\
Washington
U n i t e d  S t a t e s
India

Root rot
R o o t  r o t
Oak wilt
Chestnut blight
Bole rot
Root and hut1  rot
Bole rot
Bolt  rot
Butt rot
Endophyte
Enciophytc
Butt rot
Root trot
R o o t  r o t
Root rot
Bolt  rot
Bole rot

Missouri
Miswuri
Texas
South Carolina
Miaaissippi
Mississippi
MisG\sippi
Mississippi
Micissippi
Minnewtn
Minncwta
MisG\\ippi
Wushington
Washington
Wasi1ingt0n
MihGsGppi
Mi\sia\ippi

‘I  Stirain  source\.  ATCC = American Type Culture Collection, Manasus~ VA: ICPB  = International Coilcction  01‘ l’hytopatRo~el,ic Boctcria.  UniverGty  01
C:rlifornin,  Dwi\:  NCPPB = Nutional  Collection  oi’ Plant-P;ItRofcni~  Bacteria, C’entral  Science L;~hor;ttory.  S;md  Hutton. York, UK.
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classes represented in the sample. A value greater than 95% was
considered to be a good match. Once separate reference databases
were developed for bacteria and fungi growing on their respective
growth medium, unknowns were identified using separate recog-
nition files linked to a specific reference library. This was nccom-
plished by specifying a recognition file, linked to the specific
reference library selected for comparison, in the data acquisition
window. This additional specification was added and saved as a
separate run method from that used for scans of known samples
used in building reference libraries for specific types of microbes.
The neural net software had settings that allowed for training to
any level of significance that was desired in discriminating
samples. A significance level of 0.05 or lower was used in these
applications depending on the level of specificity desired in the
discrimination.

Detection of infection status in living tissues. Headspace
volatiles from living sapwood  cores from the outer sapwood of
live oaks were used to test the ability of CPA to diagnose oak wilt
in living trees at various stages of infection. Mean global class
distributions provided indications of the percentages of aroma
elements in the unknown sample that matched those in the
reference library. Three aroma global classes (healthy, infected,
and unknown) were defined in the reference library to represent
the infection status categories for classifying these unknown
samples.

Instrument reliability in identifications. The reliability of the
instrument and methods to accurately identify sample unknowns
was tested with double-blind tests. Analyzed samples were deter-
mined to be either correctly identified, not identified (indetermi-

nate), incorrectly identified, or ambiguously identified. Determi-
nations falling outside of the domain of defined global classes
were recorded as unknown. Ambiguous determinations resulted
when different strains of a given microbial species were identified
in different global classes from separate runs.

Data processing, manipulations, and statistical evaluations.
Data slices for processing and analysis were taken from a con-
ventional 20-s sampling interval (X5  to 105 s) near the end of the
sampling segment of each run, before the sampling-valve closed.
The data slice from the raw data file was used to create a repre-
sentative descriptor database file. A minimum of 10 descriptor
database files were created from separate cultures of each mi-
crobial strain or sample type. Aroma signature patterns of indi-
vidual aroma classes (descriptors) were reported from calculated
means t  standard errors of the mean of raw relative resistance
sensor values from 10 replicate runs of 2 to 10 different samples
for each aroma class. Real-time determinations of unknowns util-
ized recognition files with normalized sensor intensity responses
and pattern recognition algorithms and matrices.

Detailed comparisons of relatedness of aroma classes were
determined using principal component analysis (PCA) algorithms
provided in the Aromascan (version 3.5 1) software. Three-dimen-
sional PCA was used to distinguish between headspace volatiles
released from related species of Ccxltocystis  and Ophiostomn
fungi on MA culture medium, and between headspace volatiles
released  from live oak sapwood tree cores at various levels of
infection by Ccrutocystis  ,fugacecmm,  the oak wilt fungus. for
disease diagnosis. The mapping parameters for three-dimensional
PCA were as follows: iterations = 30, units in Eigen values (o/o),

TABLE 2. Relative sensitivity responses of individual sensors in the Aromascan A32S  sensor art-ay  to representative  members of nine classes of organic
compounds"

Short-chain Long-chain Carboxylic Short-chain Long-chain Aliphatic Aromatic Chlorinated Aliphatic

S~llW alcohols alcohols acids e s t e r s esters ketones hydrocarbons hydrocarbons aminc5

I + + - - w +
2 t + + t + t + + i
3 + w + w - w w w +
4 + w w t - w w w w
5 + w t w - w - t
6 + w w - - w - w
I + w tt w - w ++
8 t w + w - w - - +
9 + t t + t + t t +
I  0 t t + t + t + t t
I I + t t t w t t w t
12 t + + t + t + t t
13 + t t t t + t t t
I4 t w t w - w - - +
IS t - + w w w w t
I6 t - t w - w - - t
17 + t+ + t+ it+ tt tt ++ t
IX + +++ t 4-i tt+ 4-t tt+ ttt +
I 9 t t + t w t w w t
20 + t t t t t t t +
21 t w t t w t w w t
22 + ttt w ++ ttt t-t- ttt ++t w
23 t tit w tt +t+ tt ttt ttt w
24 t tt - ++ ttt ++ ttt ttt -

25 t + t t + tt + t t
26 + t t + t + t t t
21 t + t t w t + t t

2x + t t it t tt t t t
29 t w t w - w - - t

30 + w t w - w w w t
3 I + w w t - W w w w
32 w w - - - -- - w

,I Scnaor  xn\itivitic'.  dctined  hy electrical rcsistancc respwxe.  percentage deviationc  (% AR/R,,,I,,)  xros~ sensor path\ relative to base resistances. produced by
xlwrption  and  interaction of analytes (odornnts) from each  spccificd chemical clahs.  to the wfxe of the SC~SO~S, according to the following x~le:  +++ = very
wong (K > 'I%,); tt = strong (S%, < K < 9%):  t = modcratc  (2% < R < S(I):  w = true  IO weak ( I 'X  < /i  < 2%); and - = negligible (K < I 'F) rcsponsc.  Scnwrs  in
the ;way are coatcd  with conductive polymers procluced  by clectropolymeri~atio~~  of either polypyrrole,  polyannlinc. or polythiophenc  derivatives which have
been  modified with ring-suhstitlltions  of different limctional groups that impart unique conductive propertics (electrical I-esistnncc  responses IO differcnt  class~‘s
o< compouncls).  These  polymers  are  doped with spcciiic  imc~:d  ions to improve and modulate  polymer conductivity and  sensor sensitivity.
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and with normalized input data. Two-dimensional Sammon map-
ping analysis (SMA) of headspace volatiles released from cul-
tures of five bacterial species, formerly placed in the genus Er-
wink1  and grown on standardized NBY growth medium, was used
to construct aroma maps for comparisons of relatedness of aroma
classes and indications of taxonomic relatedness. The mapping
parameters utilized for two-dimensional Sammon mapping were
as follows: maximum iterations = 100, minimum error = 0.001,
scaling factor = 2.0, using normalized input data.

RESULTS

Run characteristics and pattern analysis of microbial
species. Unique EASPs were produced by CPA of headspace
volatiles from cultures of phytopathogenic bacteria and fungi.
Noticeable differences were observed between the A32S multi-
sensor outputs and run characteristics for these two types of mi-
crobes during data acquisition. Headspace volatiles from plant-
pathogenic fungi produced relatively flat, low-resistance response
curves (~5% above baseline electrical resistance of each sensor)

with tightly clustered outputs of individual sensors (Fig. IA).
Runs of volatiles from bacteria produced multisensor outputs that
were much more diffuse, and with higher  intensity responses (up
to 15% or more) above baseline resistances (Fig. IB). Compari-
sons of normalized sensor outputs as histograms indicated low
variability and lower sensor responses to volatiles from fungi
compared with the generally stronger intensity and more variable
sensor responses to volatiles of bacteria (Fig. IC  and D). The
greater variability and stronger sensor-response intensities to bac-
teria relative to fungi were more evident when comparing EASPs
of pathogenic bacteria and fungi from many host sources and
locations (Table 3). Statistical analysis showed high precision and
low variability of individual sensor responses between analytical
runs for individual strains and between sympatric strains within
microbial species. However, the variability of aroma profiles
among strains within species was greater with allopatric strains
from widely separated localities. Headspace volatiles of excep-
tional bacteria, such as Puntoea marzatis, P,s~uci~)rnoncls  putida,
Rhizohiwn  rl~izogrrws,  and Sttzptonlyccs  .sccchic~ that produced
sensor intensity responses of >lO% for multiple sensors within

T i m e (seconds)

B

Time (seconds)
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E. af,lvio,~o,w 2.6+o.I 2.liO.l  2 . 3 i o . 1  2.3*0.1 I.‘)r?O.I I.XiO.1  2.liO.l  2.3iO.l 2.l?-0.1  2 . s i o . 2  2.liO.l  I.9iO.l 2.lfO.l  2.3i-0.1  1.5:O.l
Ii. i./1l-~\(illlhl,111i 1.7*0.1  I.3iO.l l.6iO.l  1.6kO.l  l.l?O.O  I.OiO.1 1.7iO.l I.hiO.1  l.4iO.O  l.‘)+o.I 1.3iO.l 1.2to.1 I.250.1 1..*0.1 0.8IO.l
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/‘. ,~c,r,~,,wol’~i 4 . 0 i o . s  2 . 9 i o . 3  3.110.4  3..?0.3 2 . s i o . 2  2.3iO.l  1.7io.-i  3.si-0.1 3 . 0 i o . 3  J.liO.5  1.OfO.3  2.x-io.3  3.ito.3  1.8r?O.S  2.lIO.2
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,s NliY  = nutl-ien-hrotl~  yea\, extrac,  agai-. and MA = ~nalk  afgr
” Mean nonnol-mali/cd  wwx rc\lxm~e\  (nrcan  + \cand:r~-d  error\  01 the ~nrcan)  dctermincd  l’mm  pcwmt changes in ekc~ric~d  w\istiincc  relative  (0 bax!  i-c~klance  (4lVRhx~c x IOO)  lb

ili~h indi\  itlwl  w~wr  with IO replicate run\  per w:tin  of each microhi;d  qxie\.  and nlultiple  wain\ (2 to IO pcl-  \pecicc)  with ien  exceplimb.

the array, were generally those that produced the most noticeably
pungent, volatile aromas in culture. The  headspace volatiles of
filamentous  bacterium  S. .sc&ie.s  caused consistently very high
sensor responses across the sensor array. indicative of compounds
with high aflinity for all of the  different types of conductive poly-
mcr coatings on sensors. Headspace volatiles from fungi rarely
produced nonnormalized sensor-response intensities of >3%  using
the  general-use A32S sensor array. Nevertheless, sufficient differ-
cnces  in individual sensor responses were produced and EASPs
were sufficiently unique for different fungi to allow discrimi-
nation between fungal  species. Individual nonnormalized sensol
intensity responses were rarely <I c/c for fungi, but intensity rc-
sponses  of <I %, were ol~served  with some bacteria. Certain
anacrobic  bacteria, such as those causing wetwood in hardwoods,
often released copious quantities of carboxylic acids into the
sampled headspace,  producing negative responses for sensors that
were sensitive to polar compounds.

The EASPs of microbes in graphic formats were useful visual
references for comparing sample unknowns to known EASPs dur-
ing methods development, reference database construction, and
comparisons of closely related microbes. For example, the EASPs
of two closely related bacteria, R. t%;:ogrr~s  (=A!:~ohtrc,/rr-ilrnl
r/~i~o,~cvw.s) a n d  K.  t-trdiolm~trr  (=Ag,-ohcrc,tc,r-irr,ll  /lrrnc~~irc,irr?s),
were compared usin g two types of CPA signature-differentiatioo
display modes-sL)pcrimposc  (simultaneous) mode and difference
mode. The  EASPs were compared separately using act~~al (non-
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normalized) and normalized data (Fig. 2). Histogram comparisons
using normalized EASPs of these  bacteria indicated considerable
dilTerences  in sensor responses to their headspace volatiles in
superimpose mode (Fig. 2A). Relative differences  in sensor re-
sponses to volatiles of R. rcldiohtrcto-  compared with R. rhiw
ger~~.s were indicated in the difference display mode (Fig. 2B).
Comparisons using nonnormalized data as line graphs provided
views of actual raw-data differences in sensor responses using
superimpose mode (Fig. 2C) and in difference mode (Fig. 2D).
With both normalized and nonnormalized data, difference mode
indicated differences in sensor responses in the EASPs of one
bacterium relative to those of the other bacterium. Thus, it mat-
tered which was the EASP of the first bacterium (R,) that was
used as the reference pattern to which the EASP of the second
bacterium (R?)  was compared because corresponding sensor re-
sponses were reversed along the x axis at approximately the zero-
response line for normalized histogram data, but no change oc-
curred for nonnormalized data. This result occurred because the
analysis software selects the curve with the highest values as the
reference  curve (R,). The curve with the smaller values (R,) be-
comes a flat  reference line following subtraction of nonnormalized
data (Fig. 2D).

Determinations of infection status in living host tissues.
Headspace volatiles released from tree cores that were extracted
from the outer sapwood  of live oaks were used to test the  ability
of CPA to diagnose  oak wilt in living trees at various stages of
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2.0t0.2 1.9t-0.2  1.7~kO.l  2.0-t0.3 2.1-to.2 1.9kO.2  1.7+".1  1.7+0.1  1.8~0.1  1.7kO.2  2.]+",2  2.OkO.2  2,1+0,2  2,2+0,2  2,2+0,2  j,*+o,j  2,)*0,2
2.1ir0.2 2.0+0.1  l.*+O.l  2.0i0.3 2.2?0.2  1.9+0.1  1.7+".]  ].*fO.]  ].9fO.]  l.*+O.l  2.2*",]  2,0+0,1  2,]*0,1  2,2fO,l  2.3kO.l  ],*fO,]  2,2*0,1
1.5i0.1 1.4-t0.1  1.3+0.1  1.5-FO.2  1.6+0.1  1.41tO.l  1.2+".,  ,.3+0.1  ,.3rtO,]  1,3fO,]  ],6+",,  ],5*0,]  ],5fo,]  1,6fO,l  ],7+,J,  1,3*0,,  ,,6j.O,]
2.4kO.1  2.3kO.l  2.11tO.l  2.4i0.1 2.6i0.1 2.3i0.1 2,1+-O.]  2.]+0.]  2.2+0.]  2.]+0.1  2.6+0.1  2,4*0.]  2.5iO.1  2,6*0,1  2,7*0,1  2,2+0,]  2.6iO.1
2.3i0.1 2.210.1 2.110.1  2.3i0.2 2.6~0.2  2.2~0.1  2.110.1  2.210.1  2.310.1  2.0~0.1  2,5&O,]  2.3iO.1  2,3&O,]  2.5~0~ 2.6iO.l  2,lfO,l  2.5~"~
2dizo.i  1.9-fO.l  1.8-f".,  1.9rtO.l  2.110.1 ,.8i-0.1  1.7+0.,  1.7iO.1  ,.*-f-O.] ].7+0.] 2.1fO.1  ,.9&O.]  1.910.1  2,]*0,,  2.2kO.1  ,.7*0.,  2,lj.O~

infect ion.  Mean global  class  dis tr ibut ions provided indicat ions of
the percentages of aroma elements in the electronic signature that
matched those of three aroma global class categories (healthy, in-
fected, and unknown) in the reference library. Global class mem-
bership values of >90%  were s trong indicators  of  sample identi ty,
in this  case,  oak wil t  infection status.  Aroma profi les of  sapwood
cores from healthy and inoculated controls had very high levels of
global  class membership in the infection categories healthy and
infected,  respectively,  consistent with their  source and infection
status (Table 4).  All  aroma elements of EASPs  from healthy non-
host  control  cores were predominantly unknown, with only minor
membership distributions among healthy and infected global
classes.  Healthy (uninfected) l ive oak cores produced results con-
sistent with healthy controls, having almost all aroma elements
identified in the healthy global class category. Sapwood  cores
from weakly symptomatic, oak wilt-infected live oaks had high
global class membership (almost 80%) in the infected category,
with a  s ignif icant  port ion remaining in the heal thy category.  Thus,
a mean global class membership value of ~90%  indicated that
core samples from weakly symptomatic trees were not always re-
l iably diagnosed.  Cores from strongly symptomatic infected trees
were identif ied in the infected category,  but had minor elements
in the unknown and healthy categories.

Reliability of sample identifications and disease diagnoses.
The efficacy of CPA in providing accurate microbial identifica-
tions in vitro, identifications of host tissues in vivo, and diagnoses
of specific diseases were tested using headspace volati les from
cultures and excised sapwood  cores from healthy and diseased

host plants, respectively. All strains of pathogenic and wood-
decay fungi were identified correctly at  high levels of confidence
(Table The only exception was Ganoderma lucidum, for which
only 89% of strains were correctly identified. The remaining
strains of  G. lucidum could not  be identif ied.  Mean global  class
dis t r ibut ions  indicated >95%  correct identifications for microbes
in the proper category. Similar results were obtained for the
ident if icat ions of  plant  hosts  for  most  plant  species  tested.  Ident i-
fications of Diospyros virginiana (American persimmon) and
Prosopis  glandulosa (mesquite)  sapwood  cores using CPA were
somewhat less rel iable at  90  and 80%,  respectively. The remain-
ing specimens from these two species could not be identified
(Table 5).  Global class distr ibutions in the correct  categories also
were very high among the host  species tested.

The resul ts  for  tests  of  infect ion status or  diagnosis  of  specif ic
diseases in host tissues were more variable than for analysis of
volat i les  f rom microbes or  host  t issue samples  individual ly  (Table
5).  The rel iabi l i ty of  diagnoses of  oak wil t  infect ions in l ive oaks
was dependent upon infection status and levels of infection.
Identification of infection status in healthy controls and unin-
fected samples was most rel iable (100% identif ied correctly) with
samples containing only host volatiles to affect discrimination.
Correct  identif icat ion of  inoculated control  samples was next  in
reliability (97%). In this case, host tissues initially were over-
whelmed by inoculum and subsequent colonization by the oak
wilt pathogen, C. fagacearum. Infected cores from strongly
symptomatic plants  also were detected rel iably in 93% of speci-
mens tested. However, only ~80%  of core samples from weakly
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symptomatic plants were identified as infected.  None of the ana-
lyzed samples for which an identical global class existed in the
reference library were incorrectly or ambiguously identified. The
identity of all such samples that could not be determined was
classif ied as unidentif ied (Table 5).  Most healthy control  samples
from nonhost  plants  were classif ied as indeterminate or  not  identi-
fied.  Approximately 4% of samples each were either misidentified
as infected l ive oak or  ambiguously ident if ied.  Ambiguous ident i-
fications indicate that separate samples of the same type were de-
termined to have majority ownership in different global classes.
Nonhost  samples that lacked representative databases in the refer-
ence l ibrary were the only sample type that  had determinations in
these categories.

Tests  of  CPA rel iabi l i ty for  the diagnosis  of  bacterial  wetwood
in Pupulus  deltoides  (cottonwood) using volatiles from sapwood
cores provided more discrete results. Freshly excised sapwood
core samples collected from trees in cottonwood plantat ions and
at the saw mill were either strongly symptomatic (visibly dark,
wet,  and with r ing shakes in annual  r ings) or  healthy (white,  dry,
and structurally intact without ring shakes). However, it was
harder to distinguish symptoms and visually discriminate be-
tween healthy and infected cores once they had dried after exci-
sion.  The infected cores tended to lose the dark pigmentation and
drying tended to s trengthen structural  r igidi ty.  Both heal thy and
infected sapwood  cores from cottonwood were identified with
high levels of confidence based on differences in EASPs.  The
mean global class ownership of healthy and infected samples was
very high in corresponding categories of  proper identi ty.

Mean global  class memberships of  al l  microbial  species,  host
tissues,  and disease diagnoses were very high in the correct cate-
gory of identification. Most samples that were not correctly
identif ied could not  be categorized to an identif iable global  aroma
class.  No samples were identif ied incorrectly or ambiguously for
which an aroma class category existed in the reference library.

TABLE 4. Mean global class membership of validated aroma profiles for sap-
wood cores of live oak trees in various categories of oak wilt infection, and of
nonhost  hardwood species

Mean global class distribution (%)h

Infection status of sample” n Healthy Infected Unknown

Healthy (uninfected) 15 9 9 . 9 0 . 0 0 . 1
Weakly symptomatic infected 15 19.5 7 9 . 8 0.7
Strongly symptomatic infected IS 1.8 9 3 . 8 4.4
Healthy control 3 9 9 9 . 9 0 . 0 0 . 1
Inoculated control 3 0 0 . 0 99.6 0.4
Healthy nonhost control 24 I .4 I .3 97.3

B All samples were sapwood cores of Plateau live oak, Quercus  ,fir.siformis,
except nonhost  samples which were sapwood cores of various hardwood
species immune to C. fupcecrrurn  infection.

b  Global classes distributions indicate the percentage of aroma elements in the
electronic signature  that match elements found in the electronic signatures
of known healthy and infected samples in the reference library. Distribution
values of >90% are strong indicators of sample identity (infection status).
Unknown designations indicate the percentage of elements in the sample
that could not be identified or matched to any global classes found amon&
databases included in the reference library used for sample determinations.
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Fig. 2. Comparisons of actual and normali/.ed  intensity responses (‘#‘AR/R,,,>,,)  of the Aromascan A32S sensor array to hcadspace volatiles produced by Rlzi-
:ohilr,/t  r1~i:ogc~~e.s  and K.  rrrdiohacrer  on nutrient-broth yeast extract agar using two types of conductive polymer analysis signature-differentiation modes. Histo-
gmm comparisons of the normalized electronic aroma signature pattern of R.  r-rrdiobac~trr  (green bars) compared with (relative to) the R. r/~izog~vze,s  (red bars)
reference pattern in A, superimpose mode. and in B,  difference mode. Graphed comparisons of actual (non-normalized) electronic aroma signature pattern of
R. rrrrliohac~tc~r  (bottom orange or purple line) compared with I<.  rhi:ogcne.s  (top dark gray line) in C, superimpose mode, and in D,  difference modes. In the
normalited  and actual difference-mode comparisons. R,  = clcctronic  aroma signature pattel-n  of R. rhix~@w~s  and R2 = electronic aroma signature pattern of
R. rcrdiohoctrr.
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PCA of related microbial species and for disease diagnoses.
A cri t ical  comparison in al l  possible  combinat ions of  EASPs  from
headspace volatiles of closely related microbial species using
three-dimensional  PCA allowed quanti tat ion of  the relatedness of
headspace mixtures produced and an indication of the relative
taxonomic relatedness of compared species based on the volat i le
metabolites produced. These measurements were quantified with
a quality factor (QF) of signifkance  value.  The higher the QF sig-
nificance, the greater the difference or less related the analytes
compared. A quality factor value of 2.0 generally was considered
to be a  s ignif icant  discr iminat ion equivalent  to  approximately P =
0.05. Analysis of four species of phytopathogenic fungi in the
Ceratocystis-Ophiostoma complex indicated high levels of sig-
nificant difference between these species (Table 6).  The EASP of
C.  ,fagacearum  was signiiicantly  different from C.  jmbriata,
Ophiostoma piceae,  and 0. plurianulatum  (P < 0.01). Even greater
differences were determined between C.  j imbria ta  and 0. piceae

TABLE 6. Three-dimensional principal component analysis of headspace
volatile metabolites released from cultures of Cerurocystis  and Ophiosroma
spp. growing on standardized malt-agar growth medium

Analyte 1 Analyte 2 QF significance”

Cerarocystis  fagacearum C.  fimbriata 11.X3*”
Ophiostoma piceae 11.93**
0. pluriannulatum 1 1.74**

C. ,fimhriata 0. piceae 19.70***
0. pluriannulatum 14,9X”**

0. piceae 0. pluriannulaturn 36.57***

d QF = quality factor. Discrimination between analytes (aroma classes) was
significant at the following levels: **  and ***  indicate P < 0.01 and 0.001,
respectively. A QF value of 2.0 indicates a significant discrimination at-P =
0.05. The percentages of the total variance, accounting for the variabilityex-
plained by each orthogonal principal component (PC), are as follows: PC 1 =
76.62%, PC 2 = X.93%,  and PC 3 = 4.27%, representing the x,  y,  and z axis
of the aroma map, respectively.

TABLE 5. Reliability of microbial identifications in culture, host identifications from tree cores, and disease diagnoses as determined by conductive polymer
analysis with the Aromascan A32S using recognition files constructed from sample-specific reference libraries

Sample unknownsa n
Correctly

identified (%)b
Indeterminate, not

identified (%),
Incorrectly

identified (%)d
Ambiguously
identified (%)”

Microbe identification in vitro
Armillaria  gallica
A. mellea
A. ostoyae
A. rabescens
Ceratocystis fagacrarum
Cryphonectria parasitica
Daedalea quercina
Ganoderma  lucidum
Hericium  erinaceus

Plant host identification in vivo
Acer  rubrum
Carya illinoensis
C.  tommto.Pa
Carpinus  caroliniana
Celtis laevigara
Cornus florida
Diospyros  virginiana
Ilex opaca
Liquidamhar  .styracijlua
Platunus  occidentalis
Populus  deltoides
Prosopis glandulosa
Quercus  alha
Q..falcata
Q.  marilnudica
Q. nigra
Mix  riigra
Taxodium distichum
Sa.ssflfras  albidum
Ulmus crussifolia

Disease diagnosis in vivo
Oak wilt in Q. ,firs@rmi.s
Healthy (uninfected)
Weakly symptomatic infected
Strongly symptomatic infected
Healthy control
Inoculated control
Healthy nonhosts control’

Bacterial wetwood  in Populus  deltoides
Healthy sapwood
Infected sapwood

13
14
18

1 X

9
9
9

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

15 1 0 0 . 0 (99.9)
15 8 0 . 0 (79.8)
15 93.3 (93.8)
3 9 1 0 0 . 0 (99.9)
3 0 9 6 . 7 (99.6)
2 4 0.0 (0.0)

15
10

1 0 0 . 0 (98.0)
1 0 0 . 0 (96.7)
1 0 0 . 0 (99.2)
1 0 0 . 0 ( 9 X . 4 )
1 0 0 . 0 (99.7)
1 0 0 . 0 (97.9)
1 0 0 . 0 (99.6)

8 X . 9  ( 8 8 . 2 )
1 0 0 . 0 ( 9 X . 2 )

1 0 0 . 0 (99.5)
1 0 0 . 0 (98.7)
1 0 0 . 0 (99.7)
1 0 0 . 0 (99.5)
1 0 0 . 0 (98.4)
1 0 0 . 0 (98.4)
90.0 (89.7)

100.0 (99.3)
loo.0 (98.4)
1 0 0 . 0 (97.8)
1 0 0 . 0 (99.2)
80.0 (79.8)

1 0 0 . 0 (99.7)
1 0 0 . 0 (98.4)
1 0 0 . 0 (99.0)
1 0 0 . 0 (99.3)
1 0 0 . 0 (99.1)
1 0 0 . 0 (98.7)
1 0 0 . 0 ( 9 X . 9 )
1 0 0 . 0 (98.7)

1 0 0 . 0 (99.6)

0.0
0.0
0.0
0.0
0 . 0
0.0
0.0

11.1
0.0

0 . 0
0 . 0
0.0
0 . 0
0.0
0.0

10.0
0 . 0
0 . 0
0 . 0
0 . 0

20.0
0.0
0 . 0
0 . 0
0.0
0 . 0
0 . 0
0 . 0
0.0

0.0
2 0 . 0

6 . 7
0 . 0
3 . 3

9 1 . 7

0.0

0.0
0.0
0 . 0
0.0
0 . 0
0.0
0.0
0 . 0
0.0

0 . 0
0.0
0 . 0
0 . 0
0.0
0 . 0
0 . 0
0.0
0 . 0
0.0
0 . 0
0.0
0 . 0
0.0
0 . 0
0 . 0
0.0
0 . 0
0 . 0
0.0

0.0 0 . 0
0.0 0 . 0
0.0 0.0
0.0 0 . 0
0 . 0 0.0
4.2 4 . 2

0 . 0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0 . 0
0.0

0 . 0
0.0
0.0
0 . 0
0.0
0.0
0.0
0.0
0 . 0
0.0
0 . 0
0.0
0.0
0 . 0
0 . 0
0.0
0 . 0
0 . 0
0.0
0 . 0

0.0
100.0 (99 .X) 0 . 0 0 . 0 0 . 0

d  Microbes identified in vitro consisted of cultures in sample tubes on standardized growth media. Plant host identifications and disease diagnoses were deter-
mined from sapwood tree core samples.

” Pcrcentane  of unknown samples identified correctly. Values in parentheses indicate the mean global class distribution percentage attributed to the correct identi-
fication category  for that sample type.

‘ Unidentified samples resulted from a global class distribution that had ~70% ownership in any one global class.
d  Misidentified  samples indicate that the identity was incorrectly attributed to the wrong global class.
e Ambiguous identifications indicate that separate samples of the same type were determined to have majority ownership in different global classes.
’ Signature files of healthy nonhosts  controls, consisting of sapwood  cores of healthy hardwood species immune to C.  fagacearum  infection, were excluded from

the oak wilt-live oak reference database, resulting in the inability to identify the aroma signatures of these analyte  (odor) species.
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and 0. plurianulatum with QFs  of 15 to 20 (P < 0.001). The difference (89.1%), accounted for  by the f i rs t  two PCs (PC 1 and
greatest difference was found between 0. piceae and 0. pluri- 2) in this  analysis ,  was a good indicat ion that  a  s ignif icant  degree
anulatum. Three principal components of the aroma signa- of difference was determined between aroma classes without the
tures (PC 1 to 3) accounted for 89.8% of the variability in the need to specify rigorous discrimination parameters for neural-net
analys is . training in the construction of the reference l ibrary.

A similar  comparison in  al l  possible  combinat ions using three-
dimensional PCA of headspace volatiles from sapwood  cores of
live oaks in various levels of infection by C. fagacearum demon-
strated how relatedness of sample volati les could be used as an
indicat ion of  infect ion status for  the purpose of  disease diagnosis
(Table 7).  Healthy and inoculated control categories were samples
of known origin (infection status) used as a reference against  un-
known samples.  No significant difference or a close relationship
was found between EASPs  of  nonsymptomatic and heal thy con-
trols.  However, moderately significant differences were found be-
tween nonsymptomatic and weakly symptomatic samples,  heal thy
controls  and weakly symptomatic samples,  inoculated and strongly
symptomatic samples, and weakly and moderately symptomatic
samples.  Strong significant differences were determined between
samples at different levels of infection and symptomatic cate-
gories within the extremes of  the infect ion range.  Highly signif i-
cant differences were found between nonsymptomatic and strongly
symptomatic and between healthy controls and strongly symp-
tomatic samples at  opposite ends of the infection range.  The three
principal components of aroma signatures accounted for 88.3% of
the variability in the analysis.

Three-dimensional PCA of EASPs  of sapwood  volatiles also
differentiated healthy from wetwood-infected cores of cotton-
wood for diagnosis of bacterial wetwood  infections in standing
trees and in unprocessed logs at the lumber mill (Fig. 3). Al-
though the aroma map of healthy and infected samples indicated
a somewhat diffuse distr ibution for  both aroma classes based on a
two-dimensional  view, the analysis  indicated a s trong signif icant
difference between these aroma classes (QF > 6.0). The differ-
ence and clustered distributions of these aroma classes were more
apparent when observed by rotating the map graphic in three-
dimensional  space using the analysis  software.  The three princi-
pal components (PC 1 to 3) for each aroma class accounted for
98.8% of the variabil i ty in the analysis  and were plotted as Eigen
values on the y, X,  and z axis,  respectively, expressed as a percent-
age. The PC value for each axis indicated the proportion of the
difference explained by that PC. The relatively high percentage of

SMA of related bacteria. The relatedness of volatile metabo-
lite mixtures produced in the culture headspace of five related
phytopathogenic bacteria,  formerly placed in the genus Erwin ia ,
provided further indications of a correlation between the chemical
relatedness (metabolic pathways) of microbial  species and their
taxonomic relatedness. Comparisons of these five species in all
poss ib le  combinat ions  us ing  two-dimensional  SMA indica ted  a
low significant difference between Brenneria quercina and Er-
winia amylovom,  and between B. quercina and Pectobacterium
carotovora (=Erwinia carotovora), with Euclidean distance (ED)
values of cl.5  implying distinct species, but a fairly close re-
lationship (Table 8).  A higher level of significant difference was
indicated between B. quercina and E. chrysanthemi, between
B. quercina and Pantoea ananatis, between E. amylovora and
E. chrysanthemi, and between E. amylvora and Pectobacterium
carotovora. Similar differences were observed between E. chry-
sunthemi and Pantoea ananatis, between E. chrysanthemi and
Pectobacterium carotovora, and between Pantoea ananatis and
l? carotovora. These comparisons indicating greater differences
(ED > 2.0) suggest that the analytes come from more distantly
related species,  perhaps supporting the separation into different
genera (P < 0.01). The highest level of difference (ED > 3.0) was
determined between E. amylovora and Pantoea ananatis, indi-
cating that  these species are most distantly related or least  related
among the species tested (P < 0.001).

Factors affecting instrument performance and analyses. In-
strument operation was most  affected by sample air  RH. Sensors
were overloaded by excess moisture in the sample. Most prob-
lems with excessive moisture were controlled by sett ing the refer-
ence air at 4% to maintain a relatively dry carrier stream with
minimal  impact  on sensor  sensi t iv i ty .  Maintaining low reference-
air relative humidity assured positive sensor responses  in most
cases because any additional moisture added to the analyzed

TABLE 7. Three-dimensional principal component analysis of headspace
volatiles released from live oak sapwood  tree cores at various levels of infec-
tion by Cr~urocy.sri.s,firgctcc~c~r~~~nz.  the oak wilt fungus

Analvte I Analvte 2 QF significance”

Nonsymptomatic

Healthy control

Inoculated control

Strongly symptomatic

Weakly svmptomatic

Healthy control
Inoculated control
Strongly symptomatic
Weakly symptomatic
Moderately symptomatic
Inoculated control
Strongly symptomatic
Weakly symptomatic
Moderately symptomatic
Strongly symptomatic
Weakly symptomatic
Moderately symptomatic
Weakly symptomatic
Moderately symptomatic
Moderately symptomatic

,’ QF = quality f&or.  Discrimination between analytes (aroma classes) was
significant at the following levels: *, **, and ***  indicate P < 0.05, 0.01,
and 0.001, respectively. A QF value of 2.0 indicates a significant discrimi-
nation at -P = 0.05.  The percentages of the total variance, accounting for
the variability explained by each orthogonal principal component (PC), are
as follows: PC I = 63.66%, PC 2 = 14.92%,  and PC 3 = 9.73%, representing
the .‘I ,  y.  and : axis of the aroma map, respectively.

Fig. 3. Principal component (PC) analysis of electronic aroma signature pat-
terns differentiating headspace volatiles released from healthy and wctwood-
infected sapwood cores of cottonwood (I-‘opu/~.s  deltoides) for disease diag-
nosis. Eigen values, describing the amount of variance captured in the data of
each individual PC axis, were calculated by decomposing the covariance or
correlation matrix representing the data. The correlation matrix was a scaled
version of the covariance matrix such that every individual element in the
covariance matrix is divided by the product of the standard deviations of the
two covarying quantities to obtain the percentage Eigen values. The PC value
for each axis indicates the proportion of the difference explained by that PC;
QF = quality factor.
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headspace came from the sample. Effective control of reference
air RH by the instrument humidity control device required that
sample hydration was maintained properly.  Samples such as tree
cores that  became too dry during cryostorage resulted in negative
(below baseline) responses for all  sensors  throughout  data  acqui-
sition. Negative responses were corrected by rehydrating the
sample and air-drying immediately prior  to data acquisi t ion.  Sen-
sor response intensit ies also were affected by sample mass and
preparation, equilibration time and temperature,  and reference air
quali ty.  Sample mass and equil ibrat ion t imes affected the concen-
trat ion of headspace volati les.  Standardizing sample preparation
and equilibration methods controlled the sample size releasing
volatiles and headspace accumulation. Reference air prefilters
provided assurances of  air  quali ty introduced into the sampling
chamber.  Instrument precision was very high when these controls
were strictly maintained. The accuracy of analytical determina-
tions and disease diagnoses were improved for  in vivo sampling
by taking samples from several  diseased parts  of  the plant .

DISCUSSION

The electronic nose is a chemical-sensing device containing
aroma-reactive detectors capable of producing a digital finger-
print  of volati les released from any source.  Conductive polymer
sensor arrays take advantage of differential responses of different
conducting plastics (within each sensor) to various chemical
species in the sample headspace by producing a unique EASP
specific to the analyte mixture.  The multisensor array provides an
output  response pattern analogous to a combination lock that  re-
flects the collective responses of all  sensors in the array. However,
unl ike a  combinat ion lock,  the sensor outputs  are in continuous
values. The pattern-recognition algorithms in the analysis soft-
ware compare signature patterns stored in the reference library to
those of unknown samples to look for similari t ies and differences
in these patterns. The differences are expressed digitally as nu-
merical values that are compared in matrix format. The algo-
rithms assign distributions of similar elements found in PCs of
the sample that  are in common with known patterns in the refer-
ence library and make a determination of identity based on that
distribution. Unlike gas chromatography, there is no stationary
phase or retention time involved because the response of each
sensor is based on the collective effect of the entire mixture of
compounds in the headspace on electrical-resistance changes gen-
erated by adsorption of analytes to the sensor.  Sensor adsorption
is determined by the specific affinity  of unique polymers in each
sensor, the specificity of chemical types, quantities, and molar
ratios of chemicals present in the sample mixture. Thus, using
CPA avoids the need to extract  specific components of microbial
ceils such as nucleic acids or cell wall fatty acids for microbial
ident i f icat ions (23),  although known reference strains are required
in the development of reference l ibraries.

CPA is a relat ively new EAD technology that  offers consider-
able potential  for  a  wide range of applicat ions in plant  pathology
from disease diagnosis  and pathogen and host  identif icat ion in
vi tro to  detect ion and ident if icat ion of  plant  pathogens in plant
t issues as  well  as  mixed infect ions,  toxic metaboli tes  ( toxins) ,  and
pesticides (~mpublisheLI’  &a). Some advantages of CPA include
short  analysis  t ime (run t ime 90 to 220 s) ,  high level  of  precis ion,
sensitivity of detection, control of sample discrimination speci-
ficity, flexibility of sensor array selection, and custom database
capabil i t ies .  Our results  indicate the rel iabil i ty of  CPA as a diag-
nostic tool for plant pathology, and demonstrate an advantage
over other types of diagnostic methods in that CPA methods
rarely identify unknown samples incorrectly or ambiguously
when an aroma class category exists for the unknown in the refer-
ence library. The absence of false positives and ambiguous deter-
minations with CPA assures that a sample will be identified either
correctly or unsuccessfully.  Another significant  advantage of CPA

is the capabil i ty  of  dis t inguishing between sources of  sample mix-
tures containing the exact  same chemical  components,  but  with
different  molar  rat ios of  those components.

We have developed methods for the application of CPA as a
new diagnostic tool  for the detection and identif ication of diseases
caused by plant-pathogenic bacteria and fungi.  These methods
have been used to acquire reproducible,  unique EASPs useful for
the identification of plant-pathogenic microbes in pure culture,
the identif icat ion of  host  t issues,  and for  disease diagnosis  in ex-
cised infected plant t issues.  These results  demonstrate the efficacy
of CPA as a means of identifying individual phytopathogenic
prokaryotic and eukaryotic microbes by the unique mixtures of
volatile metabolites they produce in vitro and in host tissues. This
technology also was used to identify the plant  species from which
host  t issue were collected.  Theoret ical ly,  i t  should be possible to
detect  obligate parasi tes in vivo such as viroids,  viruses,  nema-
todes,  and protozoa that produce abnormal and foreign volati les
in diseased tissues or cause alterations in the types of volatile
metabolites produced in diseased tissues from those found in
healthy t issues.  This  has been the basis  for  the recent  use of  CPA
by the medical  diagnost ics  industry in the detect ion of  cancers,
ulcers,  and urinary tract  and upper respiratory infections in hu-
man and animal  t issues (28,44). Ident if icat ion of  EASPs indicat ive
of specif ic  combinations of  microbial  species or  s trains present  in
a sample is  possible with specialized reference l ibraries.  CPA also
offers  the potential  for  discriminating specif ic  mixtures of  patho-
gens and specif ic  host-microbe combinat ions within host  t issues .
Finally, the rapid analysis possible with this technology could
prove useful  in the detection of plant  and human pathogens for
homeland security applications as real-time identifications be-
come feasible using portable EAD devices (37).

Three-dimensional  PCA of  EASPs of  sapwood  volatiles effec-
tively differentiated healthy from bacterial  wetwood-infected cores
of  cot tonwood for  diagnosis  of  this  disease ( infect ion status)  in
standing trees.  The applicat ion is  potential ly useful  in commercial
lumber production by allowing the early detection of wetwood
logs coming into the lumber mill. Early detection of wetwood
could mit igate economic losses by reducing or  precluding lumber
degrades during the drying process  through adjustments  in  lum-
ber drying schedules.  CPA also was used effectively to determine
the infect ion status of  l ive oaks suspected of  being infected with
the oak wilt pathogen. The occurrence of unknown elements in
aroma profiles of strongly symptomatic tissue could have been
due to volatiles released by saprophytic microbes into necrotic
diseased tissues. However, weakly symptomatic plants in early
stages of  oak wil t  disease development did not  have saprophytic
contamination due to the absence of necrotic sapwood  tissues.
Artificially inoculated tissue tended to be overwhelmed by the

TABLE 8. Two-dimensional Sammon mapping analysis of headspace vola-
tiles released from cultures of five bacterial species, formerly placed in the
genus Erwinia,  growing on standardized NBY growth medium

Analyte I Analyte 2
Euclidean
distance”

Erwirzia nm~lovora
E. chr.y.snrztherni
Pantoen nnanntis
Pectnbucterium carotovoru
E. chrysanthemi
Pnntoea ananutis
Prctobacterium  carotovora
Pantoen cmunntis
Pectobncterium curotovora
Pectobacterium cnrotovora

1.45*
2.68””
2. IO*”
1 . 1 4 ”
1.91””
3,27***
1.71””
2.35”*
1.74””
2.37**

“  Discrimination between analytes (aroma classes) was significant at the fol-
lowing levels: *, **,  and ***  indicate P < 0.05, 0.01, and 0.001, respec-
tively. The two-dimensional Sammon mapping model used in this analysis
was significant at P < 0.002.
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higher inoculum density, resulting in faster colonization by the
pathogen that inhibited growth of competing saprophytes in
necrotic  t issues.  Some occasional  low-level  misidentif icat ions and
ambiguous identif icat ions may have resulted from the collect ion
and analysis  of  poor or nonrepresentat ive t issue samples from the
host .  This  demonstrates  why i t  is  important  to  take diseased t issue
samples from several locations on the plant in order to increase
confidence in the results .

The Aromascan A32S  instrument, like most other conductive
polymer instruments ,  was sensi t ive to sample s ize ( total  amount
of organic volatiles present) and differences in RH between the
sample and reference gases.  Control  of  sample gas RH to within a
specific range (52%) above reference air RH was needed to yield
the best  analyt ical  resul ts .  High detector  sensi t ivi ty to  moisture
and certain polar compounds, particularly carboxylic acids, can
cause problems in methods development for different types of
samples. Dry samples had to be rehydrated in order to facilitate
volat i l izat ion when building headspace to avoid negative signal
outputs from the sensor array. Specificity in detection was
controlled by the number of iterations used (training duration),
confidence level,  and other parameters selected during neural-net
training.  Thus,  i t  was possible to detect  differences in strains of
microbial  species if  high specif ici ty was used,  but  this  could re-
sult in indeterminations if reference library specificity is set too
high. Some limitations of CPA included the inability to identify
individual chemical species within complex mixtures of meta-
bolic analytes from microbes,  to make reliable quanti tat ive deter-
minations (only semiquantitative), and the time requirement for
building head space volat i les  pr ior  to  analyses.  Signal  intensi ty
general ly was proport ional  to the quanti ty of  volat i les  present ,  but
not predictably quantifiable. Sample preparation variability and
time requirements for headspace building have been largely
eliminated by the use of  autosamplers .

Several  factors affected quali ty,  stabil i ty,  and uniformity of runs
during data acquisi t ion.  Sampling methods had a large impact  on
uniformity of  s ignal  output  from the sensor  array.  Stat ic  sampling
provided more uniform and stable data output than dynamic
str ipping and equil ibrat ion sampling because i t  avoided the di lu-
t ion of headspace volat i les ( increasing sensit ivi ty)  and precluded
perturbat ions of  sampling air  that  caused temporal  variabi l i ty in
sample concentration during the run. Instrument architecture was
modified so that reference air could be vented during sample
introduction to avoid dilution effects. Samples were introduced
from a closed sampling bott le  without reference air  introduction
to maintain uniform sample concentrations during data acquisi-
t ion.  Consistency and repeatabil i ty of  resul ts  between instruments
were once a problem due to differences in sensor coating thick-
ness,  requiring calibration of sensor arrays,  and correction of data
between individual  instruments.  This  problem has been resolved
by improved sensor manufacturing methods that  control  coat ing
thicknesses to a high tolerance.  Some addit ional  ways of  impro-
ving discrimination and increasing accuracy of determinations
include: (i) taking more than one sample from different parts of
the plant and taking samples over time to confirm infection status,
(ii) using category-specific reference libraries (developed for
specific host-pathogen combinations),  ( i i i)  increasing neural-net
training specifici ty for recognit ion and increasing the number of
elements allowed in error before unknown identity is declared,
(iv) tweaking discrimination parameter values, and (v) putting
more strains into the reference library to better represent the
range of strains encountered. It  is  very important that reference
libraries are constructed using strains that  originate from the geo-
graphical area where unknown samples are to be collected. Strain
variabili ty in different geographical areas can have considerable
effects on result ing EASPs.  Thus,  a t tempts  to  ident i fy  s t ra ins  of  a
pathogen at  a location geographically distant from the area where
reference strains were taken (to create the reference library) can
result  in ambiguous or  even incorrect  determinations.

There are considerable opportunit ies  for  customization of  CPA
for a large diversity of different sample types and applications.
One such area is  in the availabil i ty of a wide selection of sensor
types from which a customized sensor array can be designed. The
general-use sensor array used in this study was more useful for
dist inguishing bacter ia  than fungi  because of  the product ion of  a
greater diversity of metabolites and more oxidized secondary
metabolites by prokaryotes. For example, the new OSGP28 sen-
sor array has fewer sensors (only 28),  but is designed to better
discriminate the volatiles of microbes despite the lower number
of sensor elements.  Bacteria tend to produce a greater quantity of
more oxidized metabolites (aldehydes and carboxylic acids) where-
as fungi produce more reduced compounds (alcohols, ketones,
and esters). This information can be used in selecting sensor
arrays used for detecting specific groups of microbes.  The flexi-
bil i ty of a selected sensor array can be further improved by select-
ing which sensors wil l  be used for  the analysis .  Specif ic sensors
in the array can be turned off  when they do not provide signifi-
cant usefulness in the discrimination. In this way, it is possible to
refine the sensor array to l imit  i t  to the fewest  number of sensors
that  wil l  provide effect ive discrimination for  each microbial  class.
However,  a specific sensor combination used for identification of
unknowns must  be  consis tent  wi th  the  sensors  used in  bui lding
the reference library. Control of the sensors being used in an
analysis is useful in the development of cheaper portable field
units  with fewer sensors,  in which only those sensors needed for
discrimination are used in each specific application.  This capabil-
i ty is  essential  for the miniaturization of hardware and electronics
necessary in portable units. There also is flexibility in develop-
ment of standardized culture media used in database development
in reference l ibraries.  I t  was possible to very sl ightly modify stan-
dardized culture media to allow the growth of certain microbes
requiring specif ic  growth factors  without  s ignif icantly al ter ing the
aroma signature. For example, NBY medium was amended with
1.5% (wt/vol)  mannitol for culture of endosymbiotic Rhizobium
leguminosnrum  biovars  to  be dis t inguished from pathogenic bio-
vars. Database  lilts  also may be averaged or added together, if
desired, to more precisely specify sample components being
analyzed.

New emerging technologies already are providing means of im-
proving on EAD to allow rapid discrimination of individual
chemical species within aroma mixtures. Instruments are being
developed that  combine EAD with optical  sensors (46), fast gas
chromatography integrated with surface acoustic wave sensors,
and programmable gate arrays instead of sensor arrays (42).  These
technologies wil l  have the capabil i ty of  producing recognizable
high-resolut ion visual  images of  specif ic  vapor mixtures contain-
ing many different chemical species,  as well  as quantifying con-
centrat ions and identifying al l  compounds present  in the mixture.
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