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Soil Analysis Based on Samples Withdrawn from 
Different Volumes: Correlation versus Calibration

Soil Chemistry

The sustainability of agriculture and forestry, as well as soundness of the envi-
ronment, depends on the integrity of the soil’s resources, its health, and pro-

ductivity. In turn, those attributes are refl ected by the level and state of organic C, 
N, and other nutrients. Th ese components of soil organic matter also are sensi-
tive indicators of the ongoing (induced) changes in soil degradation and exhaus-
tion; accordingly, they were recommended as the minimum information needed 
for assessing soil quality (Lal et al., 2004, p. 3–21). One limitation to adopting 
conservation measures is that practitioners cannot always document the impact 
of their eff orts. Th is is also the case when monitoring the effi  cacy of changing soil 
management practices or of reclamation protocols for reforestation and for pro-
ducing biofuel crops on abandoned mine lands. Measuring soil C with the minimal 
achievable uncertainty is critically important to forest and agricultural managers, 
ecologists, and climate modelers (Kulmatiski et al., 2003; Galbraith et al., 2003). 

With large landscapes, including topographical diff erences, the extent of the 
uncertainties oft en can be more important to the geochemical interpretation of 
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Soil, particularly in forests, is replete with spatial variation with respect to soil C. Th e present standard chemical 
method for soil analysis by dry combustion (DC) is destructive, and comprehensive sampling is labor intensive 
and time consuming. Th ese, among other factors, are contributing to the development of new methods for 
soil analysis. Th ese include a near- and mid-infrared (NIR and MIR) spectroscopy, laser-induced breakdown 
spectroscopy (LIBS), and inelastic neutron scattering (INS). Th ese technologies overcome many of the state-of-
the-art DC method’s shortcomings and off er advances that it cannot. While NIR and MIR measure C bonds, 
the other two new methods, like DC, are more specifi c in measuring C and other elements based on chemical, 
atomic, and nuclear reactions. In addition to their fundamentally diff erent physical principles, these approaches 
vastly diff er in the volumes they typically sample: LIBS, 10−9 m3; DC, 10−7 m3; NIR and MIR, 10−6 m3; and 
INS, about 0.3 m3. Th us, extra care is needed when comparing the fi ndings from any two of these methods. 
Also, the high heterogeneity of the soil matrix, the nonuniformity of C distribution, and the presence of coarse 
fragments, particularly in forested ecosystems, further compound the diffi  culties in making direct comparisons. 
We investigated the implications of these diff erences when correlating any two of these methods and reviewed 
the processes of comparing a volumetric measurement against a point measurement. We also conducted a detailed 
comparison of the INS method with the standard DC test. We found that the total (soil organic matter and roots) 
measured by the INS correlated better than its components with the DC analyses( r2 = 0.97, P = 10−7). Th e 
samples for DC analysis were taken from excavations of 40- by 40- by 40-cm plots, in 5- and 10-cm layers.

Abbreviations: DC, dry combustion; INS, inelastic neutron scattering; LIBS, laser-induced 
breakdown spectroscopy.



SSSAJ: Volume 74: Number 3  •  May–June 2010 813
 

the measurements than the value of the C concentration itself. 
Several independent factors aff ect the latter, such as fi eld sam-
pling, which refl ects the natural variability, sample preparation, 
and analysis that contribute error to the same measurement 
(Ramsey, 1997; Wilding et al., 2001; Johnsen et al., 2004). Soil C 
variation is particularly abundant in forest soils and abandoned 
mine lands that exhibit high variability in C content, root dis-
tribution, and the size distribution of coarse fragments. Th ese 
drawbacks entail the requirement for intensive sampling at a 
scale small enough to integrate across the spatial heterogeneity of 
the soil matrix, thus making reliable belowground assessments of 
organic C in these environments very challenging. Furthermore, 
tundra, both with or without permafrost, that is under consider-
ation as a region for a planned global change experiment (Walker 
et al., 2006) will pose novel diffi  culties in sampling. 

Th e current state-of-the-art for soil chemical analysis by DC 
of soil has many limitations, however, stemming from its destruc-
tive nature, the need to comprehensively sample the land unit of 
interest, and thus the eff ort required in collecting samples and 
preparing them for analysis (Gehl and Rice, 2007). Th e variabil-
ity in the soil and in the sampling protocols that depend on the 
terrain’s conditions and topography add to the methodology’s 
complexity, and propensity for sampling error. An important 
concern is that a measurement by this method represents a point 
in time and space that must be extrapolated to cover large re-
gions, and, in lieu of adequate destructive sampling, cannot be 
used in true sequential measurements.

Th ere is no single analytical method able to address all the 
concerns about C analysis in soil. Instead, a method optimal for 
a particular task should be chosen, while recognizing its inher-
ent limitations and underlying assumptions. During the last de-
cade or so, three new methodologies for C analysis in soil have 
emerged as possible alternatives or complementary to the well 
established traditional DC method. Th ey are NIR and MIR 
spectroscopy (Reeves et al., 1999), LIBS (Cremers et al., 2001), 
and INS (Wielopolski et al., 2008). Although, the LIBS and 
NIR and MIR methods require minimal sample preparation 
and overcome some shortcomings of the DC method, they are 
destructive, requiring soil cores from which volumes of about 
10−9 and 10−6 m3 are subsampled, respectively. Soil samples for 
the DC method are extensively processed and small aliquots of 
about 10−7 m3, which represent a mean value for the homog-
enized volume, are analyzed. In contrast, the INS method is non-
destructive, measures a volume of about 0.3 m3 in a stationary 
mode, or can be used in a continuous scanning mode wherein 
the integrated counts represent a very large soil volume analyzed.

Th us, the main impetus for this work was to alert the reader 
of the large span in soil volumes, ranging from 10−9 to 0.3 m3, 
analyzed by the various modalities, preventing, in a strict sense, 
calibration of one method against the other. Th is problem is par-
ticularly acute in the presence of large soil and C heterogeneities. 

Calibration vs. Correlation
Very oft en the terms calibration and correlation are freely 

interchanged and misused. To clarify these two concepts and 
provide consistency in their use, these are briefl y reviewed here.

Calibration is the validation of specifi c measurement tech-
niques and equipment. At the simplest level, calibration is a 
comparison between measurements, one of known magnitude 
or correctness made or set with one device and another measure-
ment taken in as similar a way as possible with a second device. 
Th e device with the known or assigned correctness is called the 
primary standard or simply a standard; very oft en, such devices 
assist in producing certifi ed standard materials. Th us, standards 
and certifi ed reference materials have an assigned value based on 
fundamental parameters or direct comparison with a reference 
base. A primary standard usually is under the jurisdiction of a na-
tional standards body, such as the National Institute of Standards 
and Technology (NIST). Secondary, tertiary, check standards, 
and standard materials may be used as references. A key require-
ment then would be traceability and an unbroken paper trail of 
calibrations back to the primary standard. Th e second device is 
the unit under test (UUT), in a process that establishes its cali-
bration. Th erefore, at its simplest, two basic requirements consti-
tute a calibration: (i) using a device with known or assigned cor-
rectness in an absolute sense, or a primary or secondary certifi ed 
or traceable to the NIST’s standard materials; and (ii) taking the 
UUT measurement in as similar a way as possible to that taken 
with the primary device. 

Certainly, soil analysis by the DC method does not qualify 
as a primary calibration device or as one with a calibrated read-
ing. Th e standard materials used for the initial calibration of a 
DC analyzer diff er substantially from the various soil matrices 
under analysis. In addition, as we discussed above, the very large 
diff erences in the sampled volumes by each of the methods, com-
bined with the high heterogeneity in the fi eld, represent diff er-
ent domains that require diff erent underlying assumptions; this 
negates the possibility of calibrating any of the two previously 
discussed methods.

Instead, we compare two independent variables using cor-
relation, indicating the strength and direction of a linear rela-
tionship between these two random variables. In other words, 
correlation tests the hypothesis whether two independent vari-
ables are co-related and measures the strength (departure) of two 
random variables from independence. In this broad sense, there 
are several correlation coeffi  cients (Pyzdek, 2003), measuring the 
degree of correlation, adapted to the nature of the data; these are 
not discussed here.

In principle, each of the soil analytical methods could be cal-
ibrated in a strict sense against a known amount of C, albeit with 
a great deal of diffi  culty in preparing a proper standard material 
with a matrix identical to that of the soil. Th e slopes of the cali-
bration lines (sensitivities of the methods) would diff er because 
of the diverse interactions involved and diff ering number of C 
atoms in the dissimilar volumes sampled by each method; how-
ever, since all of the methods attempt to assess the same entity, C, 
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they would retain, for a fi xed volume, some proportionality. It is, 
therefore, logical that without any abrupt changes in the C pro-
fi le and within the instruments’ linear domains, there would be 
linear correlations between any two of the methods. In fact, un-
der the ideal condition of no sampling errors, the slope of the cor-
relation line would be the ratio of the sensitivities of each method. 

In reality, however, the quality of the correlation line de-
pends on the inherent inhomogeneities in the soil, the volumes 
analyzed, and error propagation. Th is problem is explicitly rec-
ognized in the diff erent averaging schemes used to generate the 
best estimate of C on the local level as, for example, with a LIBS 
system wherein multiple laser shots are averaged, or multiple 
cores are taken for the DC method. Similarly, on a fi eld level, re-
searchers use mathematical averaging with or without geostatisti-
cal considerations, and mechanical averaging by homogenizing 
or compositing samples. Th ese procedures are inherent in cur-
rent standard practices where the fi ndings from limited discrete 
samples are extrapolated to fi eld or regional levels. Th us, these 
provisos must be recognized in comparing any two other methods.

MATERIALS AND METHODS
Site Description and Sampling

We selected a complex site with woody and rocky components in 
the soil matrix. We obtained measurements in a grassland, a pine forest, 
and a hardwood forest, on adjacent sites in the Blackwood Division of 
Duke Forest near Durham, NC (35°58'41.430'' N, 79°5'39.087'' W). 
Th e grassland is dominated by the C3 grass Festuca arundinacea Schreb., 
with minor forbs (herbaceous non-woody plants), and C3 and C4 grass 
species; it is mowed at least once annually for hay. Th e pine site with lob-
lolly pine (Pinus taeda L.) in the overstory was planted in 1983 and has 
been unmanaged since. Th e hardwood site is an unevenly aged, 80- to 
100-yr-old oak (Quercus sp.)–hickory 
(Carya sp.) forest, and also was never 
managed. Stoy et al. (2006) gave a de-
tailed description of these sites.

Immediately aft er the INS measure-
ment, we took three soil cores to 40 cm 
deep for determining the moisture con-
tent. Subsequently, we excavated 40- by 
40- by 40-cm pits in layers, collected 
samples from layers of 0 to 5, 5 to 10, 
10 to 20, 20 to 30, and 30 to 40 cm, and 
processed them for analysis. Soil from 
each layer was sieved to remove live and 
dead roots >2 mm as well as coarse or-
ganic fragments and coarse stone frag-
ments. Roots, coarse woody fragments, 
and the soil were ground, dried (60°C), 
and weighed. We analyzed the organic 
coarse fragments and live and dead 
roots for C content. Additionally, the 
total weight of the soil fraction in each 
layer was determined. Subsequently, we 
drew from each layer three 5-g samples 

that were pulverized, and two 0.2-g aliquots from each sample were ana-
lyzed for C and N by the DC method (Sollins et al., 1999) using a Flash 
EA 1112 series Th ermo Finnigan NC soil analyzer (Milan, Italy) for a 
total of 264 aliquots (the 0–5-cm layer was combined with the 5–10-cm 
layer). Results from the grassland (G), pine (P) forest, and hardwood 
(H) forest sites were compared with those obtained with the INS system 
from the same sites.

Inelastic Neutron Scattering Instrument
Th e basis of the nondestructive INS system for C analysis in soil 

is the spectroscopy of γ rays induced by fast neutrons interacting with 
the elements present in the soil. An electrical neutron generator pro-
duces fast neutrons, and an array of NaI detectors registers the induced 
γ rays. Th e nuclear reactions are insensitive to C chemistry and, because 
the reactions are very fast, we can, uniquely, operate the INS system in 
static and scanning modes. Its multielement capability simultaneously 
provides quantitative information on key soil elements, such as, but 
not limited to, C, Si, O, N, H, and K. Wielopolski et al. (2004, 2008) 
described the system in detail. Figure 1 shows the INS system with its 
main components, mounted on a cart. Th e system is mounted about 30 cm 
above the ground, and data typically are acquired for 30 to 60 min. Th e 
INS’s footprint and depth of analysis of about 1.0 m2 and 30 cm, re-
spectively, uniquely analyzes volumes of about 0.3 m3 (>300 kg of soil).
With previously established conversion from INS counts to grams C 
per square centimeter, the results, following the data acquisition, are re-
ported immediately in units of grams C per square centimeter. Since, 
on average, the INS system queries a constant soil volume, its response 
is proportional to the C concentration. We note that the INS’s response 
is governed by the exponential attenuation functions, Beer’s law, of the 
neutrons penetrating into the soil and the γ rays emanating from it; ac-
cordingly, we defi ne the eff ective volume as that from which 90% of the 

Fig. 1. Picture of the inelastic neutron scattering α prototype, identifying the major components 

(Wielopolski et al., 2008).
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signal is derived. Th is volume corresponds to a depth of about 30 cm, 
whereas 99% of the signal derives from an approximate depth of 46 cm; 
these depths were obtained by Monte Carlo calculation simulating the 
system. Th ese facts are embedded implicitly in the conversion factor 
from INS counts to grams C per square centimeter.

Analysis
Carbon analysis by the DC method is a three-step process: soil 

sampling, sample preparation, and analysis of a sample aliquot; each 
step contributes to error propagation. Th e total amount of C in the 
sample, CT, is 

T vd
V

C C v= ∫  [1]

where Cv is the true C concentration in soil volume element dv = dx-
dydz located at x,y,z, and V is the volume of the sampled soil. Th e sample 
is dried, sieved, and homogenized, thus creating an artifi cial analogous 
mixture with uniform C distribution weighing M kilograms. From this 
homogeneous mixture, subsamples weighing m kilograms are with-
drawn, pulverized, and, typically, 0.001- to 0.005-kg aliquots undergo 
chemical analysis by DC. Using a previously established conversion fac-
tor k from a DC system signal, SDC, to the C mass, the total C is esti-
mated as CDC, and, for a single spot is given as

DC
DC

MC
mkS

=  [2]

We note that CDC is an estimate of the soil’s C content to a given sam-
pling depth; this result typically is multiplied by the soil’s bulk density 
or divided by the surface area of the coring device to express the C con-
tent in grams C per cubic centimeter, or the more utilitarian unit of 
grams C per square centimeter.

As discussed above, a fundamental problem in comparing systems 
is that the new modalities analyze substantially diff erent soil volumes; 

the IR and LIBS analyze much smaller volumes than DC, <<0.1%, 
whereas the INS volume is about fi ve orders of magnitude larger. 
Nevertheless, by analogy to Eq. [1], we can consider that the total C, 
CT', sampled by the INS is an integral across a larger volume V ':

T vd
V

C C v
′

′ = ∫  [3]

Since there are no intermediary steps, the INS signal is measured direct-
ly from the soil C; however, each C atom carries a weight, wv, depending 
on its position in the soil relative to the detection system. Th us, the INS 
signal, CINS, is a weighted integral, proportional to the total number of 
C atoms in the interrogated volume V ‘. Th e position-dependent weight, 
wv, is associated with the attenuation of neutron penetration into the 
soil, and γ-ray emission toward the detector. Th e k' factor is a propor-
tionality constant, i.e., the sensitivity of the system in converting counts 
to grams of C, and diff ers from k in Eq. [2]. Th us, again, under steady-
state conditions, the number of counts registered is proportional to the 
total number of C atoms in the interrogated volume:

INS INS v vd
V

C k S w C v
′

′= = ∫  [4]

We earlier demonstrated a linear relationship between the INS’s re-
sponse and soil C content (Wielopolski et al., 2008) by chemical analysis 
by the DC method. We also showed that the interrogated volumes by ei-
ther method are mostly reproducible. Th us, on average, for steady spatial 
conditions, CT and CT' are related by a constant. Th erefore, we would 
expect the INS response in Eq. [4] to correlate with the response of DC 
in Eq. [2], even though the methods sample diff erent volumes. We will 
confi rm that this correlation improves with increasing overlap in the 
sampled volumes.

RESULTS
Correlation of the Inelastic Neutron Scattering 

Signal vs. Dry Combustion
We combined into one data set the DC 

results from the grassland, pine forest, and 
hardwood forest, and evaluated the diff erences 
between every two paired aliquots, 132 pairs, 
that were withdrawn from the same sample. In 
Fig. 2, we plotted the variability between paired 
aliquots, calculated as 100[ABS(Aliquot 1 – 
Aliquot 2)/MIN(Aliquot 1,Aliquot 2)], where 
ABS is the absolute value of the diff erence and 
MIN represents the minimum value of these 
two. Th e diff erences between the paired ali-
quots increased with depth where the C values 
were low. Th e large diff erences between the ali-
quots are surprising, since we took special care 
in homogenizing and pulverizing the samples. 
From Fig. 3, the histogram density function of 
the diff erences, the most probable diff erence is 
about 6%, with a higher mean of 10.2%, and 
standard deviation of 11.0%. Th ere was a non-
substantial change in the distribution of the Fig. 2. Distribution of the differences between the duplicates organized with increasing 

depth of the sampling interval.
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diff erences when calculated relative to the maximum or the mean 
values of the two aliquots. Aft er averaging the paired aliquots, 
however, the maximum diff erence between the samples from the 
same layer relative to their mean declined, although the mean 
diff erences remained about the same, 10.6%, as shown in Fig. 4. 
We also calculate the standard error of the mean (SEM) for n = 
6 aliquots per layer: 

SD
SEM

n
=  [5]

where SD is the standard deviation of the six aliquots. Th is av-
eraging, smoothing process yields a mean SEM per layer of only 
3.3%. Th us, when assessing the total surface C density per pit as 
the sum of the C surface density in each layer in a pit, the error is 
propagated according to 

2SEM SEM j= ∑  [6]

where SEMj is the standard error for each layer, and the summa-
tion is across the number of layers, j = 1 to 5 per pit. Table 1 sum-
marizes these results, revealing that aft er the averaging processes 
for the multiple samples from diff erent layers, the fi nal standard 
error for the soil C surface density is reduced to about 1.6%.

We derived a regression line between the values for soil C 
(minus plant roots) given in Table 1 determined by the number 
of counts in the C peak by the INS method and chemical analy-
sis; these results are summarized in Table 2 and plotted in Fig. 
5 as the mean C line together with the 95% confi dence levels. 
In principle, we might select the maximum or the minimum 
from each layer, particularly if we were to reduce the number of 
samples or aliquots used, and consequently aff ect the regression 
results as depicted in Fig. 5. We note that the lines for the mean, 
maximum, and minimum are almost parallel. Furthermore, the 
outcome might include the maximum values from the high end 
of the regression, and the minimum values from the low end, and 
vice versa; these two cases, denoted as Mix1and Mix2, respec-
tively, are also plotted in Fig. 5 and summarized in Table 2. Th e 

changes in the slopes for the various cases are apparent, as are the 
predicted C concentrations due to the hypothetical readings of 
the low, 5000 counts and the high, 25,000 counts in the C peak. 
Th e r2 values for all these regressions are similar, signifying the 
same quality of fi t for all these cases that cannot be known in ad-
vance. Th us, reducing the number of points measured by chemi-
cal analysis will lower the quality of the correlation. Th is problem 
is further aggravated when using local correlations used to pre-
dict large fi elds that are highly inhomogeneous. Interestingly, all 
the regression lines are bound by the 95% confi dence limit.

Volume Impact on the Correlation
Th e possibility of calibrating the INS against the DC meth-

od is negated by the very large diff erence in the volumes ana-
lyzed by each of the methods, in addition to other reasons. Th e 
responses of both systems, however, are directly proportional to 
the true C content (g C cm−2) in the volumes that each analyzes. 
Furthermore, the volume analyzed by the DC method occupies 
a subspace of that used by the INS method. Th erefore, assuming 
an average spatial consistency in the distribution of soil C, these 
two methods are proportional to each other, with the regression 

Fig. 3. Histogram and the histogram density function of the 
differences between aliquots drawn from the same sample. Fig. 4. Maximum difference between three samples from the same 

layer divided by the mean of the three, and the standard error of the 
mean of the six aliquots per layer. The horizontal lines represent the 
mean values and their standard deviations.

Table 1. Mean soil C surface density and standard error of the 
mean (standard deviation divided by √6, the number of aliquots 
per layer); G1 to G3, H1 to H3, and P1 to P3 denote three sites 
in the grassland, hardwood forest, and pine forest, respectively.

Pit Mean soil C SEM

g C cm−2 %
G1 0.56 1.45

G2 0.77 1.72

G3 0.44 1.32

H1 0.57 1.73

H2 0.51 2.04

H3 0.72 1.70

P1 0.43 1.79

P2 0.57 1.31
P3 0.58 1.09
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line slope as the proportionality constant. Th is constant depends 
on the volumes used for comparison and implicitly presumes 
linearity between the signal and the soil’s C content for each 
method. Such signal linearity with soil C was verifi ed in 1500-kg 
homogeneous synthetic soils (sand mixed with known amounts 
of C), with an r2 value of 0.995 (Wielopolski, 2006). Th is cali-
bration also was derived analytically by solving the neutron-γ 
transport equation using Monte Carlo simulations normalized 
at one point for source intensity.

Figure 6 depicts these considerations on volume where we 
show the INS regression lines against C determined by DC in 
root residues and the soil. We also show the total C content in 
layers from 0 to 5 cm and from 0 to 40 cm in Fig. 6a and 6b, 
respectively. Th e quality of the regression is improved by (i) com-
bining the C in the roots and soil, and (ii) increasing the soil’s 
volume. Table 3 summarizes the systematic improvement in the 
r2 and P values as the volume analyzed by the DC method ap-
proached that sampled by the INS. Th is table sums up the grad-
ual improvements in the quality of the regressions for various 
depths of analysis; we plotted them for total C in Fig. 7. Initially, 
as expected, the slope of the regression line changed; however, 
beyond some depth, the INS’s eff ective range of ?30 cm, adding 
more C by the DC method simply shift ed the regression line to 

the right without changing its slope. Th is 
feature is refl ected in the increase of the 
intercept of the regression line. Figure 8 
shows the main regression line of the INS 
signal vs. total C to the depth of 30 cm with 
all the data points; thus, this is the line for 
converting INS counts into grams C per 
square centimeter.

DISCUSSION
None of the existing and the newly 

emerging methods for C analysis in soil can 
be calibrated strictly and absolutely. Th e 

main obstacle to absolute calibration is the lack of standards du-
plicating the high heterogeneity (Conant et al., 2003; Poussart 
et al., 2004) in natural soil matrices. Th ese diffi  culties are exac-
erbated in comparing one methodology to another because of 
the very large diff erences in the volumes each analyzes, basically 
negating any possibility of intergroup calibration.

We demonstrated a good correlation between INS measure-
ments and the current standard method of chemical analysis by 
DC of combined soil samples obtained from 40- by 40- by 40-cm 
plot excavations from a pasture, a pine forest, and a hardwood 

Table 2. Parameters of the inelastic neutron scattering (INS) regression lines fi tted to 
soil C results by dry combustion; their means, maxima, and minima of two synthetic 
mixtures of C were selected for regression analysis. 

Regression 
to

Slope (SE) Intercept (SE) r2 P
Predicted C 
on 5000†

Predicted C 
on 25,000‡

g C m−2

Mean 34,459 (6,986) −3,148 (3511) 0.777 0.0017 0.236 0.817

Max 31,485  (6,700) −3,176 (3620) 0.759 0.0021 0.260 0.895

Min 38,696 (8,148) −3,541 (3727) 0.763 0.0021 0.221 0.738

Mix-1 24,051 (5,692) 1,714 (2971) 0.718 0.0039 0.137 0.968
Mix-2 49,149 (12,459) −10,426 (6204) 0.690 0.0056 0.314 0.721
† Predicted surface C content based on hypothetical INS readings of 5000 counts.
‡ Predicted surface C content based on hypothetical INS readings of 25,000 counts.

Fig. 5. Regression lines of inelastic neutron scattering vs. C content 
in the pits; solid lines represent the mean C values and upper (UCL) 
and lower (LCL) 95% confi dence limits; dashed lines represent the 
maximum and minimum C values; and, the dotted lines denote the 
extreme mixture of maximum and minimum C values.

Fig. 6. Inelastic neutron scattering signal regressions vs. surface C in 
the roots above 2 mm, in the sieved soil, and the total combined C in 
the roots and soil determined by dry combustion in (a) the top 0- to 
5-cm layer, and (b) from 0 to 40 cm.
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oak forest, albeit from a total of only nine points. We highlighted 
the importance of using a large number of samples to represent 
a plot even when the plots were represented by excavated pits 
stratifi ed and homogenized by depth. We also demonstrated 
an improvement in the INS’s response vs. total C content when 
the C in the roots was combined with that in the soil. Th us, by 
undertaking sequential measurements at sites with and without 
roots, it might be possible to establish a root growth rate under 
diff erent soil management practices.

Forests present considerable challenges for estimating soil 
C due to the lack of tillage, the presence of large perennial root 
systems, and the potential for plentiful coarse fragments. We 
worked with a set of plots ranging from pasture to forest with 
highly heterogeneous conditions. For example, across plots, the 
percentage of each pit made up of coarse stone fragments ranged 
from 4 to 29%. Tilled and no-till agricultural soils would prob-
ably simplify soil sampling using standard sampling via soil cor-
ing. Certainly, for a homogeneous soil with a uniform C distribu-
tion and no error in preparing the sample, the size and number of 
samples used for the analysis are immaterial; however, the errors 
in measurement and in sample preparation, together with the 
soil’s natural variability in the fi eld, necessitate multiple sampling 
with volumes as large as practically possible. Th e C depth profi le 
( Jobbágy and Jackson, 2000) also contributes to uncertainty; for 
example, a homogenized 40- by 40- by 5-cm sample will yield 
a diff erent C content than a 10- by 10- by 80-cm sample of the 
same volume. We cannot overstate the importance of adequate 
discrete sampling for DC to represent the volume interrogated 
by the INS. Th e microvariability of C in the soil, a priori an un-
known, may aff ect the slope of the INS regression line and thus 
the fi eld prediction from a scan. We detailed the eff ects of the 
volume of the sampled soil on the quality of the regression be-
tween these two methods and the resulting prediction of the 
soil’s C content (Table 2). Th us, having information on the loca-

tion and depth of the samples is essential for any meaningful C 
comparisons among methodologies.

Because the soil C distribution varies laterally and with 
depth, intensive sampling is required so that C changes with 
time can be estimated. Improvement of such estimates on the 
landscape or higher levels frequently can be assisted by compos-
iting core subsamples to arrive to better mean values; however, 
on a site like ours, high amounts of coarse stony fragments make 
random sampling and subsampling using soil cores diffi  cult to 
impossible. Frequently, C estimates at a landscape level might be 
improved by using advanced geostatistical methods, albeit com-
plicated ones (Simbahan et al., 2006). Th e INS scanning capabil-
ity aff ords averaging across the scanned area and thus should pro-
vide a better estimate of the C level at a landscape scale, in particular 
if it is riddled with a high degree of inhomogeneities.

Th e number of samples required to represent the INS vol-
ume clearly depends on the microsite variation in C, which is 

Table 3. Summary of the regression parameters fi tted to the 
soil, roots, and total belowground C as a function of increas-
ing soil depth.

Soil 
depth

Location Slope Intercept r2 P

cm

0–5

soil 161675.9 −16518.9 0.7456 5.7 × 10−3

roots −43319.6 12088.4 0.05423 5.8 × 10−1

total 110928.7 −11586.3 0.3727 1.1 × 10−1

0–10

soil 105293.6 −17698.5 0.7785 1.6 × 10−3

roots 32755.6 8759.2 0.0426 5.9 × 10−1

total 77224.0 −13890.4 0.6714 6.9 × 10−3

0–20

soil 47143.2 −8639.6001 0.8508 4.0 × 10−4

roots 56182.8 6855.7960 0.3512 9.3 × 10−2

total 40319.5 −8376.3625 0.9797 3.5 × 10−7

0–30

soil 35860.1 −7361.7251 0.8155 8.5 × 10−4

roots 55242.1 6759.0243 0.3282 1.1 × 10−1

total 33232.9 −8203.9298 0.9532 6.5 × 10−6

0–40
soil 33028.9 −8631.6176 0.8226 7.4 × 10−4

roots 54573.7 6758.7757 0.322 1.1 × 10−1

total 30924.7 −9437.8525 0.9527 6.8 × 10−6

Fig. 7. Inelastic neutron scattering (INS) correlation with total surface 
C measured by dry combustion from various depths.

Fig. 8. Inelastic neutron scattering correlation, C net counts (CN), 
with chemical analysis by dry combustion, C surface density (C s), 
to a depth of 30 cm, including upper (UCL) and lower (LCL) 95% 
confi dence limits.
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impacted by past management practices. Using excavations and 
homogenizing soil from diff erent layers, as reported here, yielded 
excellent correlations with INS measurements. In several of our 
other studies using soil cores, the regressions were not as good, 
with r2 values in the range of 0.4 to 0.8 (data not shown) with 
the exception when using synthetic homogenized soil, where r2 
was 0.99 (Wielopolski, 2006). Furthermore, using cores may have 
resulted in our ignoring coarse fractions >2 mm, thus introducing 
error in the C determination. We clearly showed that including 
the C in coarse fractions >2 mm improved the fi t.

We propose that with adequate sensitivity and a larger num-
ber of detectors, the INS will aff ord an excellent tool for monitoring 
belowground C sequestration in forests and other terrains.

SUMMARY
We outlined the concerns when comparing soil C analysis 

derived by various methods from vastly diff erent soil volumes 
and their possible impact on correlation between any two meth-
odologies. Specifi cally, we demonstrated the proportionality be-
tween the INS signal and the conventional DC chemical analy-
sis. We also described the correlation between the INS system 
and the DC method, and elaborated on the implications from 
comparing point measurements vs. volumetric measurements. 
Th e unique characteristics of the INS system combined with its 
being a fi eld unit aff ord a new sampling paradigm and C moni-
toring ability. In addition, using the new INS instrument entails 
an extensive reduction in time and eff ort, and consequently sam-
pling costs, not possible previously. Once fully demonstrated, the 
INS could become an important method for monitoring soil C 
changes with time.
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