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Abstract

Traditional fire detection algorithms mainly rely on hot spot detection using thermal infrared (TIR) channels with fixed or contextual
thresholds. Three solar reflectance channels (0.65 pm, 0.86 um, and 2.1 pm) were recently adopted into the MODIS version 4 contextual
algorithm to improve the active fire detection. In the southeastern United States, where most fires are small and relatively cool, the MODIS version
4 contextual algorithm can be adjusted and improved for more accurate regional fire detection. Based on the MODIS version 4 contextual
algorithm and a smoke detection algorithm, an improved algorithm using four TIR channels and seven solar reflectance channels is described. This
approach is presented with fire events in the southeastern United States. The study reveals that the 75, of most small, cool fires undetected by the
MODIS version 4 contextual algorithm is lower than 310 K. The improved algorithm is more sensitive to small, cool fires in the southeast

especially for fires detected at large scan angles.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The southeastern United States is one of the areas in the
country where wildland fires and prescribed fires are common
(USDA Forest Service, 1998). An estimated 3.2 million hectares
of wildland are burned per year in the southeastern United States
(Wade et al., 2000). Most of the prescribed fires, and some of the
wild fires, can be classified as understory surface fires, char-
acterized by their small burn area and relatively low tempera-
tures (Stanturf et al., 2002).

It is difficult to detect small and cool fires using current
remote sensing algorithms because these fires do not emit
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sufficient radiation to penetrate dense canopies and cannot be
easily distinguished from non-fire background radiation. To
date, most algorithms are designed for global fire detection, and
rely on identifying hot spots using thermal infrared (TIR)
channels. The limitation of that technology is that false alarms
are occasionally generated over certain surface types during the
day time, and small, cool fires are oftentimes missed using
relatively high thresholds optimized for global fire detection.

In this paper, we review problems with state of the art remote
sensing of small, cool fires. We present an improved algorithm
designed to detect small, cool fires in the southeastern United
States with MODIS daytime observations. Two cases are pre-
sented to illustrate the performance of this algorithm.

2. Data and methods
2.1. Data and software

Reflectance from MODIS solar reflective channels in 1 km
resolution, is employed to derive smoke pixels. The 0.41 pm
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and 0.94 pm channels, denoted by Rg and R, respectively, are
used to reject vegetation pixels. The 2.13 pm and 0.44 um
channels, denoted by R, and Ro, respectively, are applied to
reject bare soil pixels. The reflectance from the blue channel is
denoted by Rj;, along with Rg to reject water pixels.

Three thermal infrared channels and one solar reflective
channel are applied to detect fire pixels. The brightness tem-
peratures derived from 3.96 pm channels and the 11.03 pm
channel are denoted by 7,,, and 75, respectively. The reflec-
tance from the 0.86 pum channel in 1 km resolution is denoted by
R». The reflectance from R,, and the 0.65 um channel, denoted
by R, along with the brightness temperature derived for the
12.02 pm channel (73,) and the 7.3 um channel (75g) are used to
flag cloud pixels and reject cloud edge false alarms.

All data are downloaded from the Earth Observing System
Data Gateway, Land Processes Distributed Active Archive
Center (DAAC) (Justice et al., 2002b), including MODIS Level
1B Radiance product (MOD02/MYD02), geolocation data set
(MODO03/MYDO03), and thermal anomalies, fires, and biomass
burning product (MOD14/MYD14).

To generate true color images, the MODIS Direct Readout
(DR) software package MODISNDVI_DB_V2.1 is employed to
calculate solar reflectance with atmospheric correction at three
visible channels. The MODIS fire product at 18:50 GMT,
December 20, 2004, not available at the DAAC, is generated by
the DR software package MOD14-4. DR software, provided by
the Direct Readout Laboratory at http://directreadout.gsfc.nasa.
gov/. MATLAB is used to implement the improved algorithm.

2.2. Existing algorithms

A small number of authors (Dozier, 1981; Giglio et al., 1999;
Langaas, 1993; Lasaponara et al., 2003) have focused on small
fire detection based on theoretical analysis, fixed threshold
method, or contextual algorithms using NOAA Advanced Very
High Resolution Radiometer (AVHRR) multi-channel data.
Since the Moderate Resolution Imaging Spectroradiometer
(MODIS) instruments onboard Terra and Aqua began collecting
data in February 2000 (Terra) and June 2002 (Aqua), satellite
fire detection capability has been improved using two 3.96 pm
channels.

In the MODIS version 3 active fire detection algorithm
(Kaufman et al., 1998), sensitivity to relatively small fires were
sacrificed in order to reduce persistent false alarms over certain
surface types during the day time (Justice et al., 2002a). An
enhanced contextual fire detection algorithm (Giglio et al., 2003)
was recently used for MODIS version 4 fire products, in which
the sensitivity to small, cool fires increased. This algorithm
achieved significantly lower false alarm rates by using several
solar reflectance channels to reject false alarms, and by adjusting
the potential fire threshold and contextual thresholds in the
earlier version of the MODIS contextual algorithm.

Contextual algorithms (e.g. Flasse & Ceccato, 1996; Giglio
et al., 2003; Justice et al., 1996; Kaufman & Justice, 1998;
Kaufman et al., 1998; Lee & Tag, 1990) use dynamic thresholds,
relying on the contrast between a potential fire pixel and its
background pixels (Boles & Verbyla, 2000) to detect fires. These

algorithms are more flexible and effective in variable surface
conditions than fixed threshold approaches (Flasse & Ceccato,
1996; Li et al., 2001). The MODIS contextual fire detection
algorithm, designed for operational global fire monitoring, has
the weakness for regional fire detection, including: fixed thresh-
olds for identifying potential fire pixels; the assumption of a
similar non-fire background nearby fire pixels; the effects of
reflected solar radiation; the impact of undetected fires in the
valid background pixels; problems caused by solar zenith angle
and scan geometry; and the influence of atmospheric optical
thickness. When applied to regional active fire detection in the
southeast, small, cool fires are oftentimes missed due to spe-
cial regional wildland fire patterns and environmental factors
(Martin & Boyce, 1993; Stanturfet al., 2002). In addition, small,
cool fires exhibit different characteristics depending on biome,
amount of fuel burning, time of day, fire-line, season, geographic
region, and view geometry (Giglio et al., 1999).

The MODIS contextual algorithm is composed of three basic
parts, including preliminary thresholds to identify potential fire
pixels, contextual tests to confirm fires among the potential fire
pixels (Martin et al., 1999), and thresholds to reject false alarms.
In the first part, the selection of fixed thresholds is subtle as an
over-high setting runs a risk of omitting fire pixels. Meanwhile,
an over-low setting causes more noise in deriving the parameters
of the background pixels (Li et al., 2001) and generates more
false alarms. The MODIS version 4 contextual algorithm em-
ploys fixed thresholds globally to identify potential fire pixels.
For global applications, the preliminary thresholds cannot be set
low enough to detect most small fires that can be physically
detected for regional concern. Therefore, it needs improvement
for fire monitoring and management at the regional scale.

Since fire severity varies with fuel type, fuel loading and
weather conditions, potential fire thresholds should be contin-
gent on these variables for regional applications (Li et al., 2001).
Boles and Verbyla (2000) and Chuvieco and Martin (1994)
demonstrated that fire detection accuracy was improved by
using a fuel mask model. Csiszar et al. (2003) also suggest that
adjusting thresholds to local conditions is necessary to reach a
reasonable compromise between omission and commission er-
rors for regional fire detection. These studies indicate that po-
tential fire thresholds should be based on regional variations or
they should be set as a function of a vegetation index for regional
fire detection (Chuvieco & Martin, 1994; Martin et al., 1999).

In the second part of the MODIS algorithm, it is critical to
determine valid neighboring pixels for every potential fire pixel,
which will be used to derive the background parameters de-
signed to set the remaining dynamic thresholds. The separation
of fire pixels and non-fire background pixels becomes
ambiguous with increasing background temperature caused by
the presence of undetected background fires, seasonal change
and certain surface types. This can directly affect the perfor-
mance of the contextual algorithms. Giglio et al. (1999) ex-
cluded the eight pixels surrounding the potential fire pixel from
the processing window in order to take out the fire contaminated
background pixels. This algorithm showed a higher sensitivity
to small, cool fires compared with the algorithms of Justice et al.
(1996) and Flasse and Ceccato (1996).
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Fig. 1. Fire events detected by the MODIS contextual algorithm and the improved algorithm on September 29, 2003. Fire spots were marked in red with the
background of MODIS 1 km true color images. Fire spots in Panels (a) and (c) were detected by the improved algorithm, and fire spots in Panels (b) and (d) were
identified by the MODIS contextual algorithm. Panels (a) and (b) were observed at 17:15 GMT by MODIS/Terra, and Panels (c) and (d) were observed by MODIS/

Aqua at 18:50 GMT.

The assumption that the surrounding non-fire pixels have
similar brightness temperature is not appropriate in highly
heterogeneous areas (Justice et al., 2002a). Reflected solar
radiation around 4 pm channels causes high brightness
temperature on bare soil, exposed rock, senescent or sparse
vegetation, desert, tropical dry savanna and temperate grassland
(summer). It is also the reason for sun glint effect over small
bodies of water surface, coastline, wet soil and cirrus clouds,
and misleading lower values on uneven forested areas (Csiszar
et al., 2003; Giglio et al., 2003; Giglio et al., 1999; Lasaponara
et al., 2003). The reflected solar radiation reduces the contrast
between fire pixels and non-fire background pixels. Although
the commission errors caused by reflected solar radiance have
been decreased after the 3.75 pm band (AVHRR) was shifted
to the 3.96 um band in MODIS, the reflected solar radiation
can only be reduced to the half of reflected sunlight at the
3.75 pum channel (Kaufman et al., 1998). In addition, in-

creasing the solar zenith angle, or scan angle, or atmospheric
optical thickness, also reduces the number of small, cool fires
detected.

Due to the above reasons, contextual algorithms were ad-
justed by changing the thresholds for identifying potential fire
pixels, tuning the type of background pixels and the size of the
background window. This suggests the contextual algorithms
are not self-adaptive enough for regional fire detection, and
therefore regionally specified thresholds are necessary in order
to develop effective regional fire detection algorithms (Lasa-
ponara et al., 2003).

2.3. Overview of the improved algorithm
This regional fire detection algorithm is designed to reduce

omission errors caused by fixed thresholds for identifying
potential fire pixels. A new method based on identifying smoke
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Table 1
Fire characters of fire events on September 29, 2003
Fire spots  Time (GMT) 75, (K) AT (K) R, Scan angle (degree)
1 17:15" 309.0 16.2 0.171 19.5
18:50 310.3 18.2 0.195 454
2 17:15" 308.1 15.9 0.156  26.5
18:50 328.7 36.7 0.149 41.8
3 17:15" 320.0 25.5 0.157 28.6
18:50" 323.9 28.8 0.157 444
4 17:15" 308.7 14.4 0.192 27.3
18:50 315.2 21.5 0.182 45.6
5 17:15" 317.2 22.3 0.084 25.1
18:50" 305.2 12.0 0.102 47.0
6 17:15" 309.4 16.0 0.161 27.5
18:50 311.0 17.8 0.163 462
7 17:15 327.9 31.6 0.166 21.3
18:50% 3053 12.1 0.171 474
8 17:15 327.3 30.7 0.187 24.0
18:50% 304.3 10.6 0.185 46.6

The fire spots with “#”can only be detected by the improved algorithm. The fire
spots without “#” can be detected by both algorithms.

plumes (Xie et al., 2005) for obtaining potential fire areas was
adopted to select potential fire pixels as the first stage of the
algorithm. For the second part of the algorithm, the kernel of the
enhanced contextual fire detection algorithm for MODIS
(Giglio et al., 2003) is adopted for identifying fire pixels.

2.3.1. Cloud and water masking

A water mask is obtained from the MODIS geolocation data
set (Justice et al., 2002b). The cloud detection approach adopts
the technique used in the International Geosphere Biosphere
Program (IGBP) AVHRR-derived Global Fire Product (Stroppi-
ana et al., 2000) and the MODIS contextual algorithm (Giglio
et al., 2003). The pixel that satisfies the following condition is
considered as cloud:

(Ry + R2>0.9) or (T5,<265 K) or (1)
(Rl + R,>0.7 and T3,<285 K)

The low potential fire threshold, which is used in the flowing
step, introduces cloud edge false alarms. So, pixels with
T,3<255 K are rejected as cloud edge. Any pixels occupied by
cloud or identified as water will not be processed.

2.3.2. Potential fire area

The cardinal feature of the MODIS contextual algorithm lies
in the contextual tests, which are based on the identification of
potential fire pixels with several fixed thresholds. One of the
primary thresholds is 75,>310 K. This criterion assumes any
pixel with the 75, <310 K is a non-fire pixel, but case studies of
fire events in the southeast show 75, values of missed small,
cool fires are lower than 310 K especially for observations at
large scan angles. This assumption runs the high risk of omitting
small, cool fires due to omitting potential fire pixels and in-
cluding fire pixels into the valid background pixels.

The TIR radiance emitted by small, cool fires is partly
blocked by high level canopies at the early stage of fire ignition

or even the whole burning process. Most wildland fires and
prescribed fires emit smoke due to the complex compositions
of fuels and the percentage of fuel consumptions (Stanturf
et al., 2002). Ward and Hardy (1991) indicated that emission
factors for particles released from fires tend to increase
inversely with combustion efficiency. In the southeast, fuel
moisture is usually high, so the moisture released from fuels
tends to absorb some of the heat energy from the fire. This
limits combustion temperatures and fuel consumption percen-
tages. Incomplete combustion usually produces more smoke
emissions, so small, cool fires are more likely to have a longer
smoldering combustion phase. The heat release rate from
smoldering fires is usually not sufficient to lift the smoke into a
well defined convective column. As a result, smoke plumes
from small, cool fires stay near the ground in high concentra-
tions (McMahon, 1983).

The first step of this improved algorithm is to identify smoke
pixels among all the cloudless and non-water pixels using a
smoke mask technique adopted from a smoke detection algo-
rithm (Xie et al., 2005). The potential fire area around smoke
pixels is calculated. Then, the pixels in the potential fire areas
are examined by the attenuated potential fire thresholds based
on the MODIS version 4 contextual algorithm. Those pixels
satisfying the above conditions are identified as potential fire
pixels and are further processed by the contextual tests.

The smoke detection algorithm developed by Xie et al.
(2005) was adopted and modified for this study. Any cloudless
and non-water pixels are considered as candidate smoke pixels.
Then four criteria are applied to exclude vegetation pixels, bare
soil pixels, and water pixels. These tests are:

0.5>(Rg—R19)/(Rs + R19)>0.15 (2)
(Ro=R7)/(Ry + R7)=0.30 3)
(Rs—Rs3)/(Rs + R3)<0.09 (4)
Rg>0.09 (5)

Those candidate pixels satisfying tests (2)—(5) are smoke pixels.

The range within which the smoke plumes can penetrate
dense canopies indicates the distance between the fire spot and
the observed smoke plume, denoted by the radius of potential
fire area D. The regional climate data and biomass structure
provide the parameters to derive the average maximum distance
Dpax. These parameters are minimum vertical wind speed Viin,
average maximum surface wind speed S,.x, and the maximum
average height of the canopy layer H,.x. Assuming the smoke
plume disperses at a linear rate, D, is derived by the relation
Dinax =Hmax * Smax/ Vinin- Taking S;.x as 9.0 ms~ ' (Archer &
Jacobson, 2003; Kaufman & Justice, 1998; Klink, 1999), H.x
as 10 m, and V,;, as 0.013 msfl, Dinax 18 approximately 7 km.
At the nadir view of MODIS, a 7 km radius’ area is covered by a
14 x 14 pixel window. This area is defined as a potential fire area
and is calculated for any smoke pixels to form a potential fire
area mask. The horizontal wind profiles at the boundary layer are
not distributed linearly, and the vertical wind shear and plume
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Fig. 2. Fire events detected by the MODIS contextual algorithm and the improved algorithm on December 20 and 21, 2004. Fire spots were marked in red with the
background of MODIS 1 km true color image. Fire spots in Panels (a), (c), and (¢) were detected by the improved algorithm, and fire spots in Panels (b), (d), and (f)
were identified by the MODIS contextual algorithm. Panels (a) and (b), (c) and (d), (e) and (f) were observations on December 20, 18:50 GMT by MODIS/Aqua,
December 21, 16:20 GMT by MODIS/Terra, and December 21, 17:55 GMT by MODIS/Aqua, in series.

buoyancy generated by fire lines or background atmospheric ~ 2.3.3. Identification of potential fire pixels

flow usually increase the dispersion speed of smoke plumes. Pixels within the potential fire area are considered as
Taking these factors into account, the actual radius is generally ~ potential fire pixels if (75,>293 K, R,<0.3, and AT,,>10 K),
smaller than D, . where AT,,=T,,—T5,. These conditions are adopted from the
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MODIS fire detection algorithm with a change in the 75,
threshold, which is attenuated in order to increase the sensitivity
to smaller, cooler fires. The T», threshold is selected based on
the statistical analysis of over 30 granules (800 fire pixels)
dispersedly distributed in the southeast states in various sea-
sons. The setting of 293 K for 75, threshold can reduce the
omission errors caused by the corresponding threshold in the
MODIS contextual algorithm, and decrease the number of fire
pixels that are mistakenly included in the valid background
pixels. The lower 7>, threshold also reduces omission errors
due to large scan angles, since the radiance of the object
decreases at large scan angles and the lower threshold allows
small, cool fire pixels at large scan angles to be further
processed.

2.3.4. Contextual tests

Eight background parameters of valid background pixels are
calculated for every potential fire pixel that has a qualified
background window. These eight parameters are mean and mean
absolute deviation of T, (72, and 6,5, respectively), mean and
mean absolute deviation of 73, (7'3; and d3,, respectively), mean
and mean absolute deviation of AT, (AT and d, 7, respectively),
mean absolute deviation of 75, for background fire pixels (&’55).
The background pixels are in a background window centered on
the potential fire pixel, and are defined as valid observations,
which are not flagged as cloud, water, or potential fire pixels.
The window starts from a 5x5 pixels and increases to a
maximum of 21 x 21 pixels area, until at least 25% of the pixels
within the window are background pixels. Those potential fire
pixels, which fail to achieve a background window, are classified
as unknown pixels and are not subjected to further testing.
However, if the 75, values of the pixels are greater than 360 K,
the pixels are classified as fire pixels.

The following contextual tests are adopted from the MODIS
contextual tests. These tests are:

AT>AT +3.505r (6)
AT>AT +6 K (7)
T5y>T22 + 355 (8)
Ty >T31 + 65,4 K 9)
57%>5 K (10)

Potential fire pixels that satisfy the following conditions are
identified as fire pixels: {75;>360 K} or {tests (6)—(8) are true
and [test (9) or test (10) is true]}.

2.3.5. Case study

Two wildland fire cases detected by both MODIS/Terra and
MODIS/Aqua in the hot season and the cold season are selected
to present the performance of the improved algorithm. One case
is fire events on December 20-21, 2004 at the border region

Table 2
Fire characters of fire events on December 20 and December 21, 2004

Fire spots Time (GMT) T (K) AT (K) R, Scan angle (degree)
1 Dec. 20, 18:50" 2964  17.8 0.108 29.2

Dec. 21, 16:20 329.4 43.3 0.115 17.8
2 Dec. 20, 18:50" 302.8  23.1 0.105 242

.20, 18:50%  293.0 13.2 0.123 23.1
Dec. 21, 17:55  313.3 26.7 0.141 514

w
)}
&
o

4 Dec. 20, 18:50%  300.9 19.9 0.137 19.0
5 Dec. 20, 18:50"  296.8 16.1 0.124 189
6 Dec. 21, 16:20"  302.2 16.4 0.107 143
7 Dec. 21, 17:55"  297.7 11.7 0.118 52.0
8 Dec. 21, 17:55%  301.8 14.2 0.125 50.6
9 Dec. 21, 17:55"  300.9 15.6 0.090 493
10 Dec. 21, 17:55%  305.3 18.7 0.131 522
11 Dec. 21, 16:20 3152 26.7 0.110 135

Dec. 21, 17:55%  306.1 18.4 0.132 514
12 Dec. 21, 17:55"  298.9 11.7 0.120 51.2

The fire spots with “#”can only be detected by the improved algorithm. The fire
spots without “#” can be detected by both algorithms.

between Georgia and Florida along the Atlantic coast, and the
border region between Mississippi and Alabama along the Gulf
coast. The second fire event occurred on September 29, 2003,
located in the Red River Basin in Mississippi.

Each case is calculated using both the improved algorithm
and the MODIS contextual algorithm. Fire events detected by
the MODIS contextual algorithm are considered true fires,
since the MODIS contextual algorithm has been validated
systematically and offers a significantly lower false alarm rate.
Comparative analysis is conducted between earlier and later
observations of fire events which are undetectable using the
MODIS contextual algorithm but detectable using the im-
proved algorithm. If a previously undetected fire event is
subsequently detected using the MODIS contextual algorithm,
and/or the improved algorithm, and the event is accompanied
by obvious smoke plumes, this fire event is believed to be a
true fire event which was previously omitted by the MODIS
contextual algorithm. Fire events, which are only detectable
using the improved algorithm at earlier time, but not detectable
by both algorithms in subsequent observations, are considered
uncertain spots. Uncertain spots are further inspected using
MODIS 250 m true color images. In all cases investigated
MODIS 250 m true color images of the corresponding regions
showed that the uncertain spots were accompanied by obvious
smoke plumes. This supports the supposition that they are
indeed fire spots.

3. Results and concluding remarks

Among the fire events in the Red River Basin (Fig. 1), eight
fire spots undetected by the MODIS contextual algorithm are
numbered in Panel (a) and (c). Taking fire spot 2 as an example,
the improved algorithm detected this thermal anomaly at 17:15
GMT (Panel a), and both algorithms identified this spot as an
active fire with an obvious smoke plume at 18:50 GMT (Panel ¢
and d). In Table 1, both T, and AT for fire spot 2 increased by
approximately 20 K during a period of 1.5 h. This proves that
the fire at 17:15 GMT was an active fire. Fire spot 3 at 17:15
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GMT and 18:50 GMT, and fire spot 5 at 17:15 GMT satisfy the
threshold of 7,, >310 K (Table 1) and contextual thresholds,
but they are not identified by the MODIS contextual algorithm.
This indicates that the false alarm rejection thresholds in the
MODIS contextual algorithm cause omission errors.

In Fig. 2, fire spots 1 to 12, marked in Panel (a), (c) and (e),
are omitted by the MODIS contextual algorithm. Although fire
spots 1, 5 and 6 are not accompanied by obvious smoke plumes
in the 1 km resolution MODIS true color images, corre-
sponding MODIS 250 m true color images show that all of
these three spots are indeed accompanied by smoke plumes.
Spots 7 to 12 are fire spots because they are accompanied by
obvious smoke plumes even in the 1 km images. Three spots in
Panel (d) are detected as fire spots by the MODIS contextual
algorithm. The left and the right spots are not accompanied by
smoke plumes even in the MODIS 250 m true color image. The
spot in the middle is accompanied by unobvious smoke in the
MODIS 250 m true color image. This case presents a limitation
of the improved algorithm and indicates that fire spots lacking
a detectable smoke plume in a 1 km resolution image will be
omitted.

Figs. 1(c) and 2(e) show that the improved algorithm is more
sensitive to small, cool fires, especially for observations at large
scan angles (Tables 1 and 2). In the two fire events on Sep-
tember 29, 2003 and December 20-21, 2004, there are a total
of 22 fire spots which are omitted by the MODIS contextual
algorithm, but detected by the improved algorithm. The im-
proved algorithm fails to detect small fires lacking a visible
smoke plume unless they are within the potential fire area of
other fires.

The characteristics of small, cool fires undetected by the
MODIS contextual algorithm are listed in Tables 1 and 2. The
T,, brightness temperatures of these small, cool fires are lower
than 310 K, a critical threshold for identifying potential fire
pixels in the MODIS contextual algorithm. The thresholds of AT
and R, in the MODIS contextual algorithm are valid for small,
cool fires undetected by the MODIS contextual algorithm. The
fire characteristics of small, cool fires suggest that the threshold
of T, greater than 310 K is too high to detect small, cool fires in
the southeast, and the corresponding adjustment in the improved
algorithm is reasonable. The improved algorithm is less sensitive
to negative effects caused by large view angles mainly due to
decreasing the 75, threshold to 293 K.
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