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A B S T R A C T

Urbanization compromises the biotic integrity and health of streams, and indicators of integrity loss are

needed to improve assessment programs and identify mechanisms of urban effects. We investigated

linkages between landscapes and assemblages in 31 wadeable Piedmont streams in the Etowah River

basin in northern Georgia (USA). Our objectives were to identify the indicators of macroinvertebrate and

fish integrity from a large set of best land cover (n = 45), geomorphology (n = 115), and water quality

(n = 12) variables, and to evaluate the potential for variables measured with minimal cost and effort to

effectively predict biotic integrity. Macroinvertebrate descriptors were better predicted by land cover

whereas fish descriptors were better predicted by geomorphology. Water quality variables

demonstrated moderate levels of predictive power for biotic descriptors. Macroinvertebrate descriptors

were best predicted by urban cover (�), conductivity (�), fines in riffles (�), and local relief (+). Fish

descriptors were best predicted by embeddedness (�), turbidity (�), slope (+), and forest cover (+). We

used multiple linear regression modeling to predict descriptors using three independent variable sets

that varied in difficulty of data collection. ‘‘Full’’ models included a full range of geomorphic, water

quality and landscape variables regardless of the intensity of data collection efforts. ‘‘Reduced’’ models

included GIS-derived variables describing catchment morphometry and land use as well as variables

easily collected in the field with minimal cost and effort. ‘‘Simple’’ models only included GIS-derived

variables. Full models explained 63–81% of the variation among descriptors, indicating strong

relationships between landscape properties and biotic assemblages across our sites. Reduced and simple

models were weaker, explaining 48–79% and 42–79%, respectively, of the variance among descriptors.

Considering the difference in predictive power among these model sets, we recommend a tiered

approach to variable selection and model development depending upon management goals. GIS

variables are simple and inexpensive to collect, and a GIS-based modeling approach would be

appropriate for goals such as site screening (e.g., identification of reference streams). As management

goals become more complex (e.g., long-term monitoring programs), additional, easily collected field

variables (e.g., embeddedness) should be included. Finally, labor-intensive variables (e.g., nutrients and

fines in sediments) could be added to meet complex management goals such as restoration of impaired

streams or mechanistic studies of land use effects on stream ecosystems.

Published by Elsevier Ltd.
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1. Introduction

As natural landscapes are altered by human disturbances, the
health of streams and rivers draining the land are increasingly at
risk (Schlosser, 1991; Allan et al., 1997; Allan, 2004). The global rise
in human population is driving a continual conversion of land to
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anthropogenic uses (Cohen, 2003; Grimm et al., 2008), so there is a
strong need for monitoring stream health. Indicators of stream
health (e.g., biotic integrity) and stream stressors (e.g., sedimenta-
tion and water quality) are important tools not only for assessing
stream condition, but also for determining the mechanisms of
impacts and, accordingly, effective avenues for protecting and
restoring stream ecosystems.

Increases in impervious cover and a concomitant reduction in
forest cover in urbanizing landscapes alter stream biotic
assemblages (see reviews, Paul and Meyer, 2001; Walsh et al.,
2005). Typical responses of benthic macroinvertebrate assem-
blages include reduced richness and diversity, and increased
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abundances of tolerant organisms in urbanized streams (Jones
and Clark, 1987; Lenat and Crawford, 1994; Kennen, 1999; Walsh
et al., 2001; Morse et al., 2003; Roy et al., 2003; Cuffney et al., 2005,
and others). Likewise, fish responses to urbanization include
reduced biotic integrity (Klein, 1979; Steedman, 1988; Wang
et al., 1997, 2000; Kennen et al., 2005; Morgan and Cushman,
2005) and increased homogenization of assemblages (Walters
et al., 2003a; Marchetti et al., 2006; Scott, 2006). While these biota
have been well studied with respect to land cover change, few
studies have assessed differences in the strength and mechanism
of responses between fish and macroinvertebrates at the same
sites (but see Lenat and Crawford, 1994; Lammert and Allan, 1999;
Passy et al., 2004).

There are several mechanisms by which land use change alters
stream biota, including: riparian clearing and loss of large wood,
hydrologic alteration, excessive sedimentation, nutrient enrich-
ment, and contaminant pollution (Allan, 2004). A primary
mechanism of stream disturbance in urbanizing areas is storm-
water runoff from impervious surfaces, which alters the magni-
tude, volume, frequency, and timing of high flow events (see
reviews, Shuster et al., 2005; Walsh et al., 2005). The physical force
of stormwater runoff causes stream bank erosion, sedimentation,
bed scouring, and channel morphology alteration (Booth, 1990;
Trimble, 1997; Finkenbine et al., 2000; Pizzuto et al., 2000;
Fitzpatrick et al., 2005). Runoff also delivers contaminants to
streams resulting in increased nutrients, metals, pharmaceuticals,
and other toxins in urban streams (Wilber and Hunter, 1977;
Herlihy et al., 1998; Ometo et al., 2000; Kolpin et al., 2002; Hatt
et al., 2004). This extensive suite of stressors and ecosystem
responses compose the symptoms of the ‘‘urban stream syndrome’’
(Paul and Meyer, 2001; Walsh et al., 2005) and may be used to
assess the severity of stream disturbance.
Fig. 1. Sample sites (filled circles) in the Etowah River basin. The shaded area in the center

shows temporal changes for cropland and population density in Cherokee County, whi
Given the wide variety of stressors in urban streams, a key
management goal is to identify key indicators and mechanisms of
stream alteration, so managers can rapidly diagnose stream health
and work toward treating the symptoms. Here we assess biotic
responses to watershed and reach-scale stressors in the Etowah
River basin near Atlanta, Georgia, in an effort to identify key
indicators of disturbance. The objectives of this paper are to (1)
determine which attributes of land cover, geomorphology, and
water quality best predict biotic assemblage health, and (2)
evaluate the potential for variables measured with low or minimal
cost and effort to effectively predict biotic integrity. We compare
the responses of macroinvertebrate and fish assemblages to
disturbance, assessing whether there are different mechanisms
by which biotic health declines. The results are placed in a
management context and used to recommend a tiered approach to
monitoring and assessment, based on management goals and
resource availability.

2. Methods

2.1. Study sites and environmental setting

The study area includes 31 catchments of the Etowah River
basin in north Georgia (Fig. 1). All sample reaches are on the
Piedmont, but a few of the catchments have headwaters in the Blue
Ridge Mountains. Catchments varied in size from 11 to 126 km2,
with channel types ranging from low gradient (0.1%), sand-bed
streams to high gradient (1.0%), cobble-bed streams. Detailed site
characteristics are provided by Walters et al. (2003b) and Roy et al.
(2003). Stream reaches were sampled in 1999 (n = 29) and 2000
(n = 2). Natural land cover was primarily forest which was cut and
supplanted by various land uses including mining, agriculture,
of the basin is Lake Allatoona, a reservoir on the main stem Etowah River. Inset graph

ch is centrally located in the basin.
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silviculture, and urbanization. By the 1930s, agriculture was in
steady decline and was being replaced by secondary growth forest.
This conversion corresponded with population expansion asso-
ciated with metropolitan Atlanta (Fig. 1, inset). Urbanization was
the main form of land cover conversion in the last two decades,
with human population growth rates among the highest in the U.S.
(Walters et al., 2005). The catchments exhibit a steady gradation
between urban and forested landscapes with land cover ranging
from 6 to 37% urban, 7 to 38% agriculture (primarily pasture) and
40 to 87% forest.

2.2. Land cover

We calculated numerous land cover variables and indices of
land disturbance to characterize human alteration of catchments.
Calculations for variables used in statistical analyses are provided
in Supplementary Material (Table 1) and have been previously
described (Roy et al., 2003; Walters et al., 2003b, 2005). Land cover
data were derived from Landsat thematic mapper (TM) images
from July 1997 (Lo and Yang, 2000). TM images were resampled to
25 m, classified using modified Level-I and Level-II Anderson
schemes (Anderson, 1976), and summarized into 12 land cover
classes within four major groups: urban (high-density, low-
density, total), agriculture (cultivated/exposed, cropland/grass-
land, golf course, total), forest (deciduous, evergreen, mixed, total),
and water. Land cover was calculated at three scales: (1)
catchment-wide or ‘‘catchment’’; (2) the stream network riparian
scale or ‘‘network’’; and (3) the stream-reach riparian scale or
‘‘riparian’’. Catchment scale included everything within the
watershed boundary. Network scale included everything within
a 100 m wide band on either side of the stream network (200 m
wide band) as it is portrayed on 1:100,000 USGS topographic maps.
Riparian scale included everything within a 100 m wide band on
either side of the stream within a distance of 1000 m upstream
from the downstream end of the sample locale. We also used a
Landsat image from October 1998 to determine the extent of ponds
(i.e., artificial impoundments) within catchments based on a 20-
bin unsupervised classification scheme (ArcView 3.2, ESRI, Red-
lands, CA, USA). Total impervious area (TIA) was estimated by
multiplying low-density urban and high-density urban land cover
by either the minimum (0.5 and 0.8) or median (0.65 and 0.9)
impervious coverage estimates, respectively (Lo and Yang, 2000).
Other measures of human disturbance included road density, a
disturbed land index (median TIA + cultivated/exposed) and an
erosive land index (urban + cultivated/exposed). The latter two
indices were calculated separately for the catchment scale and for
slopes >10% within catchments.

2.3. Geomorphology

Geomorphic variables were collected at the catchment and reach
scales. Categories of variables included catchment morphometry
(n = 17), stream channel morphology (n = 60), and sedimentology
(n = 38). In most cases, we followed standard methods in reference
manuals for collecting reach data (i.e., Harrelson et al., 1994;
Fitzpatrick et al., 1998; Kaufmann et al., 1999). Detailed descriptions
of collection methods are in Leigh et al. (2002) and Walters et al.
(2003b) and information on geomorphic variables analyzed in this
study is provided in Supplementary Material (Table 1).

Morphometry variables included the area, perimeter, shape
(compactness), and drainage density of the study catchments. We
also characterized length, slope, total relief, relative relief (total
relief/perimeter), and ruggedness (total relief � drainage density)
for the catchment and trunk stream based on standard equations
from Ritter et al. (1995). We included an innovative variable, local
relief, measured as the elevation difference between the surveyed
reach and the ridges confining the stream valley. Finally, we
estimated soil erosion by applying the universal soil loss equation
(USLE) to land cover and digital elevation maps (DEMs). All
variables were derived in ArcView 3.2 using digital raster graphics
(DRGs) of 1:24,000 USGS 7.5-minute quadrangles.

Stream channel morphology was measured in reaches 20 times
the average baseflow water width and was surveyed with an
electronic total station. Most of the channel dimensions were
calculated as averages obtained from three cross-sections arbitrarily
located at the lower, upper, and midpoint of each reach. Percent
geomorphic units (riffle, glide, and pool) were sampled along five
longitudinal transects (i.e., ‘‘zig-zag’’ survey, Walters et al., 2003b)
and summarized for the thalweg (the line connecting the deepest
parts of the channel) and all points. Water depth was also sampled in
the zig-zag survey and summarized as average, standard deviation,
coefficient of variation, and 95th percentile for riffles, glides, pools,
and the entire reach (thalweg and all points). Baseflow width, depth,
and velocity were characterized and averaged along five equally
spaced cross-sections. Three cross-sections were mapped for
bankfull conditions, and flow variables (area, width, depth, thalweg
depth, hydraulic radius, velocity, discharge, tractive force, and
stream power) were generated from models (Walters et al., 2003b).
Entrenchment ratios and flood recurrence intervals at bankfull and
valley-flat levels were also modeled using HEC-RAS. Other
miscellaneous variables included stream slope, channel sinuosity,
Manning’s roughness coefficient (n), and the volume of large wood
(>10 cm). It is important to note that we measured stream slope at
three scales. At the reach-scale, slope was measured as the average
gradient projected across the tops of riffles in the survey reach. We
also calculated map slope as the height/distance of the two contours
nearest the survey reach from 1:24,000 topographic maps. Finally,
we calculated trunk stream slope as the total gradient from the
catchment divide to the surveyed reach as measured along the trunk
(or main channel) of the stream.

Bed sediment variables were derived using three methods: (1)
pebble counts from representative riffles (Wolman, 1954), (2)
sieving of samples from three riffles and three pools, and (3) point
counts from the zig-zag survey (Walters et al., 2003b). Point counts
were based on the modal sediment size observed within a 50 cm
diameter patch of the upper 5 cm of streambed sediment at each
sample point. Texture variables derived from these methods
included mean particle size, percent composition of different size
classes (<0.063, <2, 2–63, and 63–256 mm), and estimates of
variance in particle size. Sediment transport variables were
calculated to estimate bed mobility during the 0.5-year recurrence
interval flood. Bed mobility ratios compare the force exerted on the
streambed during the 0.5-year flood relative to the threshold force
(stream power, tractive force, or velocity) needed to initiate motion
of average size particles on the whole steam bed or in riffles. In
addition, embeddedness of coarse particles was determined from a
visual assessment by 2–4 observers (Bjorkland et al., 2001).

2.4. Water quality

Baseflow water chemistry samples were collected during
monthly synoptic surveys at 29 sites from May 1999 to June
2000, at least 72 hours after significant rainfall. Dissolved oxygen
(DO), specific conductance (SC), and pH were measured with a
Hydrolab1 Datasonde 4 multi-probe (Hydrolab Corporation, TX,
USA). Grab samples for dissolved orthophosphate, nitrate, and
ammonium analyses were collected from the thalweg at 0.6 water
depth. Samples were filtered (Gelman A/E glass fiber filter, 0.47-
mm pore size) in the field, placed on ice, frozen until analysis (<2
weeks), and analyzed with an Alpkem1 autoanalyzer following
standard methods (American Public Health Association, 1989).
We collected depth-integrated samples for turbidity and total
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suspended solids (TSS) from the thalweg using a DH-48 sampler.
Turbidity samples were analyzed in the field on a portable
turbidimeter (Hach 2100P). TSS samples were filtered through pre-
weighed 0.7-mm glass fiber filter, dried, and weighed. At two sites,
mean dissolved oxygen, pH, conductivity, nitrate, and turbidity
were calculated using quarterly samples collected from March
1997 to December 2000 by the Cobb County Water Authority
(CCWA, Marietta, GA).

Stream temperature at 29 sites was recorded hourly from June
1999 to June 2000 with Onset Hobo temperature data loggers
(Onset Corporation, MA, USA). Data were analyzed on an annual,
summer (June 21 to September 21), and winter (December 21 to
March 21) time scales. Stream temperature was also recorded
with a thermometer during monthly surveys (April 1999 to June
2000) at 29 sites, and quarterly (March 1997 to June 2000) at two
sites. These data were used to calculate mean annual baseflow
temperature.

2.5. Biotic assemblages

Sampling methods for macroinvertebrates and fishes are
provided in Roy et al. (2003) and Walters et al. (2003b), respectively.
Briefly, sites were sampled once during baseflow conditions. Three
benthic macroinvertebrate samples were taken in each of three
habitats within 100 m reaches. Macroinvertebrates were sampled in
riffle, pool, and bank habitats using a Surber sampler, stovepipe
corer, and rectangular dipnet, respectively (500-mm mesh). Samples
from all habitats were pooled to calculate assemblage descriptor
variables. Fishes were collected in reaches approximately 40 times
mean wetted width using a backpack electroshocker, seine, and
dipnet. All samples were preserved in 10% formalin. Fishes were
identified to species and invertebrates were identified to genus,
where possible, using standard keys (e.g., Merrit and Cummins,
1996; Mettee et al., 1996).

Assemblages were characterized using sensitive taxa metrics,
multi-metric indices, and ordination analyses. Macroinvertebrate
assemblages were characterized using richness of Ephemeroptera,
Plecoptera, and Trichoptera (EPT) orders and the Invertebrate
Community Index (ICI; OH EPA 1989). The ICI is a tool for assessing
invertebrate assemblage health based on 10 metrics of inverte-
brate richness and community structure (see Roy et al., 2003 for a
full list of metrics). The ICI calculation excluded one metric, percent
predatory Chironomidae composition, because it was non-
normally distributed and added no useful information to ICI score.
Fish assemblages were characterized using an index of homo-
genization (the ratio of endemic species to endemic + cosmopo-
litan species richness, E/E + C, Walters et al., 2003a) and an index of
biotic integrity (IBI) for the Piedmont portion of the Coosa River
system (including the Etowah basin, Georgia Department of
Natural Resources, 2005). Low values for the homogenization
index indicated dominance by cosmopolitan species and a high
degree of homogenization. The IBI is a tool for assessing fish health
based on eight metrics of richness (e.g., number of native species),
seven metrics of community structure (e.g., relative abundance of
Lepomis species) and fish abundance.

Axis scores from non-metric multidimensional scaling (NMDS)
analysis were used as objective measures of macroinvertebrate
and fish assemblage structure. Analyses were performed with PC-
ORD (Version 4.1, MjM Software Design, Glenden Beach, OR, USA).
For macroinvertebrates, we used habitat-weighted densities,
calculated by multiplying macroinvertebrate densities by the
proportion of habitat present at each site (Roy et al., 2003). Density
data were transformed (log10(x + 1)) and rare species (i.e., present
at one site or density<0.01 individuals m�2) were excluded. NMDS
analysis on fishes used transformed (x0.25) abundance data and
rare species (present at <10% of sites) were excluded (Walters
et al., 2003b). We used the inverse of invertebrate axes 1 and 2
(Inverts A1 and A2), which explained 78.1 and 10.6% of variation in
assemblages across sites, respectively, and responded negatively to
disturbance. We used fish axis 2 (Fish A2, 46% variance explained)
and the inverse of fish axis 3 (Fish A3, 35% variance explained) as
descriptors of fish integrity.

2.6. Statistical analyses

All predictor (i.e., independent) and response (i.e., dependent)
variables were tested for normality with the Komolgorov–
Smirnov (KS) test using SigmaStat 2.03 (SPSS Inc., Chicago, IL,
USA) and transformed, when necessary. In total, there were 45
land cover, 115 geomorphology, and 12 water quality variables.
We used Pearson correlation analysis to screen the large sets of
predictor variables and exclude highly correlated variables (i.e.,
Pearson’s jrj > 0.80) within categories of land cover, geomorphol-
ogy, and water quality (Supplementary Material, Table 2). If
variables were correlated, we retained the variables that were
identified in previous publications as important predictors of fish
and macroinvertebrate assemblages (Parisi, 2001; Roy et al.,
2003; Walters et al., 2003a,b, 2005). To further reduce geomorphic
variables to�30, we excluded variables that were (1) derived from
other variables in the remaining list (e.g., ruggedness, which is a
product of drainage density and total relief), (2) components of
other variables (e.g., % silt plus clay in riffles, which is included
within % fines in riffles), or (3) largely redundant with other
variables (e.g., pool, riffle, and glide depth at baseflow were
excluded while average depth at baseflow remained). The reduced
sets of land cover (n = 27), geomorphology (n = 30), and water
quality variables (n = 12) were then correlated against fish and
macroinvertebrate response variables to determine the best
predictors of assemblage attributes.

We used multiple linear regression (MLR) analysis with a
forward, stepwise selection procedure to determine the best
models for predicting each response variable, and compare the
predictive ability of models which included the best variables (‘‘full
models’’), relatively easy-to-collect variables (‘‘reduced models’’),
and variables derived exclusively from GIS (‘‘simple models’’).
First, we ran MLR for the separate variable sets (land cover,
geomorphology, and water quality) to identify the most important
variables in the models and select those variables for inclusion into
the full model set (n = 30 variables). Variables that explained <6%
of the variation in assemblage descriptors and were never in the
top three variables in any model were excluded. Then, variables
from the full set that were relatively intensive to collect (e.g.,
required more than one field visit) or analyze in the laboratory
(e.g., water chemistry) were replaced by variables that were
correlated with these and relatively easier to collect in order to
construct the reduced model set (n = 24 variables). Finally, a simple
model set was created that only included land cover and
morphometry variables that were derived from digital topographic
map data (n = 28 variables). For the simple model set, we again
screened variables to ensure that variables were not highly
correlated (jrj < 0.80), and we also excluded derivative, forest
subcategories (deciduous, evergreen, and mixed) to obtain <30
variables for MLR. We compared the adjusted R2 values of the
separate models (limited to three predictor variables) to determine
whether variables with minimal cost and effort could effectively
predict biotic integrity. Correlation and MLR analyses were
performed using JMP Version 5 (SAS Institute Inc., Cary, NC, USA).

3. Results

Land cover variables explained up to 66% of the variation in
macroinvertebrates (urban vs. invert A1, r = �0.81) and 46% of



Table 1
Best bivariate predictors of invertebrate and fish assemblage descriptors. Only Pearson’s correlation coefficients (r) with p < 0.001 are shown. n = 31 sites except n = 29 sites

for water quality variables in italics. Sed. = suspended sediment. Land cover variables were assessed at the catchment (C), network (N), and riparian (R) scale (see Section 2).

Descriptions of predictor variables are provided in Supplementary Material, Table 1.

Predictors Invertebrate descriptors Fish descriptors

ICI EPT Invert A1 Invert A2 IBI E:E + C Fish A2 Fish A3

Land cover

Urban

Urban (C) �0.73 �0.64 �0.81 – – �0.58 – –

High-density urban (R) – – – – – – – –

Low-density urban (R) – – – – – – – –

Forest

Forest (C) 0.61 0.56 0.63 – 0.59 0.66 0.60 –

Forest (R) – – – – – – 0.56 –

Forest (N) 0.64 0.61 0.65 – – 0.68 0.61 –

Deciduous forest (C) – – – – – – – –

Deciduous forest (R) – – – – – – – –

Evergreen forest (C) – – – – – – – –

Evergreen forest (R) – – – – – – – –

Mixed forest (C) – – – – – – – –

Mixed forest (R) – – – 0.60 – – – –

Agriculture

Agriculture (C) – – – – – – – –

Cultivated (C) – – – – – – – –

Cultivated (R) – – – – – – – –

Cultivated (N) – – – – – – – –

Cropland (R) – – – – – – – –

Golf course (C) – – – – – – – –

Golf course (R) – – – – – – – –

Water

Water (C) – – – – – – – –

Water (R) – – – – – – – –

Water (N) – – – – – �0.66 – –

Ponds (C) – – – – – – – �0.56

Pond density (C) �0.67 �0.65 – – – �0.57 – –

Pond density (>1 ha), (C) – – – – – �0.56 – –

Index

Road density (C) – �0.59 �0.60 – – – – –

Disturbed land index (C) – – – – – – – �0.56

Geomorphology

Morphometry (GIS)

Drainage area – – – – – – – –

Compactness – – – – – – – –

Drainage density – – – – – – – –

Total relief – – – – – – – –

Local relief 0.60 0.61 0.72 – – – – –

Trunk stream slope – – – – – 0.64 – –

Map slope – – – 0.67 – 0.63 – 0.70

Erosion index – – – – – – – –

Channel morphology

Slope – – – 0.71 – 0.71 0.61 –

Sinuosity – – – – – – – –

Riffle – – – – – – – –

Pool – – – – – – – –

Glide – – – – – �0.56 – –

Entrenchment ratio – – – – – – – –

Baseflow width – – – – 0.57 – – –

Baseflow depth – – – – – – – –

Baseflow width:depth – – – – – – – –

Bankfull width:depth – – – – – – – –

Depth variability (t)a – – – – 0.65 – 0.64 –

Depth variability (c)a – – – – – – – –

Baseflow Q – 0.56 – – – – – –

Bankfull Q – – – – 0.56 – – –

Stream power – – – – – – 0.71 –

Large wood – – – – – – – –

Sedimentology

Bedrock – – – 0.56 – – – –

Bed texture variability – – – 0.58 – – – –

Riffle bed texture – – – �0.60 – �0.67 �0.72 –

Fines in riffles �0.70 �0.56 � �0.81 – �0.69 �0.65 –

Embeddedness �0.65 �0.56 �0.56 �0.67 – �0.79 �0.75 –

Bed mobility – – – �0.63 – �0.78 �0.63 –
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Table 1 (Continued )

Predictors Invertebrate descriptors Fish descriptors

ICI EPT Invert A1 Invert A2 IBI E:E + C Fish A2 Fish A3

Water quality

Chemistry

SRP �0.59 – – – – – – –

NH4
+ – �0.59 �0.68 � �0.73 �0.73 �0.82 –

NO3
� + NO2

� – – – – – – – –

DO 0.60 0.56 – – – 0.67 0.68 –

Conductivity �0.70 �0.71 �0.64 – – – – –

pH – – – – – – – –

Sed.

Turbidity – – – – �0.66 �0.74 �0.69 –

TSS – – – – – �0.61 – –

Temperature

Baseflow temp �0.64 – – �0.60 – – – �0.59

Annual temp – – – – – – – –

Summer temp – – – – – – – �0.60

Winter temp – – – – – – – –

a Depth variability was assessed for the thalweg (t) and entire channel (c).
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the variation in fishes (forest network riparian vs. E:E + C,
r = 0.68, Table 1). Urban land cover at the catchment scale was
consistently among the best predictors of macroinvertebrate
descriptors, and was negatively correlated with ICI, EPT, and
Invert A1. Pond and road density were also negatively correlated
with macroinvertebrate descriptors whereas forest cover
assessed at catchment and riparian scales was positively related
to these descriptors. Fish descriptors generally showed weaker
relationships with land cover compared with macroinvertebrate
variables. Forest cover at the catchment and riparian scale was
among the best predictors and was positively correlated with
IBI, E:E + C, and Fish A2. The degree of pond construction
(pond density, number, and open water in the riparian zone)
was negatively correlated with fish descriptors. In contrast to
macroinvertebrates, fish variables were largely uncorrelated
Table 2
Multiple linear regression analysis models (stepwise procedure, forward selection, p < 0.

and water quality. Adjusted R2 and F values are reported for�3-variable models (i.e., pre

network (N), and riparian (R) scale (see Section 2).

Descriptors Predictors

Land cover

ICI �Urban (C), �pond density (C), �deciduous forest (C),

EPT �Pond density (C), �urban (C)

Invert A1 �Urban (C), +mixed forest (R)

Invert A2 +Mixed forest (R), �ponds (C)

IBI +Forest (C), �ponds (C)

E:E + C +Forest (N), +road density (C), �water (N), +water (C)

Fish A2 +Forest (N), +mixed forest (R), �ponds (C)

Fish A3 �Disturbed land index (C), �ponds (C), �deciduous for

Geomorphology

ICI �Fines in riffles, +local relief, +large wood, +bedrock

EPT +Local relief, +entrenchment ratio

Invert A1 +Local relief

Invert A2 �Fines in riffles, +map slope, �trunk stream slope

IBI +Depth variability (t), +bankfull Q, +local relief

E:E + C �Embeddedness, +map slope, +local relief, +slope

Fish A2 �Embeddedness, +baseflow Q, �pool

Fish A3 +Map slope, �erosion index, �pool, +trunk stream slope

Water quality

ICI �SC, +DO

EPT �SC, +pH

Invert A1 �SC, �turbidity

Invert A2 �Baseflow temp

IBI �Turbidity

E:E + C �Turbidity, �baseflow temp

Fish A2 �Turbidity, +DO

Fish A3 �Baseflow temp
with urban land cover (except E:E + C) at the p < 0.001 level.
Agriculture land cover variables were not strongly related to
macroinvertebrate or fish descriptors.

The strongest geomorphic predictors of macroinvertebrate
descriptors were local relief (+) and sediment characteristics
(fines in riffles (�) and embeddedness (�); Table 1). Compared
with other macroinvertebrate descriptors, Invert A3 was
strongly predicted by the highest number of geomorphic
variables (8), including slope, bed texture, and bed mobility.
Two fish variables were also strongly predicted by numerous
geomorphic variables, E:E + C (8 correlations with p < 0.001)
and Fish A2 (7 correlations). Embeddedness (�), bed mobility
(�), riffle bed texture (�), stream power (+), and stream gradient
(+) were among the strongest predictors of fish descriptors.
Measures of stream size (e.g., drainage area, width, depth, and
05) for invertebrate and fish assemblage descriptors for land cover, geomorphology,

dictors in italics excluded). Land cover variables were assessed at the catchment (C),

Adj. R2 F value

+agriculture (C), +water (R) 0.69 22.8

0.52 17.0

0.70 35.2

0.47 14.0

0.41 11.2

0.58 15.1

0.50 11.2

est (R) 0.58 14.7

0.66 20.1

0.56 20.3

0.51 31.9

0.79 37.8

0.58 14.9

0.74 29.2

0.74 28.8

, +large wood 0.60 16.1

0.52 17.5

0.56 20.3

0.50 16.2

0.34 16.5

0.41 22.2

0.66 30.0

0.60 23.6

0.33 15.5



D.M. Walters et al. / Ecological Indicators 9 (2009) 1222–12331228
discharge) were generally poor predictors of macroinvertebrate
and fish descriptors.

The strongest water quality predictor of macroinvertebrate
descriptors was conductivity, which was negatively correlated
with ICI, EPT, and Invert A1 (Table 1). Dissolved oxygen (DO, +), and
NH4

+ (�) were also consistent predictors of macroinvertebrates.
Fishes were most strongly correlated with NH4

+ (�) but were also
consistently predicted by turbidity (�) and DO (+). Stream
temperature variables were weak predictors except for baseflow
temperature, which was negatively correlated with ICI, Invert A1,
and Fish A2. Macroinvertebrates and fishes were uncorrelated with
NO3

� + NO2
�, pH, annual temperature, and winter temperature at

p < 0.001.
Multiple linear regression models using land cover, geomor-

phology, and water quality variable sets generally confirmed
results of bivariate analysis in terms of key environmental
predictors and their scale of measurement (Table 2). Land cover
models explained 41–70% of the variance in descriptors, and were
strongest for macroinvertebrate descriptors (ICI and Invert A1).
The primary predictors for macroinvertebrates were urban land
cover, pond density, and (to a lesser extent) forest and agriculture
cover. Catchment-scale variables were more important than
network- and riparian-scale variables among macroinvertebrate
descriptors. Fish descriptors were primarily related to forest cover
assessed at the catchment and riparian network spatial scales, with
variables describing open water emerging as secondary predictors.
The exception was Fish A3, which was best predicted by the
disturbed land index.
Table 3
Multiple linear regression models (stepwise procedure, forward selection, p < 0.05) for in

simple (least cost and effort) model sets. Land cover variables were assessed at the ca

Full Reduced

Predictors Partial r2 Adj. R2 F value Predictors Part

ICI

�Urban (C) 0.54 0.77 34.0 �Urban (C) 0.54

�Fines in riffles 0.19 +Embeddedness 0.12

+Large wood 0.07 �Decid. forest (C) 0.08

EPT

�Conductivity 0.51 0.73 28.6 �Pond density (C) 0.43

+Local relief 0.18 +Local relief 0.15

+Bankfull Q 0.07

Invert A1

�Urban (C) 0.66 0.78 36.5 �Urban (C) 0.66

+Large wood 0.07 +Map slope 0.07

+Map slope 0.07 +Baseflow Q 0.09

Invert A2

�Fines in riffles 0.66 0.79 39.6 �Embeddedness 0.46

+Map slope 0.12 +Map slope 0.16

�pH 0.04 +Mixed forest (R) 0.08

IBI

�Turbidity 0.43 0.63 18.4 +Forest (C) 0.35

+Bankfull Q 0.18 +Baseflow Q 0.10

+Depth variability (t) 0.06 �Embeddedness 0.08

E:E + C

�Embeddedness 0.62 0.78 36.8 �Embeddedness 0.62

�Turbidity 0.10 +Map slope 0.09

+Map slope 0.09 +Forest (C) 0.09

Fish A2

�Embeddedness 0.57 0.74 28.8 �Embeddedness 0.57

+Baseflow Q 0.14 +Baseflow Q 0.14

�Pool 0.05 +Mixed forest (R) 0.04

Fish A3

+Map slope 0.49 0.81 43.1 +Map slope 0.49

�Disturbed land

index (C)

0.26 �Disturbed land

index (C)

0.26

�Pool 0.08
Geomorphology models explained 51–79% of the variance in
assemblage descriptors. Fines in riffles and local relief were the
primary predictors of macroinvertebrate descriptors, with stream
gradient, entrenchment ratio, large wood, and percent bedrock as
secondary predictors. The strongest macroinvertebrate model was
for Invert A2, confirming the bivariate results that this ordination
axis represents assemblage response to stream geomorphology,
rather than land cover. Fish descriptors were most strongly
predicted by embeddedness, variation in thalweg depth, and
various measures of stream gradient. Secondary predictors
included local relief, erosion index, bankfull discharge, percent
of pool habitat, and large woody debris. Pool was negatively
correlated with axes scores because low scores for both axes
described sites dominated by pool-dwelling species with general-
ized habitat requirements whereas sites with high axis scores were
dominated by benthic species specializing in riffle habitats. The
strongest geomorphic models among fish descriptors were for
E:E + C (R2 = 0.74) and Fish A2 (R2 = 0.74).

Water quality models explained 33–66% of the variance in
assemblage descriptors. Conductivity and temperature were the
primary predictors of macroinvertebrate descriptors, and DO, pH,
and turbidity were secondary predictors. Fish descriptors were
best predicted by turbidity and baseflow temperature, with DO as a
secondary predictor. Water quality models for both macroinverte-
brates and fish were typically weaker than land cover and
geomorphic models (see ICI and E:E + C; Fig. 2).

Full, three variable models explained a remarkably high
percentage of the variation in assemblage descriptors (73–81%),
vertebrate and fish descriptors based on full, reduced (minimal cost and effort), and

tchment (C), network (N), and riparian (R) scale (see Section 2).

Simple

ial r2 Adj. R2 F value Predictors Partial r2 Adj. R2 F value

0.71 25.1 �Urban (C) 0.54 0.68 22.6

�Pond density (C) 0.11

+Map slope 0.07

0.55 19.3 �Pond density (C) 0.43 0.63 17.7

+Local relief 0.15

+Agriculture (C) 0.08

0.79 38.6 �urban (C) 0.66 0.79 38.6

+Map slope 0.07

+Drainage area 0.09

0.66 20.3 +Map slope 0.45 0.43 23.6

0.48 10.4 +Forest (C) 0.35 0.49 10.5

+Drainage area 0.11

+Map slope 0.08

0.77 35.3 +Forest (N) 0.46 0.70 23.9

+Map slope 0.22

+Road density (C) 0.04

0.73 27.4 +Forest (N) 0.37 0.42 11.9

+Total relief 0.09

0.73 42.2 +Map slope 0.49 0.73 42.2

�Disturbed land

index (C)

0.26



Fig. 2. Predictive power (adjusted R2) of land cover, geomorphology, and water

quality models for the best-predicted descriptors of macroinvertebrate (ICI) and

fish (E:E + C) biotic integrity.
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except for fish IBI (R2 = 0.63; Table 3). These models always
equaled (two cases) or exceeded the predictive power of the
separate land cover, geomorphology, and water quality MLR
models. The top three variables selected in the stepwise
procedure always included variables across at least two
categories (land cover, geomorphology, or water quality). Urban
(�), fines in riffles (�), and large wood (+) were predictors in
multiple macroinvertebrate models, with urban as the top
predictor for ICI and Invert A2. Embeddedness (�) was the top
predictor in two fish models (E:E + C and Fish A2), with turbidity
(�), map slope (+), and pool (�) also predictors in multiple
models.

The reduced and simple models were weaker than full models
in most cases but many were surprisingly robust, explaining 48–
79% and 42–79% of the variance, respectively, among descriptors
(Table 3). Among measures of biotic integrity, reduced models
were substantially weaker than full models for EPT and IBI
(Fig. 3), and simple models generally had among the lowest
predictive ability. We also repeated the stepwise procedure
for reduced models including two easily collected (albeit
requiring multiple visits) water quality variables, conductivity
and turbidity (data not reported in tables). Conductivity entered
the EPT model and increased the variance explained from 55 to
71%, similar to the variance explained by the full model (73%).
Turbidity entered the IBI model, but only increased the variance
explained from 48 to 49%.
Fig. 3. Predictive power (adjusted R2) of full, reduced, and simple models for

selected macroinvertebrate and fish measures of biotic integrity.
4. Discussion

4.1. Predictive power and limitation of Etowah models

A major goal of stream ecologists and resource managers is to
predict the response of stream ecosystems to environmental factors
and human disturbances such as land use change. The Etowah data
showed relatively strong correlations between landscape com-
ponents and assemblage descriptors (R2 values of 0.63–0.81)
compared with similar studies that generally demonstrated
lower predictive capabilities (Richards et al., 1996; Roth et al.,
1996; Allan et al., 1997; Wang et al., 1997). We believe there are
several important reasons why our predictive capabilities are high.
First, the Etowah data set includes a wide range of physical and
biological conditions, which allows a full spectrum of possibilities
to be analyzed. Unlike studies that have been conducted in the
intensive agricultural landscapes (Richards et al., 1996; Roth et al.,
1996; Allan et al., 1997; Wang et al., 1997), the Etowah basin
contains fully forested to non-forested landscapes and a wide range
of urban to rural land uses. The topographic setting of the Etowah
basin also presents a wide range of variation, which broadens the
spectrum of the physical template shaping stream ecosystems.
Additionally, our variables were largely collected as continuous
data, which maximizes numerical precision, as opposed to lumping
observations into categories. Finally, some of the success of our
indicator models must be attributed to the fact that the study was
conducted within wadeable streams in a single river basin and
physiographic province. This eliminated potentially confounding
problems associated with scale, intra-basin, and regional differ-
ences in environmental setting and biotic assemblages, thus
allowing more emphasis to be placed on variation among landscape
components.

While the predictive power of many models was high, our
dataset and statistical analyses are not without limitations. First,
our sample size (n = 31 sites) is relatively large considering the
suite of intensively collected geomorphic variables (Walters
et al., 2003b), but it is small relative to the total number of
predictor variables considered. This is an inherent problem for
studies seeking to empirically link stream biological responses
to landscape and stream environmental variables. For example,
with advances in computing capabilities and increasing avail-
ability of digital spatial data, our ability to generate GIS-based
variables can quickly outpace our ability to sample sites. One
danger of having many more predictor variables than sites is
developing overspecified models that ‘‘over-explain’’ biological
descriptor variables. We took three steps to minimize this
threat. First, we used Pearson correlation analysis to screen
predictor variables and trim the dataset prior to modeling. This
reduced the number of variables and minimized potential
overspecification of models related to multicollinearity among
predictor variables. Second, we limited the number of predictors
in model sets so that n of predictors was less than n of sites
(Draper and Smith, 1998). Third, we arbitrarily limited the
number of variables in multiple linear regression models to
three when reporting R2 and F values to reduce overspecification
of models. Another drawback of our models is that they were not
validated by comparing predicted values from environmental
variables with observed values of biotic descriptors from sites
not used to build the models. Thus, even though predictive
power of some models was high, they must be tested with
additional data prior to application. In spite of these short-
comings, the modeling approach we used was reasonable and
conservative for achieving our main objectives of (1) identifying
environmental indicators of stream assemblage integrity and (2)
comparing the predictive power of variables that vary in their
difficulty of collection.
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4.2. Key indicators and their roles as stressors to stream biota

The indicators that we identified represent broader landscape
components that should be considered in the context of physical
and chemical stressors on stream communities. Key landscape
components (land cover, morphometry, channel morphometry,
sedimentology, and water quality) identified in this study are
expected to vary considerably in respect to their status as stressors
to stream ecosystems. Many of these indicators were correlated
with other environmental variables (Supplementary Material,
Table 2), so we must be cautious in overemphasizing or
interpreting the biotic response to individual variables. However,
those variables that we highlight here were consistent predictors
of biotic assemblages, and may have broader applicability to other
river basins or ecoregions.

Land cover was a significant predictor of assemblage descrip-
tors, as it is the source of a suite of reach-scale physical and
chemical stressors which, in turn, affect biota. Urban land cover is a
proxy for altered hydrology, habitat, and water quality (Paul and
Meyer, 2001; Walsh et al., 2005) that affect stream assemblages at
the reach scale, leading to predictable changes in assemblage traits
in Etowah River basin streams. Likewise, deforestation is a proxy
for general disturbance (riparian forest loss and excessive
sedimentation) in these naturally forested systems. In particular,
deforestation and urban development are linked to higher
turbidity and increasing fines on streambeds (Walters et al.,
2003a; Price and Leigh, 2006a,b), both of which were strong
predictors of biotic assemblages in this study. We also found that
variables related to pond development were strong predictors of
assemblage descriptors. We view these artificial impoundments as
proxies for many sorts of stresses to aquatic ecosystems, because
they represent signs of agricultural and urban development. They
are typically associated with livestock within and close to the
stream, and they directly affect water temperature, chemical
conditions, and connectivity of stream systems (e.g., Maxted et al.,
2005). Impoundments are also one of the easiest land cover
indicators to measure because water has a very distinctive
signature on Landsat images and thus exhibits high levels of
accuracy and reproducibility.

Morphometry is a static variable over timescales of thousands
to millions of years (Ritter et al., 1995) that cannot be signi-
ficantly influenced by humans. Thus, we do not consider it as a
stressor to biota, but rather as an inherent template of the
landscape that influences biotic assemblages. For instance,
catchment-wide geomorphic variables are important elements
of the bedrock and topographic template that ultimately influ-
ence channel form and sedimentology (Montgomery, 1999).
Morphometry variables typically resulted as secondary predic-
tors in our models, but were particularly useful for improving the
predictive capabilities of simple models that relied solely on
remotely sensed and map data. We identified local relief and map
slope as key indicators. Local relief and stream gradient exert
strong influences on the localized morphology of the stream
reach and physical processes operating within it. Rugged, high
relief terrain is most conducive to a high frequency of riffles and
shoals that tend to favor both high levels of habitat quality and
habitat heterogeneity (Leigh et al., 2002; Walters et al., 2003a,
2005; Fitzpatrick et al., 2005). Biotic assemblages in such streams
in the Etowah River basin tend to have high species richness as
well as endemic fishes and sensitive macroinvertebrates that are
positive indicators of biotic integrity (Roy et al., 2003; Walters
et al., 2003a). Stream size was generally found to be a minor
indicator compared with other variables (channel morphology,
sedimentology, and land cover) that have little or no relationship
with stream size, likely due to the narrow range in size among
catchments in our study (11–126 km2).
Channel morphology is an indicator category that may or may
not be linked with human disturbance, depending upon the
variable under consideration. Stream slope, depth variability,
width, entrenchment ratio, stream power, discharge, and large
wood were key indicators within the channel morphology
category. Even though stream slope was not always among the
strongest assemblage predictors, it is a critical channel morphol-
ogy variable to consider because it establishes the template for
velocity, stream power, and tractive forces that shape channel
morphology and is the key determinant of the particle size
composition on the streambed (Walters et al., 2003b). It is not
likely that land use has had much influence on channel slopes,
because many of our sites have their slopes controlled by bedrock
or they are in alluvial settings where no evidence for historical
changes in slope can be observed (Leigh et al., 2002). In general, we
do not view slope as a distinct stressor, but rather as a critical
element of the physical template influencing both assemblages
and habitats within these streams (Walters et al., 2003a,b, 2005).

Sedimentology, the particle size composition of the channel
bed, is an influential variable group for stream assemblages. Finer,
more embedded, and more mobile beds exhibited lower biotic
integrity and altered assemblage structure. Excessive sedimenta-
tion is widely viewed as a key stressor in stream ecosystems, and
the detrimental effects on macroinvertebrate and fish assemb-
lages (e.g., altered assemblage structure, increased drift, reduced
feeding, growth, and recruitment, and respiratory impairment) are
well documented (Waters, 1997). We previously documented the
strong effects of channel slope on particle size in Etowah streams
(Walters et al., 2003a), suggesting that sedimentology is mostly
determined by non-anthropogenic controls. Yet channel bed
sediment can be considered a stressor, at least in part, because
deforestation and urbanization are significantly related to
finer bed texture (e.g., fines in riffles, mean particle size, and
embeddedness) beyond the primary correlations with slope (Leigh
et al., 2002; Walters et al., 2003a). This suggests that that land
cover change has influenced the particle size composition of
streambeds to some extent, with subsequent negative effects on
stream biotic assemblages. Considering that bed texture indicators
are both simple to collect (requiring one field visit and minimal
laboratory processing) and are strong indicators of biotic condi-
tion, their value for predicting assemblage traits in Piedmont
streams cannot be overstated.

Declining water quality is an important stressor to stream
ecosystems, and some water quality variables may be more
directly linked to land use change than other stressor variables
we considered (e.g., catchment morphometry and channel
morphology). We found that specific conductivity was a strong
predictor of macroinvertebrate descriptors and that turbidity
was a strong indicator of fish descriptors. Elevated conductivity
has been previously linked to increased urbanization and altered
macroinvertebrate assemblages in other regions (Wang and Yin,
1997; Paul and Meyer, 2001; Kratzer et al., 2006) and in these
Etowah streams (Roy et al., 2003). Likewise, elevated stream
turbidity is linked to removal of native forest cover and other
land disturbing activities (Allan, 2004) and to altered fish
assemblages in these streams (Walters et al., 2003a) and other
systems in the southeastern highlands (Sutherland et al., 2002).
Streams of the Etowah are naturally low in conductivity due to
the underlying metamorphic geology and were reportedly clear
during low flow prior to human alteration of the landscape
(Burkhead et al., 1997). Since we detected elevated levels of
conductivity and turbidity during baseflow conditions, we view
them as indicators of chronic, long-term (i.e., press) disturbances
resulting from landscape alteration, as suggested by others for
the nearby Blue Ridge Mountains province (Bolstad and Swank,
1997; Price and Leigh, 2006a).
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4.3. Differential response of macroinvertebrate and fish descriptors to

environmental indicators

Macroinvertebrate and fish impairment were correlated with
different watershed and reach-scale stressors. Macroinvertebrate
descriptors were linked to changes in urban land cover, propagated
through water quality (e.g., conductivity) and sedimentology (%
fines in riffles). On the other hand, fish descriptors were more
closely tied to reach-scale variables including embeddedness and
turbidity, which were, in turn, related to reach-scale stream slope
(largely a natural factor) and forest cover. These results suggest
that macroinvertebrates are more sensitive than fishes to urban
effects in streams, at least in newly urbanizing systems. The
predictive models were robust across the various descriptors for
each assemblage, lending support to these causal pathways. Our
results coincide with previous studies of land use effect on
multiple biotic assemblages that indicate that macroinvertebrates
are more affected by chemical parameters (particularly sediment-
related contaminants) and depositional sediment, whereas fish
impairment is controlled by geomorphic and erosional (e.g.,
suspended sediment) alteration (Fitzpatrick et al., 2004; Burcher
et al., 2007; Carlisle et al., 2008).

Considering that macroinvertebrates and fishes vary in mor-
phological, behavioral, and life history traits, it is not surprising that
they have different sensitivities to various stressors. Studies that
sample multiple assemblages (e.g., fish, macroinvertebrates, and
diatoms) in streams have repeatedly documented different
responses to disturbances (Griffith et al., 2001; Triest et al., 2001;
Fitzpatrick et al., 2004; Passy et al., 2004; Burcher et al., 2007; Feio
et al., 2007; Carlisle et al., 2008). These patterns suggest that
complete and accurate assessment stream ecosystem condition
should include multiple assemblages. In fact, Carlisle et al. (2008)
reported that only half of the sites would have been considered
impaired if only one of the three assemblages (fish, macroinverte-
brates, or diatoms) were sampled. Furthermore, primary sources of
stream impairment may be missed by using a single assemblage
indicator. While combining multiple assemblages into a single index
has been recommended (Griffith et al., 2003), we argue that
sampling multiple assemblages and separately examining causal
pathways will lead to a better understanding of the multiple
mechanisms by which land cover impacts stream ecosystems. The
Table 4
Application of a tiered approach for assessing stream responses to land use change based o

1–3), variables that are more intensive, laborious, and relatively expensive to collect m

Tier Datasets required Manag

1 Land cover Identif

Morphometry Identif

Species distributionsa Identif

Guide

2 Land cover Monit

Morphometry Identifi

Easily collected geomorphology and

water quality variables (e.g., bed

texture and turbidity)

Assess

Biotic community data

3 Land cover Region

Morphometry Restor

Full geomorphic survey Evalua

Full water quality survey including

field measures and laboratory

analytical chemistry (e.g., nutrients)

Mecha

Hydrologyb

Develo

Biotic community data

a Spatial data not used in this study, but often readily available through state agenc
b Can be expanded to include a broader set of hydrologic variables than those consi
c Formal plans submitted to the U.S. Fish and Wildlife Service by private landowners, co

that might incidentally harm (or ‘‘take’’) endangered or threatened species protected u
suite of stressors will, in combination, provide the best indicators of
disturbance and, in turn, the most comprehensive management
recommendations.

4.4. Implementing environmental indicators into a management

framework: a tiered approach

One objective of this research was to compare the predictive
capability of indicators collected with minimal cost and effort to
those that are laborious or expensive to collect. To this end, we
modeled assemblage descriptors using simple, reduced, and full
model sets that included variables progressively more laborious
to collect (Gergel et al., 2002). Not surprisingly, the predictive
power tended to be highest for full models, intermediate for
reduced models, and least for simple models. However, many of
the reduced and simple models were quite robust (8 of 14
models explaining >66% of the variance among descriptors),
indicating that some ecosystem properties in urbanizing water-
sheds can be predicted well without the added expense of
intensive measurements.

Given our results, we suggest a tiered approach to modeling
stream response to land use change depending upon management
or research goals (Table 4). For example, a relatively simple and
inexpensive GIS-based modeling approach would be appropriate if
the management goals are to identify the likely degree of
impairment among sites or to identify at-risk populations of
sensitive or endemic species (Tier 1). As goals increase in complexity
or specificity (e.g., long-term monitoring of sites, identifying
incipient levels of biotic integrity loss), a minimal field effort is
needed to augment the simple variable set (Tier 2). This would
include biotic community geomorphology, and water quality
variables (e.g., bed texture and turbidity) that could be collected
in a single visit. Water quality sampling could be expanded to
increase temporal resolution of baseflow conditions (monthly or
quarterly site visits), but should still be limited to indicators like
turbidity or conductivity that are easily measured in the field. More
complex goals, such as restoring impaired streams, would require
collecting the full suite of geomorphic and water quality variables
considered in the full model set, particularly for studies focusing
on both fish and macroinvertebrate endpoints (Tier 3). Tailoring
study designs to meet these different goals would help managers
n management goals. As management goals become more complex or specific (Tiers

ay be required for modeling efforts.

ement goals

y areas where biotic integrity is severely compromised

y intact or minimally impaired systems (i.e., ‘‘reference’’ sites)

y at-risk populations of sensitive, protected or endemic species

development plans for local or regional planning commissions

oring

cation of incipient levels of decline for specific regions or watersheds

ment of temporal changes in stream habitat, water quality, or biotic assemblages

al assessment or condition studies

ation of impaired streams

tion of best management practice (BMP) implementation programs

nistic or experimental studies of land use effects on stream ecosystems
pment of Habitat conservation plansc

ies.

dered in this study.

rporations, states, or local governments who wish to conduct activities on their land

nder the Endangered Species Act.
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maximize financial and labor resources, a critical element of aquatic
resource management in an era of diminishing budgets.

5. Conclusions

In conclusion, it is appropriate to recall our two general research
questions concerning (1) how well stream biota can be predicted
from land cover, geomorphic, and water quality conditions, and (2)
how well variables collected with minimal cost and effort predict
assemblage integrity compared with variables that are more difficult
and expensive to collect. Our results clearly indicate that strong
predictions (R2 = 0.50–0.79 in most cases) of stream assemblages
can be made with separate multivariate models of either land cover,
geomorphic or water quality variables, but that the best models
(R2 = 0.63–0.81) involve a combination of these variables in order to
capture the full range of natural conditions and stressors structuring
stream assemblages. We were encouraged to find that predictive
power of our models remained high when using variables that were
relatively simple and inexpensive to collect. The Etowah River basin
was selected for this study because it contained a wide range of land
cover characteristics and a wide range of topographic variation;
thus, a reasonable level of regional applicability should exist.
However, tests of these models in other regions are necessary to
validate their general applicability. Even if the indicators we
identified lack applicability to certain regions, our general approach
of using multiple landscape components for modeling efforts and
adjusting the complexity and intensity of data collection efforts to
suit management goals provides a structured framework for
managing land use effects on stream ecosystems.
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