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Abstract: In this article we develop a methodology to test for changes in the underlying relationships between
measures of forest productivity (structural elements) and site characteristics, herein referred to as structural
changes, using standard forest inventories. Changes in measures of forest growing stock volume and number of
trees for both hardwood and softwood on forestland in North Carolina are evaluated using plot-level data
aggregated at both the state and survey unit level from the last three available completed Forest Inventory and
Analysis surveys using exploratory data analysis and nonparametric statistics. When the survey data are
aggregated at the state level, we accept the null hypothesis of no discernible between-survey differences in the
means of the forest productivity measures for at least 90% of the plots in each of the four models. We also accept
the null hypothesis of no discernible between-survey differences in the variance or higher moments of these
forest productivity measures for at least 82% of comparisons. At a finer scale, our results show that structural
stability is questionable in the Coastal Plain units of North Carolina. Overall, results provide evidence of some
structural change in the forests of North Carolina but do not address the causes of such changes. The systematic
comparison of forest inventories conducted in this article constitutes a new approach to testing for structural
changes in forest relationships, one that can be implemented as a monitoring protocol within standard repeated
forest inventories. FOR. SCI. 55(5):455–466.
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A PRINCIPLE OBJECTIVE of broad scale forest assess-
ments is to evaluate and anticipate changes in
forest conditions over time. An especially impor-

tant element of such an evaluation is the ability to distin-
guish between changes that are the result of the orderly
development of forests, e.g., aging, natural and management
disturbances, and natural succession, and those that might
arise from structural changes in forest production relation-
ships or conditions (Loehle and LeBlanc 1996, Franklin et
al. 2002). In particular, productivity measures of forest
stock such as standing volume and number of trees per
hectare can be viewed as structural elements of the forest,
and changes in these structural elements or structural
changes, conditioned on underlying landscape characteris-
tics, serve to indicate potential changes in forest and eco-
system processes. Structural changes could arise, e.g., from
climate alteration (Dixon et al. 1994) or nitrogen deposition
(Magill et al. 2000). They may provide important signals
regarding the long-term sustainability of forested ecosys-
tems, possibly indicating changes in the fundamental bio-
geochemical interactions that underlie ecosystem structure
and resilience and important implications for future man-
agement options (Franklin et al. 2002).

Assessing the future of forest conditions necessarily de-
pends on examining the structure and dynamics of the
ecosystem. An undisturbed ecosystem would naturally age
over time with well documented changes in age structure,
species mix, and associated understory (Shugart 2003). Dis-
turbance may be incorporated into known dynamics of an

ecosystem, e.g., fire in the longleaf pine (Pinus palustris
M.) type. Other changes may be due to episodic events,
anthropomorphic influences, or long-wave cycles that are
not necessarily part of observed ecosystem development.
An understanding of the nature of forest ecosystem dynam-
ics is important in assessment of likely future conditions. In
this article we attempt to empirically identify changes in
forests over time and distinguish between those that appear
to be consistent with historical patterns and those that may
be associated with a structural change in the underlying
dynamics.

The objectives of this article were to develop and apply
tests for structural changes in forest conditions using plot-
based surveys of forests, such as those conducted by the US
Forest Service Forest Inventory and Analysis Program
(FIA) (Miles et al. 2001). FIA surveys are designed to
construct temporally consistent estimates of a variety of
forest conditions for substate regions based on measure-
ments of site and tree variables at hundreds of plots within
each region. We chose to base our analysis on the FIA data
system because it is the only comprehensive survey of forest
vegetation conducted in the United States and provides a
sample with a large number of observations. The FIA da-
tabase contains individual state inventories that combine
photo-based classifications of land use and ground plot
measures. The ground samples are used to adjust photo-
based classifications for changes, provide adjustment to
photo-based classifications, and provide estimates of at-
tributes that cannot be determined from remotely acquired
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means (Miles et al. 2001). Because the FIA is a compre-
hensive and relatively stable program, tests for structural
change that can be implemented within the FIA framework
could provide a general approach for periodically evaluating
changes in the forests of the United States. Because similar
forest survey systems have been used in many other coun-
tries, these tests may have broader application.

Methods to test for structural change can provide a very
useful adjunct to the monitoring role of forest inventories.
Structural change analysis may indeed support important
meta-scale sustainability monitoring and forest health de-
tection within the standard reporting framework. Current
inventory reports focus on trends without tests for signifi-
cant change in biophysical relationships between surveys
(e.g., Conner and Hartsell 2002).

The general premise of our approach is that although
forests are highly diverse, complex, and dynamic terrestrial
ecosystems, index or structural element variables can be
used to characterize their important attributes. For example,
volume per hectare may serve as a useful indicator of forest
productivity. Here, we were not interested so much in
whether forest density measures have changed over time as
such changes are often explained by the simple aging of
forests. Rather, our objective was to investigate whether the
distribution of forest density measures associated with dif-
ferent forest conditions, including age, has changed. That is,
we ask whether the distribution of density measures, such as
volume per hectare, conditional on-site characteristics, has
changed.

To develop our tests for structural change we distinguish
between two types of variables in the FIA database. FIA
ground plots have been located randomly within a
6,000-acre hexagon (Bechtold and Scott 2005). Before 2000
these ground plots were inventoried periodically using a
variable-radius layout, whereas more recent inventories
used a standardized fixed-radius plot layout for sample tree
selection (Miles et al. 2001). The ground plots provide
observations on individual trees that enable predictions of
tree’s volume, growth rate, and other qualities, which are
summarized in the condition and individual tree records
within the FIA database. The remote-sensed classification
and area estimates are used to determine expansion factors
for the ground plots. State variables are those that define the
condition of each forest plot and include categorical vari-
ables such as physiographic region and broad management
class as well as continuous variables such as stand age and
site index. The other set of variables includes structural
variables that we seek to evaluate for change, e.g., the
volume of growing stock of hardwood and softwood trees or
the number of trees per hectare; these variables comprise
structural elements of the forest landscape. Our tests for
structural change ask whether or not the probability distri-
bution of a structural variable, conditioned on the state
variables, changes between surveys. This allows us to ac-
count for orderly changes in the inventory related to the
aging of forests and natural disturbances (i.e., changes in the
state variables between surveys) within the context of our
tests.

Constructing tests requires that we identify and summa-
rize the key relationships between state variables and struc-

tural variables across surveys. These relationships deter-
mine the subset of plots or groups of plots (i.e., bins of
plots) that are referred to in the computer science literature
as information sets. Then, the subsets of plots comprising a
modeled relationship between a structural variable and state
variables over time are further compared using statistical
evaluations. Our null hypothesis is that the bins of plots for
the aggregate inventories describe the observed data from
an individual survey; that is, the plots for each survey are
equivalent within bins, or the distribution of each structural
variable modeled over a landscape does not change between
repeated surveys. Our alternative hypothesis is that the
relationships between state and structural variables for an
individual survey are different; that is, a structural change
has occurred. We examine the distribution of each structural
variable over the landscape over time, as opposed to mul-
tivariate distributions of the structural variables, as the
former does not present the degree of difficulty in testing
and the expectation of change over time that the latter
would.

Because we have little a priori knowledge of the complex
relationship between structural and state variables, we use a
highly flexible exploratory data analysis approach and non-
parametric statistics to test hypotheses. We define the bins
of plots for a given structural variable over time by seg-
menting plots into homogeneous groups or bins determined
by values of the state variables using a regression tree. A
regression tree splits data into homogeneous groups or bins
without any a priori definition of functional form. This
technique is well-suited for our situation in which functional
relationships are uncertain, complex, nonlinear, and inter-
active, and it supports compact tests of our hypotheses
(Vayssières et al. 2000). A traditional model would test for
change in the value of regression coefficients between sur-
veys within the parametric model. Using the bins defined by
the regression tree for all inventories, we compare the
distributions of the structural variable in each bin for an
individual inventory t, t � 1, and t � 2 using Kolmogorov-
Smirnov (K-S) tests. The nonparametric approach may re-
duce the power of the resulting tests, but it is robust in the
face of little knowledge regarding the appropriate functional
form, i.e., a traditional statistical model would probably
introduce specification error to these tests.

In the remainder of this article we develop and apply
tests for structural changes using three inventories (1984,
1990, and 2002) for the State of North Carolina. North
Carolina is a good test case because it has experienced a
high rate of change in land use and many forest attributes
over this period compared with other states in the south-
eastern United States (Conner and Hartsell 2002, Wear
2002). Forest planting and intensive management as well as
the conversion of forest and agricultural land to developed
uses have altered forest landscapes. First, we describe the
data and the methods used to summarize forest inventories
for this study. Second, the regression tree approach is dis-
cussed. Third, we present results for four structural vari-
ables explored in this case study. Fourth, we discuss how
our nonparametric tests for structural change provide indi-
cators of change and conclude with additional hypotheses
regarding causative factors.
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Data

In the FIA, plots are systematically located across the
landscape in an area-frame survey. These plots are perma-
nently established and repeatedly measured over time. The
FIA data are used to assess forest conditions for substate
regions (called survey units) based on measurements of tree,
vegetation, and site characteristics for hundreds of plots
within each region. FIA forest inventories were conducted
on a periodic basis from the 1930s to the 1990s. Recently,
the US Forest Service has begun to phase in a continuous
inventory approach for most states in the United States that
surveys a portion of permanent plots every year. We use the
final three fully completed inventories for North Carolina
for our analysis. Permanent plots from three inventories of
the State of North Carolina (1984, 1990, and 2002) were
used to evaluate our methods. The survey design changed
between 1990 and 2002 in North Carolina, providing an-
other motivation for testing whether or not changes in
structural elements are revealed. By using our tests on
permanent sample plots, we can evaluate structural change
over time on forestland. Although the sampling methodol-
ogy has changed, the goal of developing these tests is to
examine change over time, which will eventually prove
useful in the new annual inventory framework.

FIA data are stored in tables, three of which are used for
our analysis (Miles et al. 2001). The plot, condition, and tree
tables provide information on the overall plot characteris-
tics, discrete landscape features, and measures associated
with individual trees larger than 1 inch in diameter, respec-

tively (Miles et al. 2001, p. 7). These data are extensive, and
thus some manipulations were performed on the raw data to
obtain values for the structural and state variables. The
analysis was completed using data from FIA Database Ver-
sions 1.7 and 2.1. The most current FIA Database, Version
3, was made available in June 2007; the variables used in
the subsequent analysis were compared and found to be
consistent among database versions. Data were summarized
at the plot level and then permanent plots were identified
that spanned each of the three inventory years.

For each plot, four structural variables, volume of grow-
ing stock trees, and number of growing stock trees for both
softwoods and hardwoods, were calculated on a per hectare
basis for forested plots to account for changes in survey
methodology over the years using algorithms derived from
those suggested in Miles et al. (2001). For example, plots in
the 2002 inventory were divided into condition class com-
ponents, that is, each plot may contain one or more condi-
tion classes (based on changes in land use, owner, and forest
type), and these needed to be expanded to define plot values
(Bechtold and Scott 2005). As a validation step we used
expansion factors to generate total values for survey units,
which could then be compared with published reports (see
Sheffield and Knight 1986, Johnson 1991, Brown 2004) and
confirm accuracy of the algorithms used in this analysis.
Growing stock volume and trees per hectare were delineated
by broad species type, i.e., softwood and hardwood, using
the species group variable recorded in the FIA database
(Table 1).

Table 1. Descriptive statistics of variables used in regression tree models and hypothesis tests analyses of North Carolina 1984,
1990, and 2002 FIA inventories

Name Variable definition Mean SD

State variables
STDAGE Average age of the trees in the predominant stand-size class of the condition 42.223 28.049
NPINE � 1 if broad management class is natural pine, 0 otherwise 0.209
PPINE � 1 if broad management class is planted pine, 0 otherwise 0.112
MPINE � 1 if broad management class is mixed pine, 0 otherwise 0.144
LHDWD � 1 if broad management class is lowland hardwood, 0 otherwise 0.141
UHDWD � 1 if broad management class is upland hardwood, 0 otherwise 0.393
SLOPE Average percent slope of the condition 12.297 18.342
ASPECT Predominant drainage direction (in degrees) from magnetic north for condition 108.267 113.416
XER � 1 if physiographic condition class is xeric, 0 otherwise 0.073
MES � 1 if physiographic condition class is mesic, 0 otherwise 0.799
HYD � 1 if physiographic condition class is hydric, 0 otherwise 0.128
PUBLIC � 1 if condition ownership group is public, 0 otherwise 0.146
PRIV � 1 if condition ownership group is private, 0 otherwise 0.854
SIQ1 � 1 for lowest site index quartile, 0 otherwise 0.276
SIQ2 � 1 for second lowest site index quartile, 0 otherwise 0.294
SIQ3 � 1 for second highest site index quartile, 0 otherwise 0.222
SIQ4 � 1 for highest site index quartile, 0 otherwise 0.208
D84 � 1 if assigned 1984 inventory plot attributes, 0 otherwise 0.342
D90 � 1 if assigned 1990 inventory plot attributes, 0 otherwise 0.322
D02 � 1 if assigned 2002 inventory plot attributes, 0 otherwise 0.335
SCP � 1 if survey unit is Southern coastal plain, 0 otherwise 0.269
NCP � 1 if survey unit is Northern coastal plain, 0 otherwise 0.250
PIED � 1 if survey unit is Piedmont, 0 otherwise 0.280
MTN � 1 if survey unit is Mountain, 0 otherwise 0.200

Structural variables
VSGSPH Volume of softwood growing stock per hectare (m3 � 1,000) 0.046 0.068
VHGSPH Volume of hardwood growing stock per hectare (m3 � 1,000) 0.076 0.099
TPHSW Number of softwood growing stock trees per hectare (� 1000) 1.129 1.064
TPHHW Number of hardwood growing stock trees per hectare (�1000) 0.368 0.669
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The possible state variables that resulted from combining
information from the plot, condition, and tree tables in the
FIA database were extensive and are summarized as follows
(Table 1). Forest type and stand origin were combined to
create a binary broad management class variable coinciding
with the definition in published reports (e.g., see Sheffield
and Knight 1986). These broad management classes are
based on forest type, stand origin, and stocking which must
be a minimum of 10% for all classes (Brown 2004). Planted
pine (PPINE) and natural pine (NPINE) are both classed as
pine or other softwood forest type and differ in that the
former is artificially regenerated by planting or direct seed-
ing, whereas the latter have not been artificially regenerated.
Mixed pine (MPINE) types are classed under the Oak/Pine
forest type group (Miles et al. 2001, p. 114). Upland hard-
wood (UHDWD) types are classed under the Oak/Hickory
or Maple/Beech/Birch forest type groups. Last, lowland
hardwood (LHDWD) types are classed under the
Oak/Gum/Cypress, Elm/Ash/Cottonwood, Tropical Hard-
woods, or Exotic Hardwoods forest type groups. The physi-
ographic condition class code variable was similarly con-
verted into binary dummy variables, which included xeric
(XER), mesic (MES), and hydric (HYD). The four substate
survey units were also used as state variables in the state-
level models and included binary variables for the presence
or absence in the Southern Coastal Plain (SCP), Northern
Coastal Plain (NCP), Piedmont (PIED), and Mountain
(MTN).

Because of variability in the recorded values of the site
index variable among the survey cycles, we determined
quartiles of the site index measure for the respective original
inventory year and assigned binary variables associated
with occurrence in a specific site index quartile; from lowest
to highest these are SIQ1, SIQ2, SIQ3, and SIQ4. This
variability in the recorded values of the site index variable
among survey cycles was a result of recording practices and
not a result of changes in base age used for determining this
site productivity measure. The 1984 site index is recorded
with a 10-unit difference in levels ranging from 35 to 125;
thus, the quartiles from lowest to highest contained the
following ranges: 35–65, 75, 85, and 95–125. The 1990 site
index also exhibits a 10-unit difference in recorded levels
ranging from 0 to 99, and the quartiles contain ranges of
0–60, 70, 80, and 90–99 from lowest to highest, respec-
tively. The site index in the 2002 survey is recorded on a
discrete basis ranging from 37 to 99, and the quartiles from
lowest to highest include the ranges of 37–68, 69–79,
80–88, and 89–99. The aspect (ASPECT) variable also
exhibited differences in recorded values between surveys.
Aspect was given a value of 400 for flat land in 2002 (Ali
Conner, pers. comm., US Forest Service–FIA, Oct. 20,
2005), and therefore we reassigned these occurrences a
value of zero to coincide with the prior two surveys. The
ownership group condition class variable was used to de-
termine whether the plot was publicly owned (PUBLIC) or
privately owned (PRIV), where the former included all
Forest Service, other federal, and state and local owner-
ships. The average percent slope (SLOPE) and total age of
the trees in the predominant stand-size class of the condition
(STDAGE) were also included as state variables.

To preserve temporal independence among samples and
avoid potential upward bias on condition sizes, the perma-
nent plots with records in each of the inventories were
summarized and selected for use in our analysis in the
following fashion. A single condition was randomly se-
lected for those permanent plots with multiple conditions in
the 2002 inventory. The resulting matching set of perma-
nent plots was composed of 2,845 plots and plot/conditions.
Plots ranged from approximately 17 to 3,676 hectares in
size. This set of permanent plots was then randomly as-
signed to an inventory year resulting in 974, 917, and 954
plots or plot/conditions on land delineated as forestland to
be used for analysis of the 1984 (D84), 1990 (D90), and
2002 (D02) North Carolina surveys, respectively, using a
binary coded variable for inventory year. Each resulting
permanent plot was assigned characteristics associated with
its representative year to be used in both the regression tree
construction and subsequent testing of higher distributional
moments. This assignment ensures temporal independence
among the three surveys—i.e., no permanent plot’s at-
tributes are derived from or associated with more than one
survey—and thus supports the underlying assumptions of
independent and identical distributions of the K-S test.

Methods
Regression Trees

We used regression tree analysis to construct the set of
bins of plots for each structural variable. This is a compact
description of how the probability distribution of the struc-
tural variable is influenced by the set of state variables. An
alternative approach to constructing this set of bins of plots
might be to construct regression equations for the structural
variables of interest. However, the complex relationship
between state and structural variables probably includes
discontinuities, nonlinearities, and complex variable inter-
actions that would give rise to specification problems for the
regression approach—i.e., we have no a priori guidance for
specifying the regression equations. Because it does not
impose a functional form a priori we used regression trees,
an exploratory modeling technique that has been used in
ecological analysis (Michaelsen et al. 1994, Andersen et al.
2000, De’ath and Fabricius 2000) and in analysis of forest
conditions (Byler et al. 1990, Iverson and Prasad 1998), to
construct a set of bins of plots for each structural variable
over time.

Regression tree methods use a recursive partitioning
algorithm to split a data set into homogeneous subgroups
using splitting rules (Therneau and Atkinson 1997). The
data set, which is referred to in tree terminology as the root
node, is initially split into two subsets based on the most
successful separation of high and low values of the depen-
dent variable using one of the explanatory (state) variables
(Breiman et al. 1984). The same methodology is applied to
each individual subset, recursively, until an ending condi-
tion is satisfied. Output consists of a summary of the rela-
tionship between the dependent structural variable and the
independent state variables, which can be presented in a
graphic format as a tree structure with branches and termi-
nal nodes.
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The partitioning of data into various subgroups is re-
ferred to as splitting. The decision rules defining a split can
be based on either a categorical variable (e.g., x � 0 or x �
1) or a continuous variable (x � k or x � k, where the
threshold k is selected by the algorithm) and are selected so
that the resulting subsets are as homogeneous as possible in
terms of the response, the mean of the dependent variable
(De’ath and Fabricius 2000). Regression trees use splitting
criteria based on the sum of squares about the group means
(Therneau and Atkinson 1997). Define the sum of squares
for the entire data set as

SST � �
i

�yi � y��2. (1)

The sum of squares for the daughter nodes, splits to the right
and left side of the tree, are defined as:

SSR � �
i

�yRi � y�R�2, (2a)

SSL � �
i

�yLi � y�L)2, (2b)

where y is the response, or dependent variable, which in this
case is either the per hectare volume of growing stock or the
number of growing stock trees per hectare. The split is
defined to maximize the reduction in the sum of squares
(max[SST � (SSR � SSL)]). The same logic is then applied
individually to the two resulting subsets on either side of the
initial split. The data are split into subsequent subsets until
the reduction in the sum of squares is minimal (see Breiman
et al. 1984 for a more thorough description of the algorithm
used).

The final regression tree defines groups of the survey

plots (for ranges of the state variables) that have distribu-
tions of the dependent structural variable that minimizes the
variance within each split (e.g., daughter node) while max-
imizing the variance between each split. Each subset is
defined by a terminal node of the resulting regression tree
(an example is Figure 1), constituting a bin of plots. The
structure of the regression tree itself is informative. It iden-
tifies the variables and their respective ranges that explain
variation in the structural variable. The degree of explana-
tory power or the share of reduction in total sum of squares
for each split is indicated by the relative depth of the branch
in the regression tree (e.g., Figure 1 shows that the binary
variable for occurrence in the natural pine management
class explains more variance in softwood growing stock
volume than any one of the other variables).

Regression trees were generated in the open source R
statistical programming platform using the RPART (Re-
gression PARTitioning) package (R Development Core
Team 2005, Therneau and Atkinson 2005). These methods
were used to produce compact bins of plots describing the
relationship between each of four dependent structural vari-
ables (volume of softwood or hardwood growing stock trees
per hectare or the number of softwood or hardwood growing
stock trees per hectare) and the independent state variables
(public or private owner, physiographic type, broad man-
agement class, stand age, slope, aspect, site index quartile,
survey unit, and survey year) using data from the three
survey years (1984, 1990, and 2002), randomly assigned, as
described previously. Regression tree models were gener-
ated at the state level and at the unit level, where the latter
analysis excluded the survey unit variables, to examine how

Figure 1. Regression tree relating softwood growing stock volume in North Carolina to various explanatory variables for
permanent plots randomly assigned to an inventory year (1984, 1990, and 2002) obtained with stopping complexity parameter set
to 0.005. Numbers at each terminal node are the mean cubic meters, in thousands, per hectare for plots in that bin and n indicates
the number of plots included. Branches or splits in the tree are defined by the listed splitting rule, sending plots where rule is true
to the left and where false to the right. For variable definitions see Table 1.
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this level of aggregation affected the resulting set of bins of
plots.

Comparing Bins of Plots

The bins of plots produced from regression tree models
are defined by the rules regarding the limits of the state
variables that define the terminal nodes—i.e., those that
minimize within-bin plot variance while maximizing be-
tween-bin plot variance. Our objective in this analysis was
to determine for each dependent (structural) variable
whether the plots for one survey year are significantly
different from those for the other survey years. Our null
hypothesis in estimating the regression trees is that there is
no discernible between-survey difference for each structural
variable. The alternative hypothesis is that regression trees
indicate a difference between survey years, i.e., a structural
change has occurred. We construct hypothesis tests in two
ways. The first is based on the structure of the regression
trees. If a binary survey year variable is present in the
regression tree as a splitting (state) variable, then this indi-
cates a discernible difference in the distribution of the
structural variable between surveys, i.e., rejection of the null
hypothesis for at least a subset of the inventory. We accept
the null hypothesis if survey year is not a splitting (explan-
atory) variable in the regression tree. However, the proba-
bility level of this hypothesis test is not determinant in the
way that a t test for an ordinary least-squares regression
would be. Rather it is related to the selection of the stopping
rule for the regression tree algorithm. This stopping rule
determines whether another split or further subsetting of the
structural variable is worth pursuing and can be adjusted.
We conduct some sensitivity analyses with the stopping rule
in the regression tree models, but this remains a weakness of
this hypothesis test. In the sensitivity analysis the stopping
rule, or complexity parameter, was relaxed to 0.001 for each
of the four structural variables modeled at the state level.
The 0.004 reduction in the stopping complexity parameter
resulted in a change in relative error, (1 � R2), for the
regression tree models of volume of softwood and hard-
wood growing stock trees per hectare of 0.07 and 0.09,
respectively. This same reduction in stopping complexity
parameter changed the relative error for the number of
softwood and hardwood growing stock trees per hectare
models by 0.06 and 0.15, respectively.

Our second test involves evaluating the data within each
final subset, bin of plots, produced from the estimated
regression tree. Recall that each data point (plot) falls within
a terminal node (bin of plots) and if a binary survey year
variable does not split the data, then each resulting bin
contains data (plots) from all 3 survey years. At each bin of
plots, we test the null hypothesis that there is no discernible
difference in the probability distribution of the structural
variables for a given survey compared with the distribution
of remaining surveys (alternate survey years). We use the
nonparametric K-S test, with a Bonferroni adjusted � ac-
cording to the number of comparisons made per plot bin,
e.g., �/number of comparisons (Rao 1998). The null hy-
pothesis is that the structural variable data for an individual
survey year within a bin of plots were generated from the

same distribution as that for the alternate inventory data set.
For each structural variable and for each inventory we
conduct a K-S test and use these results as an additional
gauge of the overall comparability of survey years. For
example, in the volume of softwood growing stock model
we compare 1984 versus 1990 and 2002, 1990 versus 2002
and 1984, and 2002 versus 1984 and 1990, for each bin of
plots. For each resulting K-S test, the probabilities were
compared with 0.0167, the adjusted �, unless there were
only two surveys present in a bin of plots. We compared the
proportion of bin comparisons and the proportion of the
total structural variable measured in a survey year for which
the null hypotheses of identical distributions are rejected for
each model.

This is a more general test than presence of a survey year
variable as a splitting variable in the estimated regression
trees. The regression tree algorithm maximizes the sum of
square difference between bins of plots while minimizing
the within-bin sum of squares difference in the structural
variable modeled. Thus, a survey year is used as a splitting
variable when these criteria are met. The K-S test is then
used to address correspondence of the distributions of these
data within each bin of plots; thereby identifying cases for
which the means may be comparable across the survey
years, but for which variances (or higher order moments)
may be discernibly different. It should be noted that the
following results are based on a specific subset of measures
of forest conditions, specifically growing stock trees, and
different results may be obtained using alternate measures
of forest condition.

Results

Permanent plots present in the three most recent com-
pleted surveys of forest conditions for North Carolina
(1984, 1990, and 2002) conducted by the US Forest Service
FIA program were analyzed using regression trees. The data
were summarized at the plot level, and plots were analyzed
first for the state as a whole and then for each of the four
survey units in North Carolina.

Regression Trees and Resulting Bins of Plots

For the state as a whole, regression tree estimates indi-
cated that 66% of the variation in permanent plot measures
of softwood growing stock volume (1,000 m3 ha�1) is ex-
plained by differences in (1) broad management classes, (2)
stand age groups, (3) site quality as measured by site index
quartiles, (4) physiographic type, and (5) survey year (Fig-
ure 1). Regression trees were estimated with a stopping
complexity parameter of 0.005. Whether or not the plot is in
a natural pine management class is the first splitting variable
for the data set and the length of the branch indicates that
this variable explains a majority of the variation in softwood
growing stock volume. The next level of splits is defined by
other management classes or stand age. Natural pine plots
(the right split in Figure 1) are initially split into three age
groups (�17, 17–22, and �23). The natural pine plots older
than 23 years are then split according to site quality (SIQ �
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1, SIQ � 2, and SIQ � 3, 4). For all other broad manage-
ment classes, i.e., not natural pine, the left split in Figure 1,
the regression tree, separates plots based on other manage-
ment classes, age, and site index. Upland hardwood forest
plots are initially split off on the left (Figure 1). The re-
maining lowland hardwood, mixed pine, and planted pine
classes are split by age. Younger plots (�13 years) of these
classes have the lowest average volume of softwood grow-
ing stock per hectare. Mixed pine and planted pine plots are
further split by age. Lowland hardwood plots are further
split according to site quality (SIQ � or � 4).

For hardwood growing stock volume, differences in (1)
stand age, (2) broad management classes, (3) site quality,
(4) aspect, and (5) survey year explain 48% of the variation
in plot measures of the dependent variable. Stand age ex-
plains the most variation in hardwood growing stock vol-
ume, indicated by its position and relative length of the
branch in the regression tree (Figure 2). The next level of
splits is defined by management class or stand age. After the
right split in Figure 2, whether or not the plot is in a natural
pine management class is the second splitting variable for
older stands (�43). Hardwood, mixed pine, and planted
pine plots are split according to site quality (SIQ � 1, 2, 3
or SIQ � 4). Hardwood plots with stand ages from 55 to 71
years on mid-quality sites with northeast aspects in the 2002
inventory have the highest average growing stock per hect-
are of the bins in this regression tree model. After the left
split in Figure 2, the plots are further split according to age.
Plots with stand age �26 years on nonprime quality sites
(SIQ � 4) have the lowest average volume of hardwood
growing stock per hectare. Plots aged 27–42 years are split

according to management class (pine/mixed pine, lowland
hardwood, and upland hardwood).

With the number of growing stock trees (thousands) per
hectare as the dependent measure of forest structure, the
regression trees have starting points similar to those deter-
mined for the volume of growing stock trees per hectare
(Figures 3 and 4). Also, when the splits among the two
structural measures for softwood and hardwood (growing
stock volume and number of trees) are compared, stand age
appears as a splitting variable an equal number of times for
each broad species class measure. However, splits in the
regression trees modeling the number of trees per hectare
seem to be less balanced than those conducted on the
measures of growing stock volume, in that splits seem to
move more to the right. Also, one variable does not domi-
nate in the explanation of variance when the number of
growing stock trees per hectare is measured. For instance,
upland hardwood and lowland hardwood management
classes explain an amount of variation similar to that of the
natural pine management class when one is comparing the
regression tree analysis of the number and volume of soft-
wood growing stock trees per hectare, respectively.

For the number of softwood growing stock trees per
hectare as the dependent structural variable, the upland
hardwood and lowland hardwood management classes ex-
plain relatively similar proportions of variation, as indicated
by the length of the splits (Figure 3). Overall, differences in
(1) management class, (2) stand age, (3) site quality, (4)
survey year, (5) survey unit, (6) slope, and (7) aspect
explain approximately 49% of the variation in this state
variable. Pine plots are split by differences in all of the

Figure 2. Regression tree relating hardwood growing stock volume (cubic meters, in thousands) per hectare in North Carolina to
various explanatory variables for permanent plots randomly assigned to an inventory year (1984, 1990, and 2002) obtained with
stopping complexity parameter set to 0.005. Variable definitions are found in Table 1.
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above characteristics, whereas hardwood types are split only
according to management class. Mixed pine, natural pine,

and planted pine plots are split into three, five, and seven
age groups, respectively. The bins with the lowest and

Figure 3. Regression tree relating number of softwood growing stock trees (in thousands) per hectare in North Carolina to various
explanatory variables for permanent plots randomly assigned to an inventory year (1984, 1990, and 2002) obtained with stopping
complexity parameter set to 0.005. Branches or splits in the tree are defined by the listed splitting rule, sending plots where rule is
true to the left and where false to the right. Variable definitions are found in Table 1.

Figure 4. Regression tree relating number of hardwood growing stock trees (in thousands) per hectare in
North Carolina to various explanatory variables for permanent plots randomly assigned to an inventory
year (1984, 1990, and 2002) obtained with stopping complexity parameter set to 0.005. For variable
definitions see Table 1.

462 Forest Science 55(5) 2009



highest average number of trees per hectare in this regres-
sion tree model are found on lowland hardwood plots and
1990 Northern Coastal Plain planted pine plots aged 14–19
years, respectively.

For the number of hardwood growing stock trees per
hectare, differences in (1) stand age, (2) management class,
(3) slope, (4) site quality, and (5) survey unit explained only
17% of plot variation measures of the dependent variable.
Very young (�5 years) and very old plots (�38 years) are
not subsequently split according to management class; how-
ever, the oldest plots are split according to slope (Figure 4).
Plots with stand ages in the 5–37 year range are split
according to type (planted pine or natural pine), and mixed
pine, upland, and lowland hardwood classes are split into
three distinct age groups (6–7, 8–24, and 25–37 years),
with the middle age range split on management class. Up-
land hardwood plots in the 8–24 year age range possess the
highest average number of trees per hectare in this regres-
sion tree model.

Tests for Structural Change

Survey year appears as a splitting variable in all of the
four state-level regression trees, and in all cases a small
portion (�10%) of additional variation is explained by the
inclusion of survey year as a splitting variable. For the
volume of softwood growing stock, the variable indicating
presence or absence of a plot in the 1984 inventory occurs
toward the bottom of the regression tree and indicates a
structural change for only 5% (136 of 2,845) of the plots
(Figure 1). Similarly, for volume of hardwood growing
stock a structural change is indicated for only 4% (107 of
2,845) of the plots by the presence of the 2002 inventory as
a splitting variable toward the bottom of the regression tree
(Figure 2). For the number of softwood growing stock trees,
the presence or absence of plot attributes resulting from the
1990 inventory indicates a structural change for 6% of the
plots (164 of 2,845) (Figure 3). Last, for the number of
hardwood growing stock trees, a structural change is indi-
cated for 10% of the plots (272 of 2,845) by the presence of
the 1990 survey year dummy as a splitting variable in the
resulting regression tree (Figure 4). We therefore accept the
null hypothesis of no structural change based on the regres-
sion tree results for 95 and 96% of plots for the volume of
softwood and hardwood growing stock per hectare. For the
number of softwood and hardwood growing stock trees, we
accept the null hypothesis for 94 and 90% of the plots.

Based on the K-S test at the 5% significance level

adjusted according to the Bonferroni correction using the
number of comparisons made per bin of plots, the hypoth-
esis of equivalent softwood growing stock volume distribu-
tions is rejected for approximately 2% of the bin compari-
sons using the structure of the state-level regression tree
(Table 2). For the 1984 inventory, plot distribution in 1 of
the 18 resulting bins containing older mixed pine plots on
lower quality sites is significantly different from the set
comprising the two alternate inventories. This is the only
case at the state level of significant differences among
survey years within bins of plots for the model of the
structural variable volume of softwood growing stock,
whereas for hardwood growing stock volume, the null hy-
pothesis of equivalent information sets is rejected for 7% of
bin comparisons. For both the 1990 and 2002 inventories,
plots in at least 1 of the 16 bins are significantly different
from the multiyear set of alternate inventories (Table 3). For
both, significant differences in the distribution of plots were
found for the youngest plots of all forest types on lower
quality sites. The 2002 inventory also has significantly
different plot level distributions occurring in an additional
bin representing older hardwood plots on the lowest quality
sites.

For the number of softwood growing stock trees, we
accept the null hypothesis of equivalent distributions for all
of the possible survey-year comparisons at the state level
(Table 4). For the number of hardwood growing stock trees,
approximately 18% of the possible comparisons are rejected
for equivalent distributions within bins of plots using the
K-S tests. For the 2002 inventory, distributions in 3 of 13
bins are significantly different from their respective multi-
year sets (Table 5). These span all forest types and slopes,
with stand age splits at 25 and 38 years. In contrast, there
were no significantly different distributions for plots in the
1990 inventory when the resulting bins were compared with
their respective multiyear distributions of plots. For the
1984 inventory, distributions in 3 of 12 bins of plots are
significantly different. These include young hardwood or
mixed pine plots, and both low and higher sloped plots of all
management classes where stand age is �38 years.

Unit Level Regression Tree Models

We repeated the analysis of the four indicator variables
at the individual survey unit level with somewhat different
results and will summarize those data here (full results are
available from the authors). All survey units have an inven-
tory year as a splitting variable in at least three of the four

Table 2. Average softwood growing stock volume and regression tree split defining variables for multiyear inventory sets where
the null hypothesis of equivalent distributions among inventory years within bins of plots is rejected at least once using permanent
plots spanning three North Carolina FIA inventories

Model

Average volume per ha (m3 in thousands)

Split defining variables1984a 1990a 2002a

State 	18
 0.057 (80)b 0.053 (89) 0.055 (85) Stand age �14 year; mixed pine management class;
SIQ � 1, 2, 3

Numbers in parentheses indicate numbers of observations in sample; number in brackets indicates number of bins per model.
a Randomly assigned.
b Significantly different from other inventories using K-S tests (Bonferroni adjusted � � 0.0167).
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structural models. The Mountain survey unit has the lowest
occurrence of inventory years as a splitting variable: only
once in the model of the number of hardwood growing stock
trees. The Northern and Southern Coastal Plain survey units
have five and four occurrences, respectively, with generally
one occurrence of an inventory year as a splitting variable
per survey unit per model. The Piedmont survey unit also
has four occurrences of survey year as a splitting variable,
with one occurrence in each of the models of volume of
softwood growing stock and number of softwood growing
stock trees and two occurrences in the model of number of
hardwood growing stock trees.

We applied the K-S test to evaluate the null hypothesis of
equivalent distributions for bins of plots that are not survey
year-specific, i.e., a survey year indicator is not a splitting
variable on the path to reach the resulting bin or if it is there

are at least two survey years present to be compared (Tables
2–5). For all models, number of softwood and hardwood
growing stock trees and the volume of softwood and hard-
wood growing stock, the hypothesis of equivalent distribu-
tions, is rejected for �2.6% of the total comparisons (re-
spectively, 3 of 132 tests for softwood trees, 1 of 172 tests
for hardwood trees, 0 of 174 tests for softwood volume, and
4 of 159 tests for hardwood volume). There were five, one,
and two rejections of the null hypothesis of no structural
change among assigned survey years (for 2002, 1990, and
1984, respectively) for the indicator models of hardwood
growing stock volume and number of both softwood and
hardwood growing stock trees (Tables 3, 4, and 5). Also,
rejections of the null hypothesis were concentrated in the
Coastal Plain survey units for these models (five of eight),
with only two rejections occurring in the Piedmont survey

Table 3. Average hardwood growing stock volume and regression tree split defining variables for multiyear inventory sets where
the null hypothesis of equivalent distributions among inventory years within bins of plots is rejected at least once using permanent
plots spanning three North Carolina FIA inventories

Model

Average volume per ha (m3 in thousands)

Split defining variables1984a 1990a 2002a

State 	16
 0.011 (280) 0.018b (293) 0.010b (283) Stand age �26 years; SIG � 1, 2, 3
0.097 (62) 0.105 (73) 0.126b (117) Stand age �43 years; hardwood management classes;

SIQ � 1
Unit 1 	16
 0.007 (121) 0.011 (131) 0.010b (111) Stand age �46 years; pine or mixed pine

management classes
Unit 2 	12
 0.189 (26) 0.189 (36) 0.163b (45) Stand age �50 years; hardwood management classes;

SIQ � 1, 2, 4
Unit 3 	14
 0.015 (102) 0.023b (89) 0.010b (90) Stand age �27 years

Numbers in parentheses indicate numbers of observations in sample; number in brackets indicates number of bins per model.
a Randomly assigned.
b Significantly different from other inventories using K-S tests (Bonferroni adjusted � � 0.0167).

Table 4. Average number of softwood growing stock trees and regression tree split defining variables for multiyear inventory sets
where the null hypothesis of equivalent distributions among inventory years within bins of plots is rejected at least once using
permanent plots spanning three North Carolina FIA inventories

Model

Average no. trees (in thousands) per hectare

Split defining variables1984a 1990a 2002a

Unit 2 	14
 1.115b (9) n/a 0.572b (8) Stand age 20–25 years; planted pine management class;
survey year � 1984 or 2002

Unit 4 	7
 0.424b (28) 0.256 (24) 0.280 (15) Mixed pine or lowland hardwood management classes

Numbers in parentheses indicate numbers of observations in sample; number in brackets indicates number of bins per model.
a Randomly assigned.
b Significantly different from other inventories using K-S tests (Bonferroni adjusted � � 0.0167).

Table 5. Average number of hardwood growing stock trees per ha and regression tree split defining variables for multiyear
inventory sets where the null hypothesis of equivalent distributions among inventory years within bins of plots is rejected at least
once using permanent plots spanning three North Carolina FIA inventories

Model

Average no. trees (in thousands) per ha

Split defining variables1984a 1990a 2002a

State 	13
 0.639b (362) 0.623 (315) 0.524b (326) Stand age �38 years; slope �0.5
0.914b (180) 0.777 (157) 0.707b (174) Stand age �38 years; slope �0.5
1.074 (86) 1.155 (71) 0.876b (74) Stand age 25–37 years; mixed pine or hardwood management classes
1.164b (15) 0.715 (20) 0.530 (17) Stand age 6–7 years; mixed pine or hardwood management classes

Unit 1 	22
 1.050 (22) 0.886 (13) 0.599b (19) Stand age 35–56 years; mixed pine or hardwood management
classes; mesic or hydric physiographic type; SIQ � 1, 3, 4

Numbers in parentheses indicate numbers of observations in sample; number in brackets indicates number of bins per model.
a Randomly assigned.
b Significantly different from other inventories using K-S tests (Bonferroni adjusted � � 0.0167).
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unit for the model of number of hardwood growing stock
trees and one rejection occurring in the Mountain survey
unit for the number of softwood growing stock trees.

Discussion

Our compendium of tests conducted at both the state and
survey unit levels do not provide a single unambiguous
answer regarding structural change between North Caroli-
na’s forest inventories. Taken together, they do provide
useful insights into changes in the forest inventory, assessed
using volume of growing stock and number of trees as
structural indicators of forest conditions. At the state level
we found the following:

➤ Survey year does explain differences in hardwood and
softwood volumes of growing stock and numbers of
softwood and hardwood trees (more precisely, survey
year does split data in the regression trees). However, in
general, survey year serves to define plot bins for these
structural variables for �10% of plots. Based on this
test we accept the null hypothesis that the three inven-
tories are comparable with respect to these variables in
characterizing these specific attributes of the forest for
90% of the plots.

➤ We do find significant differences in the distributions of
hardwood variables at some bins of plots using the K-S
test, for at least 7% of the distribution analyses. For the
models of softwood variables we find low (2%) or no
significant differences in the distributions of these vari-
ables in their resulting bins of plots among survey years.

The regression tree results, based on a total sum of
squares minimizing algorithm, suggest that the means of the
four structural variables in each resulting bin of plots are
only marginally different across the surveys. Regression
tree results indicated that the survey year variable explained
an additional 3–7% of the variation in the means of the plots
for the four structural models. The K-S test is a much more
general test, comparing the entire distribution of plots in
each resulting bin. Coupled with the regression tree results,
the rejection of the null hypothesis using the K-S test
suggests that the variances (or higher moments) of the
dependent (structural) variable are significantly different for
these subsets of the data. The variance of the four structural
variables for each bin of plots generally increases from 1984
to 2002 and from 1990 to 2002. The exception is in the
model of number of hardwood growing stock trees, for
which the difference in variance of the bins of plots in the
1984 and 2002 inventories is equal in a comparison among
the bins.

There seems to be no generalizable pattern regarding
significant differences across the three survey years. Given
the change in survey design between 1990 and 2002, we
might have expected the results of the 2002 inventory to be
significantly different from those of the earlier inventories.
However, our findings suggest that there was no change in
the likelihood of observing structural differences after the
change in inventory methodology. This result suggests that
the results from the 2002 inventory are as comparable to the

1990 inventory results as the 1990 inventory results were
comparable to the 1984 inventory results.

Application of these models at a finer scale (i.e., the four
FIA survey units in North Carolina) yields somewhat dif-
ferent results. In 12 of the 16 estimated trees, one of the
survey years appears as a splitting variable. When survey
year does occur as a splitting variable, it typically contrib-
utes a larger share of the explained variance: an average of
at least 10% of additional variance is explained by inclusion
of the survey year variable.

Nine of the 14 cases for which survey year appears in the
finer scale regression tree models are in the Northern
Coastal Plain and the Southern Coastal Plain survey units.
The remaining cases arise in the Piedmont and Mountain
survey units. These findings focus attention on the Coastal
Plain, suggesting that a significant shift in forest conditions
has occurred in this subregion. The Coastal Plain contains
the largest share of intensively managed pine forests and
active management. These findings suggest a need for fur-
ther research into the details of forest dynamics in this
subregion and what these changes might portend for forest
management and production in the future.

Conclusions

Forest assessments are undertaken to evaluate changes in
forest conditions over time. We set out to use forest inven-
tories to distinguish between changes that can be attributed
to general development cycles of the resource and those that
arise from structural changes in production relationships.
With the increasing focus on changing climate and the role
that forests play in mitigating carbon emissions, it is impor-
tant to investigate whether forests are undergoing structural
changes and what, if anything, these changes may imply for
the long-term sustainability of forest ecosystems.

These methods provide a useful initial approach for a
systematic comparison of forest inventories. We found
through our initial modeling efforts that regression trees
clearly flag where key variables were coded or measured
differently between inventories (e.g., site index). The col-
lection of results indicates where in the State of North
Carolina structural stability between inventories is less ten-
able: the Coastal Plain survey units. Overall the results show
no strong evidence of a structural shift in measured inven-
tories with the change from the plot design used for periodic
inventories and that used for the new continuous inventory
and therefore provide support for the comparability of in-
ventories generated by the two designs.

Structural variables were used to characterize important
attributes of the dynamic forest ecosystems, and results
provide insight into what variables are important to track
when these productivity measures are projected: broad age
groupings, forest management classes, and site quality. We
test for structural changes in the forest inventory over time
using an approach that does not impose an a priori func-
tional form on the data. As a result, our findings of struc-
tural change do not point to causative factors; they simply
indicate shifts in the distributions of certain characteristics.
This approach can therefore be used to define a set of
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research questions that deserve additional scrutiny to test
hypotheses regarding the factors driving these changes.

The strength of this approach to testing for structural
changes is that it can be readily applied to any two inven-
tories, without additional specification. In addition, it pro-
vides useful insights into the state variables that explain
variation in a set of structural variables without appealing to
a restrictive functional form. It therefore provides insights
into what variables are most important for explaining
change and predicting change in forest inventories.

Our approach, although it does not yield a single measure
of structural change, does provide a suite of indicators of
where and for which forest conditions structural change
might be indicated. This information could be used to de-
sign a more detailed (and highly specified) research strategy
for isolating the causes of change.

The choice of structural variables used in this type of
analysis is critical. Our tests pivot off of a definition of
structural change based on structural variables describing
growing stock measures of two attributes of the forest state,
i.e., volume and number of trees. Other perspectives are
possible, e.g., those that more directly depict change in
forest conditions such as growth, so the preceding compar-
isons of inventories apply only to the structural variables
selected for this analysis. Analysis of alternate structural
measures is a potential next step in this process. Further-
more, data ancillary to the FIA inventories, such as temper-
ature and precipitation, might prove useful for explaining
additional variance in the structural variables.
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