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In manufacturing, monitoring tht mechanical properties of wood "ith near infrared spectroscopy (NIR) is an
attractive alternative to more conventional methods. Howtvtr, no attention has been given to sttlfmodels differ be-
twetn juvenile and mature wood. Additionally, it would bt convenient if multiple linear rtgrtssion (MLR) could
perform well in the place of more complicated multivariate models. Therefore, the purpost oftbis paptr was to
model the strength, stiffntss and density of mature and juvenile longleaf pine to NIR spectra with MLR and
principal component rtgrcssion (PCR). MLR performed almost as "'ell as PCR when prtdicting density, modulus
of rupture (MOR) and modulus of elasticity (MOE). Choosing wavelengths associated with wood chemistry and
developing principal compontnts gave better predictive models (PCRz) than when all NIR wavelengths were ustd
(PCR1). Models devtloptd from mature wood did not predict wood proptrties from juvenilt wood adequately,
suggesting that separatt modtls are needed. However, for density prediction, the arta under the spectral curvt
apptared to be insensitive to mature and juvenile wood differences. Five of the six wavelengtbs associated, with
MOE were also associated with MOR, ptrhaps accounting for bow MOE and MOR might be related. For pith wood,
MOE and MOR wtre poorly related to NIR spectra, wbilt dtnsity was strongly correlated. Tbis inability to prediet
mecbanical propertits in tht pith-wood zont warrants attention for those manufacturtrs inttrested in using near
infrartd to strtss rate lumbtr within a mill.

Keywords: multivariate, principal component. multiple linear, regression, density, modulus, NIR, spectroscopy, wood.
lumber

Introduction strength and stiffness is juvenile wood. Juvenile
wood comes from xylem wood produced several
years after apical meristem production. As the wood
matures, the mechanical properties increase. As a
result, development of rapid assessment tools to
monitor the mechanical properties of wood is

Softwood lumber is common in building con-
struction where availability and cost are balanced
with acceptable strength and stiffness. The portion
of the tree that, typically, yields unacceptable
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models are needed for different portions of the tree.
Schimleck et a/.15 did use soft independent model-
ling of class analogy (SIMCA) analysis to show that
models were significantly different at different tree
heights. As a result, one may need different predic-
tive models for pith, juvenile and mature wood

specimens.
Since the choice of models can playa significant

role in prediction efficiency, it is important to try
different modelling techniques. In the wood science
discipline, the most popular models are principal
components regression (PCR) and partial least
squares (PLS), both of which can overcome substan-
tial multi-collinearity problems. High multi-
collinearity between wavelengths isa problem when
estimating the variance around the regression
coefficient(s) in multiple linear regression (MLR).
However, given that MLR is commonly used for
calibration ofNIR, the variance around the regres-
sion coefficients may not matter. Kowalskj19 found
MLR to outperform PLS, PCR and ridge regression
but warned that over-fitting could occur if too many
wavelengths were chosen. For five separate data
sets, MLR performed superiorly until extrapolation
occurred}O

In this study, ten longleaf pine trees of varying
diameter and height were randomly chosen and
felled. Density, MOE and modulus of rupture
(MOR) were measured by conventional methods
from five to seven heights at 4.57 M intervals. The
aim of this paper was to determine if density,
strength and stiffness models could be developed
with MLR, principal component regression of all
wavelengths (PCR.) and principal component
regression of selected wood chemistry wavelengths
(PCRJ. The ability to model density from the area
under the spectra and from individual wood chemis-
try associated wavelengths was also investigated.

Material and methods

Sample preparation
Ten longleaf pine trees, 41 years in age, were

selected from a plantation on the Harrison Experi-
mental Forest which was owned and maintained by
the USDA Forest Service near Saucier, Mississippi
(USA). The location was 30.60 north and 89.1 0 west.

needed to differentiate between juvenile and mature
wood. Proper models would enhance quality
control, wood utilisation efficiency, research and
development and the theoretical understanding of
causal relationships of mechanical properties.

The absorbance at some wavelength(s) in the near
infrared (NIR) region is associated with the funda-
mental chemical components of wood, which are, in
turn, directly or indirectly related to mechanical
properties. An example of an indirect relationship is
the apparent connection between cellulose associ-
ated wavelengths and microfibril angle, a property
that impacts modulus of elasticity (MOE).I An
example of a more direct relationship would be if
wood chemistry and MOE were related. For exam-
ple, for single wood fibres higher in cellulose, a
higher response in MOE is present than single wood
fibres higher in lignin.2 Perhaps this plays a role for
an aggregate collection offibres connected by lignin
(solid wood).

The most important macro characteristic to
contribute to strength and stiffness is density. The
main determinate of density is well accepted to be
the relative amount of lumen to cell wall material
present in wood. This explains why the absorbance
across all wavelengths shifts upward as density
increases!'. Additionally, there may be more subtle
variables to influence density that could, in turn,
influence spectral response. For example, cellulose
has a density of 1.52 to 1.53 g cm-3 for six different
softwood species, while lignin has a lower density of
1.35 g cm-3.S,6 Hemicellulose has a similar density
to cellulose but is, perhaps, significantly altered
during the extraction process, making a quantitative
assessment difficult.~ The relative amount oflignin,
cellulose and hemicellulose largely determine cell
wall density and could influence overall density.

The primary chemical components and associ-
ated wavelengths of wood are listed in Table 1. By
associated wavelengths, we mean the wavelengths
where absorbance response has been shown to relate
to some chemical constituent in wood. Because the
kappa number is a direct function of lignin content, it
was included in the table and was considered as

lignin-associated wavelengths.
Some work has already shown NIR to estimate

wood density, MOE and MOR successfully!,.,ls-I'
However, it is not well understood if different
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Figure 1. The breakdown oftbe tree into disks and increment cores.

The understory of the site was free of competition
because of periodic prescribed fires by the Forest
Service staff. Trees were planted approximately
3.66 M apart from neighbouring trees in an equilat-
eral triangle pattern. In other words, each row was
spaced equally but offset with the adjacent row
forming an equilateral triangle pattern between
adjacent trees. Border trees were planted around the
overall site. Each tree was cut every 4.57 M in
height, yielding five to seven bolts, each bolt having
an accompanying disk cut from the basal end of the
bolt (Figure 1). The bolt was further processed to
yield bending specimens 30.48 cm x random
width x 1.27 cm, with the ring of interest in the
centre of the specimen, while the disk was used for
NIR spectra acquisition. Widths were random
because ring thickness varied and it was desired to
maintain the same ring count per specimen. Spectra
was acquired from the radial face from bark to pith to
bark strips ripped from the disks.

The weights for both procedures were measured to
the nearest 0.001 g.

Categorisation
Counting from pith to bark, latewood rings 1,4,8,

16, 32 and the last ring on the disk were quantified
from five to seven disks, dependent on tree height
(disks were cut every 4.57 M in height). Typically,
for specimens in the last ring, five to ten rings had to
be included 'as the last ring'becauseofmuch slower
growth rates. This was necessary because a cross-
section of 1.61 cm2 was needed for MOE and MOR
measurement. Spectra for each sample were
acquired from each disk and each bending specimen
was measured for density, MOR and MOE. Rings
were further classified into pith,juvenile and mature
wood regions. Pith wood was considered the first
year of growth on all disks. For this paper, the juve-
nile wood zone was classified as Rings 4 and 8 for
the bun log only and will sometimes be referred to as
simply juvenile wood. The mature wood region
included the remainder of the tree.

Mechanical testing
The bending specimens were conditioned in

ambient conditions to an equilibrium moisture
content of 8.0% with a standard deviation of 1.3%.
The load was applied in three-point bending on the
tangential face, at a rate of 0.20 cm min-l, on an
Instron testing machine. Stress-to-strain plots were
obtained, and the slope of the linear portion of the
curve was used to estimate MOE. Density and
moisture content were determined from the bending
samples. The volume for density was measured with
callipers and the weight for density was measured at
equilibrium moisture content. Dimensions were
measured to the nearest 0.0025 cm. The oven-dry
and equilibrium moisture content was measured.

NIR spectroscopy
NIR absorbance was obtained using a Nexus 670

FT-IR spectrometer (Thermo Nicolet Instruments,
Madison, WI, USA) with wavelengths between 1000
to 2500 nm. Scans were acquired at 1 nm intervals
using reflectance spectroscopy. Forty scans were
collected and averaged into a single spectrum curve.
The north and south spectra were then averaged
together to further increase precision. After averag-
ing, a total of263 samples/spectra were available for
model building and validation. Temperature was
controlled at 22°C :t 1 in a laboratory environment
with a mean relative humidity of 50%.
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the root mean square error of a separate validation
model and is not the root mean square error derived
when regressing the calibration model to the valida-
tion data. Wavelengths for MLR and PCR were cho-
sen from Table I. For PCR., all wavelengths were
reduced to principal components and then regressed
by linear multiple regression. A second PCR2 model
was developed using only selected wavelengths
from Table I. The most influential wavelengths were
1505, ]665, ]705, 1735, ]825, ]905,2]55,2205,
2235 and 2305 om. These wavelengths for MLR
were processed through the backward stepwise
selection procedure. All independent variables hav-
ing ap-value less than 0.10 were maintained in the
model. No spectral pre-treatment, such as deriva-
tives or multiplicative scatter correction, was
employed. While a few outliers were detected, none
were highly influential enough to change the regres-
sion coefficients and, thus, were maintained in the
data set. Given the obvious shift in spectra, with
respect to density (Figure 2), the area
(nm.absorbance) under each spectral curve was
estimated by Reimann sums. Linear regression and
MLR were performed using area as an independent
variable. Because the Type II sum of squares is
sequential, area was always placed in the density
MLR model first, since the baseline shift was the
most important parameter in predicting density.

To demonstrate the effect of density on the
spectra, ten replicates per density group were
measured. The density groups were 0.40, 0.50, 0.60
and 0.70 g cc-3. Forty scans were acquired on the
north and south side for a total of 80 scans and then
averaged together for one spectral curve.

Multivariate analysis
MLR and PCR were performed using Statistical

Analysis Software (SAS) in which PROC REG and
PROC PRINCOMP were applied!. To reduce data
set and computation time in SAS, the absorbance
values were reduced to 10 nm intervals by averag-
ing. Prior analysis showed nearly identical model
coefficients when 10 nm intervals were compared
with models developed from spectra of I nm inter-
vals. Regression di~ostics were employed to com-
pare the predictive power of different models. One
hundred and seventy samples were used to develop
whole tree models with 93 samples held aside for
validation model building. Regression coefficients,
root mean square error of validation (RMSEJI), pre-
dicted sum of squares (PRESS), R2, adjusted R2 and
Cp were employed to compare model predictability
and can be reviewed in detail by Neter et al}2 The
equation for PRESS is

PRESS = I,:<¥i -y~)

where Y/ is the actual value and Y prrdicted is the value
predicted by the model. It should be noted that the,1h
value was omitted and the regression computed. The
smaller PRESS values suggested a model of better
predictabilitY. The equation for Mallows Cp was

Results and discussion
Density

Figure 2 demonstrates the baseline shift in
absorbance that occurs with respect to a change in
density. Other studies have indicated an increase in
absorbance due to increased density but did not
quantify the change in absorbance for given wave-
length ranges.4.IS In the lower wavelength region
(1000 to 1400 nm), increasing the density from 0.4
to 0.7 g cm-3 brought about a 0.1 mean increase in
absorbance and can be viewed in Figure 2
(a = 0.05). Thus, as one considers lower to higher
\vavelengths, the difference increases. At the higher
wavelengths around 2200 nm, a 0.3 g cm-3 increase
in density brought about a 0.27 mean increase in
absorbance. While there was increased range at the
upper end of the spectrum, there was also increased

where SSEp is the sum of square error using P vari-
ables while MSE(X1,...,xp-I) is an unbiased estima-
tor of the variance of the fitted value Y prwdlc,.d. Cp was
a function of the total mean squared error of the
reression model; therefore, models with a lower Cp

were preferred.
In summary, a lower RMSE~ PRESS and Cp and a

higher R2 and adjusted R2 suggests a better model. It
should be noted that the RMSEV for this paper was
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Associated wavelengths with cellulose, hemicellulose, lignin, kappa number and hot water extractives.Table

ReferenceMaterial
or solution

3Softwood and hardwood
kraft pulp

Associated wavelengths
(om)

457, 500, 650

Chemical
measurement

1722,1778,1940,2100,
2139

4Kappa number Eucalyptus grandis kraft
pulp
Mixed pine kraft 1 1445,1680,1734,2100,

2270

4Kappa number

1445,2100,2208,2230,
2270

4Kappa number Mixed pine and
eucalyptus kraft

1438,1828,2218,2386 5,6Forest foli~e18 hard-
wood and softwood
species

Lignin

- -

1600, 1660, 1505, 1460,
1275, 1230,870

7Solid wood alder, bass,
cherry, pine, walnut, birch

Lignin

5,6

8

Quercus alba foliage 1438, 1708,2154,2320

1722,1734,2230,2310,
2236

14 different pine species

1766,1960,1982,2140 5,6Cellulose Forest foliage 18 hard-
wood and softwood
species

1754,1898,2076,1898 5.6

9

Cellulose

1207,1278,1365,1431,
1487, 1~84, 1707, 1772,
1824, 2088, 2200, 2273,
2336, 2347

Cellulose

Quercus alba foliage

Various foods and plants
including barley, cereal,
forage, flour, wheat

142S, 1370, 132S, 1160,
1110, 10SO, 895, 680

7Solid wood alder, bass,
cherry, pine, walnut, birch--

1218,1278,1360,1436,
1492,1.584,1728,1778,
1830,2110,2186,2262,
2314,2380

9

Cellulose and
hemicellulose

Various foods and plants
including barley, cereal,
forage, flour, wheat

I 2200, 1700, 1900 10Eucalypt woodHot water extractives

Lignin

Cellulose
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increases, if m01ar absorptivity is assumed to stay
the same and sample path-length does not change,
then the concentration of the absorber should
increase linearly with concentration or density. This
relationship explains the increase in absorbance
with density in Figure 2. It is noteworthy to point out
that the difference in absorbance between 0.7 and
0.6 g cm-3 was greater than at other 0.1 g cm-3 inter-
vals of lower densities (Figure 2). This deviation
from the Beer-Lambert Law at high concentrations
is common for various materials.13

The area under the curve for the whole NIR region
was computed because it would directly relate to a
baseline shift in absorbance. The area was regressed
against density using least squares linear regression
(Figure 3). An R2 ofO. 71 was achieved with balanced
residuals and proved to be a viable way to model

density.
Aside from macro density variation, there may be

additional variation in density due to cell wall chem-
istry. It was pointed out in the Introduction that
cellulose is more dense than lignin. Therefore, from
Table 1, the 2230 and 1708 om wavelengths were
chosen specifically for cellulose and lignin, respec-
tively, because this combination exhibited the
lowest multi-co linearity as determined by Pearson
Correlation Coefficient.22 Because a baseline shift
showed equal effect on the two wavelengths, taking

variance in absorbance per wavelength. When vari-
ance in absorbance was plotted at each wavelength
for all wood samples, the variation increased seven-
fold (from 0.002 to 0.0 I 4) when going from 1000 to
2500 nm. This increase in variance at higher NIR
wavelengths would lower the precision of the model.

The baseline shift was primarily accounted for in
the first principal component, since each wavelength
received the same weight within the eigenvector. It is
probable that the baseline shift was attributable to
some macro characteristic of density. For example,
an increase in wheat kernel size caused an upward
baseline shift in absorbance values caused by
increased material.23 For solid wood density, the
macro characteristic that affects density is lumen
diameter and cell wall thickness. Having more cell
wall material and less lumen diameter implies that
more material is available for absorbance across all
wavelengths in the NIR region.

Theoretically, the baseline shift with density can
be explained by the Beer-Lambert law.13

A=M£!l

where A is absorbance, M is molar absorptivity, c is
molar concentration of absorber and d is sample
path-length. The molar absorbtivity indicates how
much light, at a particular wavelength, a material
will absorb per unit of concentration. When density
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Figure 3. The response of density to the area under the spectral curve with regression and 95% confidence intervals.

of significance was attributable to the high concen-
tration of resinous extractives near the pith, which
could be visually observed. Excessive extractives
would have increased the apparent density even
though they would not contribute to increased
strength or stiffness. For juvenile wood, a significant
but lower slope occurred when compared with
mature wood (p-value < 0.0 1). This finding was sim-
ilar to others who found that for loblolly pine butt
logs, density accounts for less variation in MOE in
the juvenile wood zone than mature wood for
loblolly pine}4.25 Others have reported that
microfibril angle was the primary contributor to

the ratio of absorbance at two wavelengths elimi-
nated the variation attributable to the baseline shift.
Figure 4 shows a significant relationship (R2 = 0.38)

between the absorbance ratio and density, suggest-
ing that lignin and cellulose concentration may have
some influence over whole wood density.

MOE and MOR response to density
Figure 5 shows the influence of density on MOE

for pith, juvenile and mature wood. While not plot-
ted, a similar trend was found for MOR for the three
zones. In pith-wood, the density was not a signifi-
cant predictor ofMOE and MOR. Perhaps this lack

1.2 1.3 1.4 1.5 1.6 1.7

Wavelength absorbance ratio

Figure 4. The response of density to the ratio of cellulose (2230 DIn) to lignin (1708 nm) wavelengths with regression and
95% confidence intervals.
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Figure S. The response ofMOE to density for pith, juvenile and mature wood.

MOE in the juvenile wood zone}6,27 Given that den-
sity has a decreased influence on MOE and MOR as
one goes from mature, to juvenile, to pith, it might be
possible that different models are needed.

directly influence MOE. This suggests that
chemistry influence on stiffness is important and
perhaps underestimated. In support of this finding, it
was found that most of the wood chemistry
associated wavelengths needed to predict density
were needed to predict MOE. Alternatively, and
equally noteworthy, was that cellulose wavelengths
may be associated with microfibril angle which, in
turn, affects MOE, as observed by others.'.4 It was
also possible that NIR was more sensitive to chemis-
try variation than density which could make wood
chemistry appear more important than density when
predicting MOE from NIR spectra.

Using PCRJ, nine principal components were
significant in predicting MOE while PCR2 only
found five significant principal components. Even
though Table 2 suggests that PCR, is better, perhaps
the fewer components needed to predict MOE mean
that PCR2 is more stable and will be considered

shortly.
Of the three regression procedures,

PCRJ < MLRz < PC~ in RMSEC, RMSEV and
PRESS while MLR and PCRz had the lowest Cp' Just
as was the case for all the density models, Cp did not
rank the models in the same order as the PRESS
statistic. In summary, no best model was conclusive,
and all three appear to model MOE adequately.

For MOR, the MLR regression required one less
independent variable for prediction than did for the

Whole tree regression models
For density, MLR performed similarly to PCR.

and PCR2 in R2, adjusted R2, RMSEC, RMSEV and
the PRESS statistic, while the Cp (Mallow's statistic)
was slightly higher (Table 2). The wavelengths cho-
sen, aside from area and ratio, were 1705, 1825 and
2155 om. Wavelength 1705 om has been shown to
associate with lignin, cellulose and hot water
extractives, 1825 nm with cellulose and lignin and
2155 with lignin (Table I).

For the PCR1 density model, five principal
components were significant in predicting density,
while for PCR2, only two principal components were
significant and only slightly lower in predictive abil-
ity (Table 2). Of all three regression models,
MLR S PCR1 < PCR2 for RMSEC, RMSEV and
PRESS statistics. However, for Cp' MLR performed
the worst and PCR2 performed the best. In summary,
all three regression models appeared to predict den-

sitysimilarly.
For prediction of MOE, the backward stepwise

selection procedure did not find area under the
absorbance curve to be significant (p value < 0.05).
This was surprising because density is considered to
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Table 2. A comparison ofMLR and PCR model statistics where PCR. was performed on all wavelengths and PCR2 was
performed on the wavelengths listed in Table I.

R2 Adj. R2 PRESS c.,Model
type

LR

MLR

Independent
variables

RMSEV
N-93

0.056]

0.05]2

Error
ratio

1.06

1.06

0.71

0.76

0.71

0.75

RMSEC
N-170

O.OS30

O.048S

0.48

0.42

Dependent
variable

Density

Density

Area

5.9Area, 1705,
1825,2155,
Ratio

MOE Area. 1705,
1825, 1905,
2155,2205,
2385

0.86 0.86 3S1249 398453 1.13 2.3E13 5.2

MOR 0.88 0.88 2523 3110 1.23 1.2E9 8.0Area,
1825,
2205,

4.0

10.'-
11.'
1.6
'.2

-
4.0

PCR\ Density

MOE

MOR

Density

MOE

MOR

S PC's

9 PC's

9 PC's

2 PC's

, PC's
S PC's

0.76

0.89

0.89

0.73

0.84

0.86

0.75

0.89

0.89

0.73

0.84

0.86

0 . 0489

315537

2401

0.05 I 0

373869

2680

0.0507

367562

2964

0.0515

422768

3394

1.04

1.16

1.23

1.01.

1.1.3
--
1.21

0.42

l.tEl3

1.IE9

0.45

2.6E13

1.3E9

PCR2

MOE model. However, the remaining significant
wavelengths needed to predict MOR were also
needed to predIct MOE. Just as with MOE, the area
under the spectral curve was not useful in predicting
MOR. Furthermore, the same wood chemistry asso-
ciated wavelengths that were related to density and
MOE were also related to MOR, suggesting that the
same underlying chemical constituent may be
responsible for both strength and stiffness.

For PCR. and PCR2, both MOE and MOR
required the same number of principal components.
It is interesting to note that the exact same principal
components were needed for both MOE and MOR
for PCR2, which suggests,just as with the MLR anal-
ysis, that the same underlying chemical constituent
may influence strength and stiffness. Once again, all
three regression models appeared to predict MOE
and MOR well with acceptable RMSEJ-:

Model stability
So far, the predictive ability of PCR. and PC~

have appeared similar. However, another way to
determine if a model is appropriate is to compare the
regression coefficients of the calibration and valida-
tion models. Obviously, similar coefficients are
desirable while vastly different coefficients suggest
a potential instability and suggests over-fitting of
the calibration.22 Table 3 lists the regression coeffi-
cients for the calibration and validation models for
the two PCR models predicting MOR. MOR was
chosen for demonstration because it had the most
independent variables. However, density and MOE
gave similar results between PCR, and PCR2 with
PCR2 always having less significant variables.

When calibration and validation regression coef-
ficients were compared for PCR" different regres-
sion coefficients emerged (Table 3). The standard

1705,
21.'5,
2385
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Table 3. A comparison of regression coefficients for PCRI and PCR2 models in predicting MOR with standard errors in

parentheses.

PCR\ PCR2

VaJidation set

15638 (307)

352 (25)

2920 (209)
- 5076 (347)

- 1839 (873)

3766 (1726)

15261 (2616)

10342 (4480)

3480 (7526)
- 18440(8025)

Calibration set

14475 (205)

1282 (66)

16920 (703)

-.1144(1134)

91" (3533)

- 71412 (10121)

Validation set

1.5638 (375)

12« (120)

21616 (1270)

- 3667 (2566)

.381 (6530)

- 72453 (2.12:5)

Calibration set

]4475 (] 84)

360 (15)

]514 (105)

-4233 (19's)

- 2111 (526)

2822 (102')

2316 (1336)

12705 (1717)
- 7598 (3343)

- ]8000(3749)

NIR spectra for pith associated wood. However,
MOE and MOR were not well predicted for pith
wood using NIR spectra, with the highest R2 equal to
0.18. Perhaps one reason for the poor prediction is
the low range of variation in MOE and MOR in pith
wood. Most MOE values fell between 1,000 to
4,500 Mpa, while most MOR values fell between 20
to 70 MPa. However, for mature wood, most MOE
values fell between 5,000 to 25,000 Mpa, while
most MOR values fell between 30 to 230 MPa.
Another factor was the high amount of resinous
extractives present near the pith, as visually
observed. Excessive extractives will heavily influ-
ence the spectral curve due to its wide range of
chemical compounds. Additionally, increased resin
gives erroneous density measurements if one only
wants the density of the xylem wood material. Per-
haps extracting the pith wood would improve the R2
values. Finally, Figure 5 supports the conclusion that
something other than density must influence MOE
and MOR as one proceeds from mature wood to the
first year of growth. Other studies have shown
microfibril angle to have increased importance
within the juvenile wood zone when predicting
MOE and MOR. 26.27

errors, for each regression coefficient, was listed to
gauge if coefficients differed significantly. Four
regression coefficients were significantly different
using PCR.. The most striking difference was that
the 8th coefficient changed signs from the calibration
to validation model. However, the 8" coefficient
only accounted for less than I % of the total varia-
tion. Conversely, when only wood-chemistry-
associated wavelengths were used (PCRJ, only the
2nd coefficient appeared to significantly differ but
not at the magnitude that some of the regression
coefficients differed using PCR.. When the poten-
tially unstable principal components were removed
from the PCR. equation, the R2 value dropped from
0.89 to 0.43 for both MOE and MOR. As a result,
perhaps PCR2 would be more robust under extrapo-
lation conditions or measurement of specimens from
a separate population. As mentioned earlier, density
and MOE showed similar instabilities in regression
coefficients for PCR..

Modelling pith wood
Only calibration models were developed for pith

wood with the objective of diagnosing correlation.
Table 4 shows that density was well predicted by
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Table 4. A comparison of MLR2 and PCR1,2 models for near pith associated wood (It = 60).

R2 Adj. R2Model
type

MLR)

MLR2

RMSECDependent
variable

Density

Density

MOE

MOR

Density

MOE

MOR

Density
MOE

MOR

0.6942

0.8307

0.0684

0.1326

0.8681

0.1870

0.0875

0.8289

0.1343

0.0940

0.6889

0.8216

0.03S7

0.1021

0.8.132

0.143'

0.0717

0.8130

0.1039

0.0784

0.0629

0.0476

145168

ISS9

0.0432

136118

IS8S

0.0488

139944

IS80

Independent
variables

Area

Area, 2155, 220S

1705, II2S

170S,112S

6 PC's

3 PC's

IPC

S PC'.

21J(:'a

IPC

PCRt

PCR2

Not being able to model the MOR and MOE from
pith wood has some practical significance. First. if
one wants to estimate MOE and MOR from an incre-
ment core for different families, it may not be possi-
ble with NIR models. Second, should NIR ever be
used to stress-rate lumber, much care needs to be
taken when scanning pith-wood.

would be misleading if one were using spectra to
predict the MOE or MOR of lumber in a production
environment. Because many designers require a spe-
cific strength for safety reasons, consistent over-pre-
diction of strength would increase the chance of
lumber failure in service.

When only the area under the spectra was used to
predict density, there was no significant difference
of intercepts and slopes for juvenile and mature
wood models. As a result, it appears more useful to
use the area under the spectral curve to estimate
wood density from any portion of the tree than to use
other multivariate techniques.

Predicting juvenile properties from
mature model

Juvenile wood is synonymous with inferior
mechanical properties because of its lower specific
gravity and higher mean microfibril angle, particu-
larly at the basal end of the tree. As a result, it is
important to know if global models developed from
whole tree values will predict juvenile wood proper-
ties. Figure 6(a) illustrates that juvenile wood den-
sity is under-predicted using MLR, while MOR and
MOE were over-predicted in Figures 6(b) and 6(c).
The residuals were computed from the mature wood
model as actual juvenile wood response minus pre-
dicted response. Had the models been appropriate,
approximately 50% of the data would have fallen
below, and 50% above, the zero residual axis. When
PCR regression was used for the three properties,
similar over- and under-prediction errors occurred.
Consistent over-prediction errors ofMOE and MOR

Conclusions
MLR performed as well as PCR in predicting

strength, stiffness and density. This is important
since MLR is easier to implement and interpret. For
PCR, it was found that a better model could be built
if only wavelengths known to associate with lignin
and cellulose were utilised. This is significant, since
data acquisition and analysis of all available NIR
wavelengths are common in PCR.

The wood density appeared to be best modelled
by accounting for the baseline shift that occurs with
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Figure 6. A residual plot of (a) juvenile wood density using a mature wood density MLR model, (b) juvenile wood MOE
using a mature wood MLRmodel and (c) juvenile wood MOR using a mature wood MLR model.
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8. M.D. Birkett and M.J. T. Gambino, Tappi J: n,

193 (1989).
9. T.M. McLel1an, J.D. Aber, M.E. Martin, J.M.

Melillo and K.J. Nadelhoffer, Can. J: For: Res.
11,1684 (1991).

10. T.M. McLel1an, M.E. Martin, J.D. Aber, J.M.
Melillo, K.J. Nadelhoffer and B. Dewey, Can. J.
For: Res. 11,1689 (1991).

11. R. Meglen and S. Kel1ey, National Renewable
Energy Lab, USA Document (2000).

12. J.A. Wright, M.D. Birkett and M.J. T. Gambino,
TappiJ: 73, 164 (1990).

13. B.G. Osborne and T. Fearn. Near Infrared
Spectroscopy in Food Analysis. Longman
Scientific and Technical, Harlow, UK (1986).

14. A.J. Michel1, Appita J. 48, 425 (1995).
15. L.R. Schimleck, A.J. Michell and C.A.

Raymond, Appita J. 53, 318 (2000).
16. C. So, L.H. Groom, T.G. Rials, R. Snel1, S.S.

Kelly and R. Meglen, Proceedings of the elev-
enth biennial southern silvicultural research
conference. Gen. Tech. Rep. SRS-48. (2002).

17. P. Hoffmeyer and J.G. Pedersen, Holz Roh
Werkst.53, 165 (1995).

18. W. Gindl, W.A. Teischinger, M. Schwanninger
and B. Hinterstoisser, J: Near Infrared
Spectrosc.9, 255 (2001).

19. K.G. Kowalski, Chemometr. Intell. Lab. Syst. 9,
]77 (]990).

20. F. Estienne, L. Pasti, V. Centne, B. Walczak, F.
Despagne, D.J. Rimbaud, O.E. de Noord and
D.L. Massart, Chemometr: Intel/. Lab. Syst 58,
195(200]).

2]. Statistical Analysis Software (SAS) version
8.2. Cary, North Carolina, USA (200]).

22. J. Neter, M.H. Kutner, C.J. Nachtsheim and W.
Wasserman, Applied Linear Statistical Models,
4/. Edn. Richard D. Irwin, Inc., Burr Ridge,
lllinois, USA (1996).

23. D. Wang, F.E. Dowel1 and R.E. Lacey. Cer:
Chem. 76,34 (]999).

a change in density. This was achieved by regressing
the area under the curve to density with least squares
regression. Furthermore, the ratio of cellulose to
lignin associated wavelengths was significantly
correlated with density, suggesting that chemistry
has additional impact on wood density jndependent
of baseline shift.

The mature wood samples had a high slope
between density and mechanical properties, while
juvenile wood had a moderate slope and pith wood
had a flat slope. Correspondingly, MOE and MOR
were poorly correlated with NIR spectra in the pith
wood region, while density was strongly correlated.
This is important from a practical perspective,
suggesting that stress grading pith lumber with NIR
is not suitable. While not explored in this study,
based on the Introduction, perhaps microfibril angle
may account for a higher proportion of the variation
in the pith region. Finally, when modelling MOE and
MOR, five of six of the same wavelengths were
significant for prediction and perhaps sheds some
light as to why MOE and MOR are strongly
correlated.
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Appendix
The list summarises acronyms used in the paper.
Bj ith regression coefficient
Cp Mallows Cp statistic
MLR multiple linear regression
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