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ABSTRACT 

Process control of wood density with near infrared spectroscopy (NIR) would be useful for pulp mills 
that need to maximize pulp yield without compromising paper strength properties. If models developed 
from the absorbance at wavelengths in the NIR region could provide density histograms, fiber supply 
personnel could monitor chip density variation as the chips enter the mill. The objectives of this research 
were to a) develop density histograms from actual density versus density histograms developed through 
NIR modeling, and b) determine the precision of density models developed from absorbance in the NIR 
region with a recommendation for the sample size needed to estimate the standard deviation of density at 
a given precision. 

Models for density were developed from calibration samples (n= 170) and then validated with 93 
randomly held aside samples. The samples were systematically removed from 10 longleaf pine trees of 
equal age, but different growth rates. The histogram patterns for actual density almost paralleled the 
histogram patterns developed from predictive models. Subsequently, the validation data set was randomly 
categorized into groups of three, and the standard deviations of density were measured. For three mea- 
surements per data point, the predicted standard deviation covaried with the actual standard deviation of 
density with an R' = 0.61 and 0.55 for the calibration and validation data set, respectively. A sample size 
of 30 was recommended to estimate the standard deviation of density with a precision of 0.01 gicm3. 

Keywords: Chip, density, near infrared spectroscopy (NIR), wood, pine, statistical process control, pulp 
yield. 
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INTRODUCTION 

Wood density is the most important factor af- 
fecting pulp and wood quality (Kleppe 1970; 
Kibblewhite 1984; Duffy and Kibblewhite 
1989). Being able to monitor the density of the 
raw material going into the mill is, perhaps, the 
next crucial step in improving efficiency for 
pulp and paper manufacturers. The pulp and pa- 
per industry places a high importance on lower- 
ing the variation of any variable that will de- 
crease costs with density being important 
(Kleppe 1970). While many technological im- 
provements have been made over the decades, 
there is still one inherent variation to overcome, 
the material itself. This paper evaluates the abil- 
ity of near infrared spectroscopy (NIR) to moni- 
tor wood density. 

For paper products, an increase in density will 
increase pulp yield and tear index, but will de- 
crease tensile, burst, apparent density, and 
stretch (Duffy and Kibblewhite 1989; Kibble- 
white et al. 1997). Since increased density will 
bring about a compromise in paper strength, 
Kleppe (1970) suggested that density should be 
improved for increased pulp yield as long as an 
acceptable level of strength is maintained. For 
example, linerboard can utilize high density 
southern pine chips while maintaining an accept- 
able burst index (Kleppe 1970). 

The increase in pulp yield with increased den- 
sity is caused by the higher concentration of cel- 
lulose in latewood and the additional porosity of 
the earlywood zone (Gladstone et al. 1970; La- 
bosky and Ifju 1972). Differences in the magni- 
tude of porosity between latewood and early- 
wood result in uneven rates of liquor penetration 
and thus pulp yield, especially for shorter cook- 
ing periods (Labosky and Ifju 1972). Latewood 
can exhibit 2 to 7 percentage points higher yield 
than earlywood, setting the boundaries for pulp 
yield variation (Gladstone et al. 1970). As a re- 
sult, density variation becomes a primary factor 
for most pulp and paper properties. 

One mill study found density variation to 
double from one month to the next because of 
changing chip supply attributable to lack of con- 
trol of mixing the right blend of species, but also 

natural variations in density within a species oc- 
cur due to variations in log age (Farrington 
1980). To solve this problem, efficient separa- 
tion of topwood, slabwood, and corewood chips 
is suggested (Veal et al. 1987). Others support 
the segregation of species by age and growth 
rate, since the predictive power of these vari- 
ables on fiber morphology and strength indices 
is high (Karenlampi and SuurHamari 1997). 
Mills already blend sawmill pine chips, or pine 
chips from thinnings, with hardwood chips to 
achieve a target chip density. As a result, non- 
normal distribution~ are likely to occur, making 
the mean density less useful. Some method to 
monitor this complex variation is needed so that 
adjustments can be made at the blending station. 
With such a method, a mill could monitor in- 
coming chips to make sure that fiber supply is 
providing the density that was paid for. But per- 
haps most important, the variation in density 
could be lowered so that there are fewer over- 
and undercooked chips. Such process control ca- 
pacity would result in fewer rejects from cus- 
tomers while optimizing the use of manufactur- 
ing resources. 

Near infrared spectroscopy (NIR) is now used 
to estimate solid wood density with R' values 
between 0.70 to 0.95 (Hoffmeyer and Pedersen 
1995; Schimleck et al. 2001a,b; Schimleck et al. 
2002; Schimleck and Evans 2003; Schimleck et 
al. 2003b; Via et al. 2003). Pulp yield can also 
be modeled with success through partial least 
squares regression (Michell and Schimleck 
1998). However, by using the area under the 
spectra curve (absorbance of light at each wave- 
length in the near infrared range) as an indepen- 
dent predictor of density, a more robust model 
can be developed for both juvenile and mature 
wood (Via et al. 2003). Gindl et al. (2001) also 
found the average absorbance from every wave- 
length in the NIR region, to correlate with den- 
sity. Manufacturing research shows NIR to pre- 
dict lumber stiffness from density although later 
research cautions against using NIR to stress 
grade wood originating from the pith (Meder et 
al. 2003; Thumm and Meder 2001; Via et al. 
2003). 

Manufacturers also need to be able to measure 
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the wood density across a range of species, 
moisture content, and temperature. For 54 spe- 
cies, multivariate equations built from NIR spec- 
tra can be used to estimate density, with high 
accuracy. (Antti et al. 1996; Schimleck et al. 
2001a; Schimleck et al. 2003). It is also possible 
to classify wood to a species before predicting 
density (Schimleck et al. 1996; Tsuchikawa et 
al. 2003). Such a procedure may help to decide 
which density calibration equation to use for dif- 
ferent species. 

Moisture may be an additional variable to add 
noise to absorbance response. Hoffmeyer and 
Pedersen (1995) found wood density prediction 
to be reasonably independent of moisture con- 
tent below fiber saturation point (FSP). Above 
FSP, robust calibration models for many chemi- 
cal and physical properties of chips can be built 
when moisture is allowed to vary (Axrup et al. 
2000). Also, during calibration, removal of hy- 
droxyl-associated wavelengths can result in 

sample dimensions. For an industrial setting, all 
these factors will vary, and the proper inclusion 
of this multiple variation is necessary when 
building calibration equations. Jonsson et al. 
(2004) provides a detailed experimental design 
for manufacturers to capture such variation and 
would be applicable to the calibration of chip 
density. 

For this paper, the objective was to determine 
the ability to use absorbance from the NIR re- 
gion to predict the variation in air-dry density of 
solid wood in tightly controlled laboratory con- 
ditions. Thus, histograms of actual density were 
compared to histograms from predicted density. 
Also, density standard deviations were com- 
pared with NIR-estimated standard deviations of 
density. Finally, the ability of NIR to classify 
solid wood into density categories was investi- 
gated. 

METHODS 
mar; robust calibration equations for density 

Ten longleaf pine (Pinus palustris) trees 41 
(Swierenga et al. 2000). If temperature varies, as years old were selected from a plantation on the 
in a manufacturing environment, then one needs Harrison Experimental Forest, which is owned 
to account for the temperature by either remov- and maintained by the Forest Service 
ing temperature-sensitive wavelengths before (Saucier, MS). Three trees of small 
calibration or include the full range of tempera- three trees of large diameter, and four trees in 
ture into the design of mode1 development the medium diameter range were randomly se- 
gesen and Lundqvist 2000; Wiilfert et al. 2000). lected. The location was 30.60 north and 89.10 

Absorbance in the NIR region may thus be an west. Prescribed fires were applied periodically 
applicable for measuring to the understory for the entire life of the stand 
the density distribution of wood. NIR absor- to keep down unwanted understory vegetation. 
bance is c~rrently being monitored for other Trees were planted 3.66 m apart from neighbor- 
wood properties in a manufacturing environ- ing trees in an equilateral triangle pattern, with 
ment. For example, histograms of estimated lig- one border row surrounding the site. Each of the 
nin can be successfully plotted to monitor online 10 trees was harvested and cut into bolts every 
variation and distribution (Jaaskelainen et al. 4.57 m in height, yielding 5 to 7 bolts. Each bolt 
2003). had an accompanying disk cut from the basal 

While not the objective of this experiment, end of the bolt. The specimens for density mea- 
success at measuring density variation from NIR surement were taken from the bolt while the 
signal would provide a tool to control the varia- spectra were acquired from the radial face of a 
tion of chip density going into the mill. For this strip ripped from the adjoining disk. The spectra 
experiment, the absorbance in the NIR range acquisition was taken within 30 mm of the actual 
was restricted to the radial face of wood, under density measurement and at the same age. Speci- 
controlled temperature and moisture content, mens for density measurement were taken at 
with a fixed distance between the probe and the rings 1, 4, 8, 16, 32, and the last ring of each 
wood sample, and with negligible variation in disk. Since the number of rings decreases up the 
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stem, not all of these rings were available at each 
height. The volume for air-dry density (8.1 % 
moisture content) was measured with calipers, 
and the weight was measured at equilibrium 
moisture content (EMC). The EMC had a mean 
of 8.1% and a standard deviation of 1.6%. Di- 
mensions were measured to the nearest 0.0025 
cm, while weights were measured to the nearest 
0.001 g. 

NIR absorbance was obtained using a Nexus 
670 FTTR spectrometer (Thermo Nicolet Instru- 
ments, Madison, WI). Scans were acquired at 
1-nm intervals between the wavelengths of 1000 
and 2500 nm. Forty scans were collected and 
averaged into one spectrum. During NIR scan- 
ning, the temperature was controlled at 22C0 zt 1 
with a mean relative humidity of 50%. The 
samples were laid on a flat surface under a light 
source and positioned such that the center late- 
wood portion of the ring was in the center of the 
5-mm-diameter spot-sized beam. 

To reduce data set and computation time, the 
spectra was reduced to 10-nm intervals by aver- 
aging (Schimleck et al. 2004). One hundred sev- 
enty samples were used to develop whole tree 
models while ninety-three samples were set 
aside for validation model building. In a separate 
report, multiple linear regression models and 
principal components regression showed slightly 
higher R~ values of 0.75, but the area under the 
spectra curve provided an interpretable model 
and was used for this study (Via et al. 2003). 

For data analysis, a linear model was devel- 
oped predicting density from the area under the 
spectra curve. Frequency distribution histograms 
were developed for actual and predicted data. 
For standard deviation estimation, the samples 
were randomly clustered into groups of three, 
and standard deviations in density were com- 
puted from the actual and predicted data. 

RESULTS AND DISCUSSION 

Model validation 

spectra shifted upward as density increased, the 
following model was chosen: 

where D is the density, A is the area under the 
curve, and E is error. An R' value of 0.71 was 
calculated when the actual density and predicted 
density were regressed (Fig. 1). Equation (I) ex- 
hibited better fits throughout the density range 
than other preliminary models. The fit was su- 
perior if the residuals around the regression line 
fell at equal variance throughout the density 
range and a mean of zero. Overfitting was de- 
termined to occur when the residuals around the 
predicted density did not randomly and normally 
distribute around zero for the validation data set. 
Overfitting may be defined as the instance 
where too many factors or independent variables 
were used to estimate the dependent variable 
density resulting in an inflated R2 value and bias 
in the prediction of density in future populations. 
Table 1 presents the summary statistics when 
predicting density from the area under the spec- 
tra curve. 

Equation (1) was important because it may 
encourage other researchers to follow a similar 
approach. The coefficient and intercept of many 
commercially important species would be useful 
information and may provide universal equa- 
tions although machine differences would have 
to be taken into account. 

Excessive extractives were often present 
nearby the pith. The additional extractives in- 
creased apparent density by adding additional 

0.4 0.5 0.6 0.7 0.8 0.9 

Actual density (glcm3) 

linear regression of wave- FIG. 1.  Regression analysis plot of air-dry density from 
lengths and principal components regression the area under the spectra curve versus actual density 
yielded the best R~ values. However, since the (n= 170). 
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TABLE 1. Summary statistics for density model and model distribution. 

Distribution Distribution Distribution 
Sample size RZ RMSE mean density kunosis skewness 

Calibration 170 0.7 1 0.052 0.59 0.546 s 0.690 s 
Validation 93 0.69 0.055 0.60 0.298 ns 0.626 s 

Note: s represents significant kurtosis or skewness while ns represents non-hignificance. 

mass for a given volume of wood. At the same 45 

time, the area under the curve increased dramati- 40 

cally near the pith due to excessive extractives 35 

(Via et al. 2003). It was thus suspected that ring 6 30 5 25 1 may not be appropriate for inclusion in the 
20 

calibration data set. While this paper did not Lt 15 
extract the wood samples, such information may ,o 
be ambiguous for those interested in density 5 
variation attributable to the cell wall. However, o 
when ring 1 data was removed from the calibra- O Y O  0428 0615 0603 0191 0778 Om6 

tion data set to avoid excessive extractives, no (a) Density (g/cm3) 

significant differences. in models occurred. 
Therefore, models encompassing ring 1 were in- 
cluded during the calibration stage. 

Distribution modeling 

Distribution properties were first considered 
for the calibration data. Histograms were devel- 
oped from the actual density and compared to 
the density predicted in Eq. (1). As seen in Fig. 
2a, the histograms for both actual density and 
NIR-predicted density deviated from the normal 
Gaussian. The slightly lower variation in the den- 
sity predicted from Eq. (1) was probably attrib- 
utable to the central limit theorem, which states 
that the variation in means is lower than the 
variation in the actual data that comprised the 
means (Freund and Walpole 1980). Since Eq. (1) 
predicts the mean density for a given absor- 
bance, the predicted density variation was ex- 
pected to be lower than the actual density varia- 
tion. The shape and variance of the actual and 
predicted density were quite similar. To test the 
legitimacy of Eq. (I), validation data from 93 
hold-out samples were computed and compared 
(Fig. 2b). 

The histogram of the predicted and actual 
density data, for the validation data, was almost 
identical (Fig. 2b). A small shift in wood density 
was apparent between the actual and predicted 

(h) Density (glcm3) 

FIG. 2. Histograms for actual and predicted density for 
(a) calibration (n = 170) and (b) validation data (n = 93). 

data values (Fig. 2b). In other words, the NIR 
model histogram appeared to slightly overesti- 
mate density as apparent from the shift toward 
higher density values. This did not occur in the 
calibration data, suggesting a slight bias in the 
model caused by random noise in selection of 
the validation samples. Another noteworthy 
point was the change in distribution shape when 
going from Figure 2a to 2b. The model output 
was mildly skewed to the right with the same 
variance as the actual data (Fig. 2b). It should 
also be noticed that the NIR calibration overpre- 
dicted some of the lower density samples for 
validation data set (Fig. 2a and b). Since the 
lowest density material commonly occurred near 
the pith and excessive extractives were common 
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in this region, perhaps local variations in extrac- 
tives content near the beam resulted in overes- 
timation of density. As explained earlier, exces- 
sive extractives were apparent to the eye near the 
low density pith and the corresponding spectra 
increased in mean absorbance by some unquan- 
tified amount resulting in an increase in the area 
under the spectra curve. However, it should be 
reiterated that removal of the ring 1 data from 
the calibration set did not change model predic- 
tions, perhaps due to a low sample size of data 
from the pith wood region. 

Being able to measure skewness or even bi- 
modal distributions would prove useful in manu- 
facturing. For example, if the distribution is 
skewed right, a pulp mill may adjust for the 
median density instead of the mean. For other 
applications, such as lumber drying, the kiln- 
drying schedule may be adjusted to ensure that 
no pieces of lumber are above the required 19% 
in moisture content. 

For Fig. 2a and b, both distributions were 
positively skewed as determined by statistical 
tests reported in Tabachnick and Fidell (1996) 
(Table 1). The skewness was attributable to the 
higher counts of high density rather than low 
density samples. Since density increased from 
pith to bark, there were more high than low den- 
sity samples resulting in a skewed distribution. 

By plotting out density histograms, manufac- 
turers would be able to notice subtle or large 
changes in material variability. Currently, many 
pulp manufacturers are reluctant to consider cat- 
egorizing their logs by age, height, or both, since 
such practices would require a heavy process 
change and financial capital. However, in New 
Zealand and Australia, such innovative practices 
are helping to make pulp and forest product 
manufactures more efficient by lowering the 
variation in final product properties. Such a vi- 
sual plot may encourage more inefficient mills 
to classify their raw material in the log yard in an 
attempt to lower or control density variation. 

It should be noted that this experiment was 
performed in the confines of a laboratory with a 
low wood moisture content and temperature 
range. In a manufacturing environment, the 
moisture will vary widely and may be above 

FSP. Any model developed by a mill should 
incorporate the complete range of temperature 
and wood moisture content in their calibration 
equation (Thygesen and Lundqvist 2000; Wiil- 
fert et al. 2000; Jonsson et al. 2004). 

Dispersion modeling 

Mapping out complete distributions may re- 
quire significant computing resources. It may be 
more useful to consolidate the data into a vari- 
ance or standard deviation estimate. The varia- 
tion in density will probably lower if a batch of 
similarly aged logs are processed at the same 
time, and could be detected through a standard 
deviation estimate. In a pulp mill, it is not uncom- 
mon for a truck load of similarly aged logs to be 
stacked and processed together, resulting in 
wide shifts in material density from day to day. 

Figure 3a demonstrates the ability to model 
the standard deviation of density from Eq. (1). 

(a) Actual standard deviation of density (glcm3) 

r 0.25 

@) Actual standard deviation of density (glcms) 

FIG. 3. Actual standard deviation for samples grouped 
into threes versus that predicted by NIR models (a) calibra- 
tion (n = 170) and (b) validation data (n = 93). 
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Using 3 replicates to determine a single point, an 
R2 of 0.61 was found between the actual density 
and that predicted by Eq. (1). Since only three 
samples were used to calculate each data value 
for the actual and predicted density, a higher R* 
may be possible in a manufacturing environment 
where more scans are possible. 

Figure 3b demonstrates the ability of Eq. (1) 
to model the standard deviation of density for 
the validation data. A slightly lower R2 = 0.55 
was observed when the NIR predicted standard 
deviations were regressed against the actual 
standard deviations of density. It was interesting 
to notice that both Figs. 3a and 3b exhibited 
more data points on the bottom side of the 1:l 
line than on the upper end, an indication of bias 
due to the slight deviation from normality as 
shown in Table 1. 

Figure 4 was constructed to estimate the 
sample size needed to closely assess the overall 
population standard deviation of density. 
Around 30 data points were needed to estimate 
the standard deviation to a k0.01 precision. As 
can be seen in Fig. 4, many more data points 
were needed to improve the estimation of the 
population standard deviation below k0.01 pre- 
cision. Thus, one might develop a control chart 
using 30 samples to estimate a single density 
variance data point. A moving average may be 
used to remove any autocorrelation between 
samples collected in a short time span (Jonsson 
et al. 2004). 

2 22 42 62 82 102 122 142 162 182 202 222 242 262 

Sample size 

Figure 5 shows the distribution of the standard 
deviation to be heavily skewed right. Since the 
standard deviation can not drop below zero and 
the probability of lower values being higher was 
intuitive, a right-sided skew was expected. This 
non-normal property would need consideration 
when developing a control chart for density. 
Otherwise, false alarms could occur when the 
estimated standard deviation falls outside the 
95% confidence limits as assumed under the 
normal distribution. 

Discrimination of density 

For some applications, it may be desirable to 
classify on-line chip density into a given set of 
classes instead of predicting a specific value. For 
example, a pulp mill may be satisfied with a low, 
medium, and high density classification given 
the wide range in density that may occur from 
tree to tree. This wide variation might occur if 
tree age is heterogeneous within the log yard or 
by the time a group of trees are processed. 

Table 2 demonstrates the ability to classify 
according to the number of classes/partitions as 
a function of the full range of density. In this 
table, the range of density was between 0.35 to 
0.9 grams per cubic centimeter. A partition of 2 
resulted in a separation of low, medium, and 
high density. When this was done, 99% of the 
specimens were properly classified. 

When going from 2 to 11 partitions, the per- 
cent correct classification column was expected 

Standard Deviation of density (g/cmS 
FIG. 4. Sample size versus estimated standard deviation 

with the known standard deviation of the population plotted FIG. 5. Histogram of density standard deviations for all 
as a dashed line. samples demonstrating the non-normal response. 
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TABLE 2. The ability of NIR to classifjt wood density for 
diflerent precision categories. 

Denslty rncrernenls Percent correcl 
picm3 Number of pa~t~tlons class~fical~on by NIR 

0.250 2 99 
0.167 3 9 1 
0.125 4 89 
0.100 5 74 
0.083 6 89 
0.07 1 7 72 
0.063 8 76 
0.055 9 76 
0.050 10 67 
0.045 11 78 

to drop since the error remained constant while 
the defined range in each class dropped. The 
drop in percent classification did occur, but not 
as distinctly as expected (Table 2). The reason 
for the variability in the correct classification 
with increased partions was attributable to the 
change in boundaries as shown in the increment 
column of Table 2. Each time a new partition 
was added, the increment became lower and all 
the classes changed to a narrower range resulting 
in different class boundaries. Thus, what might 
be correctly classified under one partition 
scheme might fall in the error region for another 
partitioning scheme. 

According to Table 2, when the density incre- 
ments were lowered to 0.045 grams per cubic 
cm, approximately 70% correct classification 
occurred. This agreed well with the variation in 
residuals of actual versus predicted density 
which fell at 0.06 or ~ 0 . 0 3  g/cm3, as determined 
by the 95% confidence interval. 

One limitation to the precision estimate was 
the diameter of the NIR spot size. A 5-mm di- 
ameter light beam in the near infrared range was 
used. However, some of the latewood and ear- 
lywood rings were as small as 0.3 mm in thick- 
ness, especially in the 30- to 40-year-old ring 
region, as measured from the pith outward. A 
typical difference between early and latewood 
density was 0.45 g/cm3. As a result, an error 
between what was measured gravimetrically and 
what was actually scanned occurred if even only 
a slight difference in proportion of latewood was 
introduced. Using a smaller spot size may thus 

yield improved R~ when predicting density from 
the area under the spectra curve (Eq. 1). 

SUMMARY AND CONCLUSIONS 

The mapping of density histograms, as pre- 
dicted from area under the absorbance response 
for a range of NIR wavelengths, was nearly 
equivalent to the actual density histograms for 
the calibration and validation data. When the 
ability to monitor the variation in a sequential 
manner was investigated, the use of NIR was 
successful at roughly estimating the variation 
with just three measurements and resulted in a 
precision of between 0.03 to 0.05 g/cm3. A 
sample size of 30 was recommended to estimate 
the standard deviation of density with a preci- 
sion of 0.01 g/cm3. Any measurements greater 
than 30, yielded much smaller incremental im- 
provement in precision for a given improvement 
in sample size. 

These results were based on a tightly con- 
trolled moisture and temperature range. More 
work beyond the scope of this paper is recom- 
mended to determine the precision of measuring 
density above fiber saturation point. What was 
critical about this work was that Eq. (1) was 
based on a fundamental positive relationship be- 
tween absorbance and density. Future research 
determining the coefficients and intercepts for 
various species may be useful in building a da- 
tabase of models. Also, this study was based on 
10 longleaf pine trees from the same site. For 
better model accuracy, a larger sample size from 
a broad range of longleaf sites would be re- 
quired. 
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