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Abstract. Although the possibility of complex dynamical behaviors—limit cycles,
quasiperiodic oscillations, and aperiodic chaos—has been recognized theoretically, most
ecologists are skeptical of their importance in nature. In this paper we develop a meth-
odology for reconstructing endogenous (or deterministic) dynamics from ecological time
series. Our method consists of fitting a response surface to the yearly population change
as a function of lagged population densities. Using the version of the model that includes
two lags, we fitted time-series data for 14 insect and 22 vertebrate populations. The 14
insect populations were classified as: unregulated (1 case), exponentially stable (three cases),
damped oscillations (six cases), limit cycles (one case), quasiperiodic oscillations (two cases),
and chaos (one case). The vertebrate examples exhibited a similar spectrum of dynamics,
although there were no cases of chaos. We tested the results of the response-surface meth-
odology by calculating autocorrelation functions for each time series. Autocorrelation pat-
terns were in agreement with our findings of periodic behaviors (damped oscillations, limit
cycles, and quasiperiodicity). On the basis of these results, we conclude that the complete
spectrum of dynamical behaviors, ranging from exponential stability to chaos, is likely to

be found among natural populations.

Key words: autocorrelation function; chaos: complex deterministic dynamics: delayed density de-
pendence; dynamical behaviors of populations; insect population dynamics; limit cycles: long-term
population records: nonlinear time-series modelling; quasiperiodicity: time-series analysis.

INTRODUCTION

The relative importance of density-dependent vs.
density-independent factors in determining population
abundances and dynamics is a central issue in ecology.
Much of the debate over this question has focused on
two opposing viewpoints (e.g., Nicholson 1954, An-
drewartha and Birch 1954). According to the first view-
point populations are regulated around a stable point
equilibrium by density-dependent mechanisms, while
the second one maintains that population change is
largely driven by density-independent factors. There
is, however, a third possibility. In addition to stable
point equilibria, density-dependent processes can pro-
duce complex population dynamics—limit cycles,
quasiperiodic oscillations, and aperiodic chaos. While
the possibility of such dynamics has been recognized
theoretically since the 1970s (May 1974, 1976), most
ecologists have remained skeptical of their importance
in nature.

One well-known attempt to determine the frequency
of various kinds of dynamic behaviors in insect pop-
ulations was made by Hassell et al. (1976). They con-
cluded that most natural populations show monotonic
damping (the most stable kind of equilibrium behav-
ior), with only 1 case (out of 24) of damped oscitlations,
| case of a limit cycle, and n» cases of chaos. Despite
a number of caveats listed 0y Hassell ct al. (1976), this
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result was very influential in convincing ecologists that
complex dynamics are rarely found in nature (e.g., Ber-
ryman and Millstein 1989, Nisbet et al. 1989). In this
paper we argue that the results obtained by Hassell et
al. (1976) largely resuited from their overly simpie
method of analysis. Most importantly, they used a sin-
gle-species model that lacked delayed density depen-
dence. Delayed density dependence, however, is ex-
pected to arise as a result of biotic interactions in
multispecies communities and as a result of population
structure (Royama 1981, Murdoch and Reeve 1987:
L. R. Ginzburg and D. E. Taneyhill, unpublished
manuscript), and in fact is found in many insect pop-
ulations (Turchin 1990). Using a single-species model
without delayed density dependence biases the results
in favor of stability, since complex dynamics are more
likely in higher-dimensional systems, and mistakenly
analyzing such systems in fewer dimensions will tend
to hide this complexity (Guckenheimer et al. 1977,
Schaffer and Kot 1985).

One approach to higher-dimensional analysis of eco-
logical time series has been advocated by Schaffer and
co-workers (Schaffer 1985, Schaffer and Kot 1985, 1986,
Kot et al. 1988), who used the method of “phase-space
reconstruction” in which unknown densities of inter-
acting populations are represented with 1agged dens:-
ties of :he studicd population. Scnaticr aiia Kot (19a0)
examined time series of several natural populations
and concluded that reconstructed dynamics of these
populations resemb’~d chaos. The major weaknr-
such analysis, howcver, is its reliance on visuai - aind
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therefore inherently subjective) examination of recon-
structed attractors (Berryman and Millstein 1989, Ell-
ner 1989).

In this paper we build on ideas of both Hassell et al.
(1976) and Schaffer and Kot (1986). Our goal is to
develop an objective methodology for extracting de-
terministic dynamics from short and noisy ecological
time series. Unlike Hassell et al. (1976) who specified
a particular equation with which to model data, we
used a general and flexible methodology described by
Box and Draper (1987), the response-surface meth-
odology (RSM). We followed Schaffer and Kot (1985)
by using lags to represent the multidimensional dy-
namics of the system (e.g., unknown densities of in-
teracting species or age structure). We used our meth-
odology to reconstruct deterministic dynamics from
long-term records of population fluctuations of 14 in-
sects (with some further comparisons to 22 mammal
and bird species).

Since the methodology proposed here is new, we do
not know how well it succeeds at reconstructing com-
plex dynamics from data. This is especially true for
detecting chaos. However, methodologies for detecting
periodic behaviors (e.g., limit cycles) are well under-
stood. Accordingly, we begin by using one of these
methodologies, which is based on estimating the au-
tocorrelation function (ACF) for each data set. We use
ACF patterns to characterize presence or absence of
periodic behaviors in natural populations, and then
compare ACF results to conclusions reached with the
response-surface methodology. Our logic is that if RSM
is not capable of extracting limit cycles from data, then
there is little hope that we can use it to detect chaos.
If, on the other hand, we can accurately reconstruct
one kind of nonequilibrium behavior, limit cycles, then
confidence in our ability to reconstruct another kind,
chaos, is correspondingly enhanced:

METHODS
The data set

We collected and analyzed every terrestrial animal
population time series we could obtain, subject to the
following criteria: (1) Data were annual and continu-
ous; if a time series had missing data, only the longest
uninterrupted period was used. (2) Time series had to
contain at least |8 yr of continuous census data, so
that no less than half the total degrees of freedom would
always be available for the error term in our response
surface model (see Reconstructing endogenous dynam-
ics . .., below). (3) The data were for a single locality
(spatial scale having been determined by the original
author). Where several time series were available for
the same species, we selected the longest one, to avoid
overrepresentation of much-studied species.

We exercised no selectivity beyond applying these
criteria. Nonetheless, our data set cannot be regarded
as representative of natural populations. since the ong-
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inal investigators' selection of populations for study is
inherently biased. In particular, forest pests exhibiting
outbreaks clearly are over-represented.

Considerations of space prevent us from fully dis-
cussing our results for all 36 time series (Table 1 and
Table 2). As a compromise, we show the complete
spectrum of results for all series in one group—insects.
We selected insects for detailed discussion partly be-
cause we are most familiar with this group. More im-
portantly, insect data sets tend to be more reliable,
since the majority of insect data were collected with
the specific goal of quantifying insect population fluc-
tuations, unlike the data extracted from fur returns or
bag records. Nevertheless, as will be seen later, many
of the patterns found in mammal and bird data sets
are very similar to insect patterns.

Investigating time series with autocorrelation
Junctions

As the first step in our analysis of the population
time series, we used the qualitative diagnostic tech-
niques based on estimating the autocorrelation func-
tion (ACF; Box and Jenkins 1974; for discussions of
ACF in ecological context see Finerty [1980], Nisbet
and Gurney {1982]). Prior to the analysis the values of
population density at each year, N, were log-trans-
formed, L, = log N,. The autocorrelation function is
estimated by calculating the correlation coefficient be-
tween pairs of values L,_, and L, separated by lag r
(r=1, 2,...). These correlation coefficients are then
plotted as a function of lag 7.

The shape of the estimated ACF provides insights
regarding two aspects of population dynamics: station-
arity and periodicity. A process is stationary if its dy-
namical properties do not change during the period of
the study. Stationary processes fluctuate around con-
stant mean levels, with constant variances. As will be
seen later, our ability to reconstruct the endogenous
dynamics of a system depends considerably on whether
they are stationary, or not. ACFs of stationary pro-
cesses are characterized by an exponential decay to
zero, either monotonic or oscillatory (Box and Jenkins
1974).

Other ACF patterns indicate various forms of non-
stationarity. A possible cause of nonstationary dynam-
ics is density independence, perhaps arnising because
density regulation only occurs at extreme levels—
*floors™ and *‘ceilings” —that were not encountered by
the population during the study. Such a population
undergoes a “‘random walk,” in which the Soouiaiin
gradually wanders away from its initial density. There
is, then, no true mean around which fluctuations occur.
Alternatively, environmentai changes cocumng on ..
time scale comparable to the length of the obsened
time series could produce a gradual trend in the mean.
In either of these situations, the ACF will decay slower
than exponentially. and will become increasingly neg-
ative at long lags (Fig. 1A).
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TABLE Summary of insect time series.
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Species

Phyllopertha horticola (garden chafer)
Choristoneura fumiferana (spruce budworm)
Dendrolimus pini (pine spinner moth)
Hyloicus pinastri (pine hawkmoth)
Dendroctonus frontalis (southemn pine beetie)
Panolis flammea (pine beauty moth)
Lymantria monacha (nun moth)

Bupalus piniarius (pine looper)

Hyvphantria cunea (fall webworm)

Vespula spp. (wasps)

Drepanosiphum platanoides (sycamore aphid)
Lymantria dispar (gypsy moth)

Zeiraphera diniana (larch budmoth)
Phyllaphis fagi (beech aphid)

Time period Reference
- ————

1947-1975 Milne 1984

1945-1972 Royama 1981

1881-1940 Schwerdtfeger 1941

1881-1930 Schwerdtfeger 1941

1958-1987 Turchin et al. 1991

1881-1940 Schwerdtfeger 1941

1900-1941 Bejer 1988

1881-1940 Schwerdtfeger 1941

1937-1958 Mormris 1964

1921-1946 Southwood 1967

1969-1987 Dixon 1990

1954-1979 Montgomery and Wallner 1987
1949-1986 Baltensweiler and Fischlin 1987
1969-1987 Dixon 1990

Nonstationarity can also be caused by externally
driven periodic changes in the mean. The resulting
dynamics have been called “‘phase-remembering qua-
si-cycles’” (Nisbet and Gurney 1982), since the exog-
enous forcing factor maintains the regularity of the
oscillation despite random perturbations in abun-
dances. The ACF of such a system might look like the
one in Fig. 1C: it does not decay to zero, but rather
oscillates around zero with constant amplitude. The
period of oscillation of the ACF is determined by the
periodicity of the external forcing factor. In ecology the
most important such periodic factor is seasonality. By
using only data sets that reported population densities
on a yearly basis, however, we have avoided the com-
plications of seasonality.

In addition to externally driven nonstationary pe-
riodicity, stationary periodicity may arise from the en-
dogenous dynamics of the system. Population fluctu-
ations with an endogenous periodic component (*'phase-
forgetting quasi-cycles,” Nisbet and Gurney 1982) will
be produced when the deterministic dynamics are
damped oscillations (around a stable point equilibri-
um), a limit cycle, or “‘weak" chaos (Poole 1977). The
ACF of these systems is characterized by an oscillatory
decay to zero (Fig. 1D). In contrast, a nonperiodic sta-
tionary system, resulting from exponential stability (of
a point equilibrium), will have a monotonically de-
caying ACF (Fig. 1B).

As a diagnostic tool the estimated ACF is much more
useful than “‘eyeballing™ the observed time series. By
averaging over, and thus smoothing, the noisy time
series, ACF reveals the periodic pattern in the data if
itis present. The average period of oscillations is readi-
ly determined by observing at which lags ACF achieves
its maxima. The speed with which ACF maxima ap-
proach zero reveals the strength of the periodic com-
ponent, that is. how long the process “remembers™ its
history. Finally, a quick, although crude, test of the
hypothesis that there is a periodic component in pop-
ulation fluctuations can be performed by determining
whether ACF at the !ag equal to one penod is greater
than the 95% confidence limit.

Using lags to represent multidimensional
dynamics of the system

Numerical changes of a population typically affect
and are in turn affected by the population abundances
of resources, natural enemies, and competitors. Thus,
in order to understand and predict how a population
changes with time, we need information about the
abundances of interacting species. However, usually
data are available only for a single population, and we
never know abundances of all populations in the com-
munity. This difficulty can be overcome by considering
the population change from the previous yeart — 1 to
the current year ¢ as a function of not only previous
year's density, N,_,, but also of densities N,_;, N,_,,
. ... The mathematical justification for this method-
ology is provided by a theorem proved by Takens
(1981), and the method has been successfully used in
many physical and chemical applications (e.g., Argoul
et al. 1987), where it is called “attractor reconstruction

TAasLz 2 Summary of vertebrate time senes.

Species Time period Reference

Lynx 1821-1934 Moran 1953
Foxes (1wo species) 1879-1930 Elton 1942
Colored fox 1834-1925 Elton 1942
Marten 1834-1925 Ehion 1942
Arctic fox 1834-1928 Elton 1942
Mink 1914-1987 Keith 1963
Muskrat 1914-1987 Keith 1963
Coyote 1914-1957 Keith 1963
Snowshoe hare 1847-1903 Leigh 1968
Varying hare 1884-1908 Naumov 1972
Squirre! 1933-1955 Naumov 1972
Belyak hare 1932-1954 Labutin 1960
Lynx 1932-1954 Labutin 1960
Fox 1932-1954 Labutin 1960
Wolf 19321954 Labutin 1960
Parchment beaver 1752~-1849 Jones 1914
Wolvenine 1782-1911 Jones 1913
Rabhbit 1862-19132 Mrddleton |04
Rutfed Grouse 1915-1972 Kaith 1963
Black-capped 1958~198) Loery and

Chickadee Nichols 1985
Heron 1933-1982 Lack 1v¢4
Gireat 11 1912-i941 Lack 193543
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AUTOCORRELATION FUNCTION

Fic. 1. Theoretical shapes of autocorrelation functions for (A) a process with nonstationary mean and no periodicity; (B)
a stationary process with exponential return to equilibrium; (C) a process driven by an exogenous periodic force, or phase-
remembering quasi-cycle; (D) a stationary process with endogenously generated periodicity. or phase-forgetting quasi-cycle.

in time delay coordinates” (Schaffer 1985, Ellner 1989).
Representing the unknown densities of interacting spe-
cies with delayed density dependence is also a vener-
able tradition in population ecology (Hutchinson 1948,
Moran 1953, Berryman 1978, Royama 1981). Essen-
tially, one replaces the “‘true’” multivariate system de-
scribing deterministic population change

N} =GN!.,, NI\, ..., NL)
N2=GXN!_,, N, ...,N:)
le = Gk(N‘l-“ le—lv ey le—l)

(where N/ is the density of species i at time ¢, and &
is a function describing the change in the density of
species / with respect to the densities of interacting
species) with a single equation for one species that
involves lags

N} =FPNl_,, Ni_s, ..., NL,). )

It is important to note that N' can refer not only to
populations of interacting species, but also to abun-
dances of different cohorts of the same species, if the
population has age, physiological, or spatial structure.

The above argument leads us to the following general
model:

NI= F(Nl-l’ Nl-Z"“'NI~p‘ ¢1)v (2)

where we have added the exogenous component ¢, to
the equation for population change. (‘“Endogenous™
refers to dynamical fecedbacks affecting the system, in-
cluding those that involve a time lag, e.g., natural en-
emies. ““Exogenous” refers to density-independent fac-
tors that are not a part of the feedback loop.) We will
model the exogenous component as a random, nor-
mally distributed variable with mean zero, and vari-
ance ¢°. The quantity p is the order of the process. that

is, the maximum lag time beyond which a past value
of population density has no direct effect on the current
population change (autocorrelations can persist much
longer than p, since past values of N affect intermediate
values, which in turn affect present).

Reconstructing endogenous dvnamics with
response-surface methodology

Our major goal in this paper is to develop a meth-
odology that would objectively determine the type of
the dynamic behavior that characterizes the endoge-
nous component of population change. Several ap-
proaches have been suggested, all based on the method
of reconstructing the attractor in time-delayed coor-
dinates described in the preceding section. One is to
estimate the dimensionality of the reconstructed at-
tractor (for the explanation of this approach see Ellner
[1989)). This approach appears to work for perfectly
accurate data even with relatively short time-series (50
points), although dealing with noisy data sets remains
problematic (Ellner 1989). Another approach relies on
the direct estimation of Lyapunov exponents from ex-
perimental time series (Eckmann and Ruelle 1985, Wolf
et al. 1985; for an explanation of Lyapunov exponents
see Abraham and Shaw [1983]). This method requires
enormous amounts of data: a minimum of several
thousand data points is needed to characterize a low-
dimensional attractor (Vastano and Kostelich 1986).
The method of Sugihara and May (1990). which uses
nonlinear forccasting to detect chaos in noisy time se-
ries, also requires substantial amounts of data (500-
1000 points in their applications).

Making as few assumptions as possible about the
nature of the process that has produced the obscrved
time series is a powerful feature of the above methods.
but it is also their weakness. Such nonparametric. mod-
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el-independent approaches typically require plentiful
data points. In ecology, where the length of time series
rarely exceeds 20-30 yr, one is forced to use a para-
metric approach, which is much more frugal with data
points.

The approach that we followed in this paper consists
of approximating the function Fin Eq. 2. This function
describes the behavior of trajectories on the recon-
structed attractor, and thus knowing its properties gives
us a complete description of the system dynamics. For
example, the dynamic behavior of F could be formally
characterized by calculating its dominant eigenvalue
and dominant Lyapunov exponent. Alternatively, one
may determine the type of dynamics simply by iter-
ating Eq. 2 on the computer, and observing the re-
sulting dynamics. We have followed the latter course
in this paper.

A potential problem associated with using a para-
metric approach, however, is that one may happen to
choose an inappropriate model with which to approx-
imate F. This possibility can be minimized by using
the general method of response-surface fitting de-
scribed by Box and Draper (1987). Briefly, this method
is similar to regular regression in that it employs poly-
nomials for approximating the shape of F. However,
both the response (dependent) variable and the pre-
dictor (independent) variables are transformed using
the Box-Cox power transformation (Box and Cox 1964),
with the transformation parameter (the exponent) be-
ing also estimated from the data. In the following par-
agraphs we describe the logic and details of the ap-
proach with which we have extracted endogenous
dynamics from ecological time series.

The first step is to decide on the number of lags p
to include in the model, that is, the “embedding di-
mension” (Schaffer 1985). Ideally, since the correct p
is unknown, one should start with a low-dimensional
model and then increase the dimension until the resuit
does not depend on further increase in dimensionality.
In practice, due to data limitations (primarily the length
of a time series) only a few lags can be examined. In
their attempt to extract deterministic dynamics from
data, Hassell et al. (1976) used a model with only one
lag (only direct density dependence):

N, =AN_i(1 + aN,_ )™ 3)

We took the next step and used a model with two lags
(in other words, we added delayed density depen-
dence). Thus, the general model (Eq. 2) becomes

No=mF(N N, ) 4)

Biological considerations indicate that F can be rep-
resented as a product of V, | and the per-capita re-
placement rate f(N,.,, .V, .. ¢). In general, /' will have
a simplier form, and can be approximated with a poly-
nomial of onc order lower than F. For exampile, il fis
a monotonically decreasing functionof VvV [ and V|
it can be approximated with a first-order polynomial
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(together with appropriate transformations of the pre-
dictor variables), while the function F will have a max-
imum and will need to be approximated with a qua-
dratic polynomial. These considerations lead us to the
following model:

Nl - NI—LRNFI‘ ‘\'I<:' ‘l)' (5)

We are now in position to estimate f by fitting a re-
sponse surface to the observed replacement rate
N/N,_, asafunctionof N,_, and N, _,. Highly nonlinear
dependence of the replacement rate on lagged popu-
lation densities in several data sets and in some the-
oretical models (P. Turchin and A. D. Taylor, personal
observation), necessitated using polynomials of at least
second order (see Box and Draper 1987). However,
polynomials by themselves are notoriously bad at ap-
proximating both the function and its derivative, es-
pecially for log-like functions that are characterized by
rapidly changing derivatives. Consider, for example,
data plotted in Fig. 2. Fitting a quadratic polynomial
to the nonlinear function represented by points, we find
that at high values of the predictor vaniable, the fitted
function has a positive slope, while the actual function
has a negative slope. Correct estimation of the slope
of fis crucial to the success of accurately reconstructing
endogenous dynamics, since whether an equilibrium
is stable or not, and whether the attractor is periodic
or chaotic will depend on the derivatives of /. Using
higher-degree polynomials does not help, even though
they provide a progressively better approximation to
/. since higher-degree polynomials “oscillate™ around
the true function (e.g., the cubic polynomial in Fig. 2).
In addition. such an approach is very wasiceful of de-
grees of freedom. A better approach, proposed by Box
and Cox (1964). is to power-transform cither predictor.
or response ariables, or botn, e logarithm s -at-
urally embedded in the power transtormation tamily,
since letting 8 —~ 0 is equivalent 10 a log transformation
(Box and Cox 1964; sce also Sokal and Rohif 1981:
423’4:!: )

While transforming predictor vanables affects oniy
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the functional shape of / transformation of the re-
sponse variable also affects the error structure. Popu-
lation data are non-negative, often right-skewed, and
more variable when the mean is large. Taking log-
transforms of the response variable, a standard pro-
cedure in population ecology (Moran 1953, Finenty
1980, Royama 1981, Pollard et al. 1987), tends to
alleviate all these problems at the same time (Ruppent
1989). Accordingly, we log-transformed the replace-
ment rate N,/N, ,, obtaining the rate of population
change, r, = log(N,/N, |). Defining Y & A and Y =
A7 ., the above argument leads to the following model
for extracting deterministic dynamics from data:

rn=a,+ a|X + a;Y + a||/¥2

+a,.Y? +a,, XY +¢. 6)
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This model has a total of eight parameters (six param-
eters defining the quadratic surface and two transfor-
mation exponents). The best transformations (6-val-
ues) of the predictor variables for any specific system
are unknown, and need to be estimated from the data.
The transformations were estimated by fitting the mod-
el (Eq. 6) by least squares for all combinations of 6,
and 6, equal to {~1, ~0.5,0, ..., 2.5, 3} (using log-
transforn when 6, = 0) and selecting the 8-values that
resulted in the smallest residual sum of squares (Box
and Draper 1987). The farther the estimated 6, is from
1, the more nonlinear is the transformation.

The type of RSM-extracted dynamics was deter-
mined by iteration of the model (Eq. 6) on the com-
puter. The initial values N, and N, were set equal to
the mean population density of the observed series.
This procedure decreased the likelihood of being mis-
led by multiple attractors, if any were present. The
simulated trajectory was plotted as an N, vs. N,_, phase
plot. If the trajectory approached a single point, the
system was classified as stable. If the trajectory settled
onto several points, the dynamics were classified as a
limit cycle. In many cases the trajectory would not
settle onto a finite number of points, but instead all
the points in the phase space would be lying on an
ellipse (after discarding transienis). Such dynamical be-
havior, called *‘quasiperiodic’” in mathematical liter-
ature, results when the period of the oscillation is ir-
rational, so that the solution never repeats itseif exactly
(Schaffer and Kot 1985). This kind of behavior is com-
monly found in discrete models of order > 1, such as
the model (Eq. 6). From the ecologist’s point of view,
the distinction between limit cycles and quasiperiodic
dynamics is not very important, so we will treat them
together as a single category. Finally, a “‘strange™ at-

ACF

N,

10 20 30

TEAR
FiG. 5. Population fluctuations in Dendroctonus tromalis

and 1ts autocorrelation function (ACF). Data are plotted on
the anthmetic (not log-transformed) scale.
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Tasg 3. Summary of reconstructed dynamics.
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Response-surface model result

Species Autocorrelation function

Fhyllopertha horticola Non-stationary No regulation
Non-perniodic

Choristoneura fumiferana Non-stationary or a very long cycle Exponentially stable

Dendrolimus pini Non-stationary Exponentially stablet
Non-periodic*

Hyloicus pinastri Non-stationary Damped oscillations
Non-periodic*

Dendroctonus frontalis Non-stationary Damped oscillationst
Non-periodic

Panolis flammea Stationary Exponentially stable
Non-periodic

Lymantria monacha Stationary Damped oscillations
Non-periodic

Bupalus piniarius Stationary Damped oscillations
Suggestive of periodicity

Hyphantria cunea Stationary Damped oscillations
Suggestive of periodicity

Vespula spp. Stationary Damped oscillations

Suggestive of periodicity

Drepanosiphum platanoides Stationary Limit cycle (2 yr)
Periodic (2 yr)

Lymantria dispar Stationary Quasiperiodicity (= 7 yr)
Peniodic (8.5 yr)

Zeiraphera diniana Stationary Quasiperiodicity (= 8 yr)
Periodic (9 yr)

Phyllaphis fagi Stationary Chaos
Suggestive of periodicity

* Autocorrelation function of the detrended series suggests periodicity.

+ Damped oscillations extracted from the detrended series.

1 Diverging oscillations and chaos extracted from the first and second half of the series, respectively.

‘tractor, indicating chaotic dynamics, can look much
like an ellipse that has been stretched and then folded.
Another possibility is for a strange attractor to be sep-
arated into several discontinuous pieces (see Schaffer
{1987] for the explanation of many routes to chaos,
and examples of phase graphs for various kinds of
attractors),

When iterating the model (Eq. 6) using an estimated
response surface with noise, or a chaotic response sur-
face without noise, the trajectory occasionally jumps

outside the range of observed N, values. This causes a
difficulty, because the shape of the response surface
where it is not constrained by data points may be quite
strange, e.g., the surface could blow up to infinity. In
order to prevent such occurrences, the values of the
function f{N,_,, N,.,), at the boundary of the box in the
N,_, — N,_, phase space defined by the maximum and
the minimum of the observed series, were extrapolated
for areas outside the box. In other words, when the
simulated trajectory left the minimum-maximum box,

TABLE 4. Estimated response-surface parameters, as defined by Eq. 6.

Species », ' ) a, a, a, a,. an
FPhyiiopertha horticola ~10 0.s -2.637 0.399 6.280 -0.003 -2.887 661
Choristoneura fumiferana ‘ -O.g ~-10 0.028 -0.282 -0.007 -0.081 0.000 .002
Dendrolimus pinni kX 1.9: 0.163 0.034 -0.665 0.000 0.089 024
Hyvloicus pinastri 1.5 2.0 0.339 -0.217 -0.326 0.029 0.005 .009
Dendroctonus frontalis 0.0 1.5 0.291 -1.157 0.193 =~0.211 -0.125 .386
Panolis flammea 0.5 30 1.306 ~2.660 -0.010 0.700 -0.000 .013
Lymantria monacha 0.0 -0 -1.370 -0.262 0.062 0.054 -0.002 037
Bupalus piniurius 30 1.0 0.655 0.003 -1.522 0.000 0.185 05
Hvphantria cunea 3o -10 0.408 -.061 ©.632 0.wl 0.17s 146
Vespula spp. - 0.5 00 $.241 -10.251 -0.646 3.986 0.303 .385
Drepanosiphum platanoides 1.0 -10 2722 -3.665 0.292 0.646 -0.027 108
Lymantria dispar -0.5 0.5 2.894 -0.208 -8.170 0.005 1.753 297
Zeiraphera dimana ;0.8 00 -4.174 4349  -1.790 -1.280 -0.124 n7
Phyllaphs 1am -8 30 BB ki - 2830 -0.452 0.564 u.001
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FiG. 6. Hyphantria cuneg: observed time series (A), and
trajectones predicted by response-surface model (RSM) with-
out noise (B), and with noise (C) (¢, is normally distributed
with mean zero and standard deviation o = 0.2).

the computer program evaluated the function SN,
N._,) at the point on the box boundary nearest to the
point (N,_,, N,_,).

REsuLTs
Autocorrelation function (ACF) patterns

Several insect data sets exhibit ACFs suggestive of
nonstationarity. The ACF of Phyllopertha horticola,
the garden chafer, does not decay to zero, but instead
becomes progressively more negative as the lag in-
creases (Fig. 3A). Two other populations appear to
oscillate around a nonstationary mean (Figs. 4 and 30).
The level around which the Dendrolimus pini popu-
lation is fluctuating appears to have first decreased, and
then increased, while the population of Hyloicus pi-
nastri exhibited a downward trend. We estimated the
long-term trend for Dendrolimus by fitting a quadratic
polynomial to M, as a function of time. Subtracting the
estimated trend from the time series (“*detrending™).
we obtain a series that appears to fluctuate around a
constant level, and whose ACF is of the periodic phase-
forgetting kind (although not quite significantly pen-
odic at 95% level) (Fig. 4). This example shows that
the ability of the ACF 1o detect periodic behaviors is
sensitive to whether the underlying process is station-
ary or not (see aiso Box and Jenkins 1974).
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The Dendroctonus frontalis population exhibited a
different kind of nonstationarity, in which the mean
stayed more or less constant, but the amplitude of the
oscillation increased with time, with both the peaks
becoming higher and the troughs lower (Fig. 5). One
possible explanation of this pattern is increased insta-
bility of the Dendroctonus population as a result of a
several-fold enrichment of this beetle's food base over
the last 30 yr (Turchin et al. 1991).

Several insect populations appeared to have periodic
dynamics: significant periodicity was found in the ACF’s
of three populations (Fig. 3E, F, and G). and the ACF
was suggestive of an oscillation in an additional four
cases (Fig. 3H, J, K, and L). In each of the three periodic
cases the ACF was of the phase-forgetting kind, that
is, the peaks in ACF decayed at higher lags. This sug-
gests that oscillations in these populations are driven
not by an exogenous periodic force, but by endogenous
dynamics.

Reconstructed endogenous dynamics

Applying response-surface methodology (RSM) to
the insect time series indicated the following spectrum
of endogenous dynamics: no regulation (one case); sta-
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FiG. 7. Zaraphera diniana: observed time series (A). and

trajectories predicted by response-surface model (RSM) with-
out noise (B). and with notse (C) (¢, is normally distnbuted
with mean scro und standard deviation ¢ = 0.2). Note that
the deterministic trajectory in (B) does notexactly repeat....i
every oscillation. This is an example of quasiperiodic behav-
1or. 1n which the period of oscillation is an irrauonal number.
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FiG. 8. Lymantria dispar: observed time series (A), and
trajectories predicted by the response-surface model (RSM)
without noise (B), and with noise (C) (¢, is normally distributed
with mean zero and standard deviation ¢ = 0.2).

ble, exponential damping (three cases); stable, oscil-
latory damping (six cases); limit cycle (one case); quasi-
periodicity (two cases); and chaos (one case) (Table 3).
The parameters defining estimated response surfaces
are listed in Table 4 for each insect species. In the
following subsections we will consider each of these
categories in turn, paying particular attention to wheth-
er the RSM results are consistent with those from the
ACFs, and to the effects of nonstationarity.

No regulation. — Iteration of the model estimated by
RSM for the garden chafer, Phyllopertha horticola, ex-
hibited unstable behavior: at first the population grew
at a very slow rate, and then it suddenly crashed (pop-
ulation density decreasing by about five orders of mag-
nitude). Regressions of 7, on lagged population densi-
ties N,_, and N,_, (Turchin 1990) did not indicate any
density regulation in this population, suggesting that
the garden chafer population may undergo a density-
independent “random walk.”” This conclusion is sup-
ported by the nonstationary shape of the ACF (Fig.
3A), and is in agreement with the previous analysis of
Milne (1984). With a very !arge number of data points
that were generated by a density-independent popu-
lation process, RSM would fit a level plane 10 the scat-
terplot of 7. as a function of N. , and N, .. Since we
had to deal with 2 imited amount of data. 1t appears

COMPLEX DYNAMICS IN ECOLOGICAL DATA

that RSM fitted the vagaries of the data rather than
the actual relationship, producing a meaningless result.

Equilibrium dynamics: exponential stability. —Of the
three cases classified by RSM as exponentially stable,
one (Dendrolimus pini) had an ACF that exhibited ev-
idence of nonstationarity. When the Dendrolimus data
were made stationary with quadratic detrending, RSM
suggested that this population may be in the oscillatory
damping regime, which agrees with the periodicity ex-
hibited by the ACF of the detrended series (Fig. 4).
This result demonstrates the sensitivity of RSM results
to nonstationarity.

The case of Choristoneura fumiferana presents a puz-
zle. Although it was suggested that this population un-
dergoes periodic outbreaks (Royama 1984), regressing
r, on lagged population densities did not detect any
signs of density-dependent regulation. The shape of the
ACEF is consistent with either of the two hypotheses:
that the budworm population cycles with a very long
period, or that it is nonstationary (for example, the
population could be tracking a long-term oscillatory
trend in its food base). It is clear that data on more
than a single outbreak will be needed before we are
able to reach any conclusions about this insect’s dy-
namics.

The final case for which RSM indicates exponential
stability is Panolis flammea. This finding is consistent
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Fi1G. 9. Drepanosiphum platanoides: obscrved time series
(A). and trajectories predicted by the response-surface model
(RSM) w ithout nosce ' B). and with noise (C) (¢, 15 <
distnbutcd with mean /¢ro and standard devation = -+ 2
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Fic. 10. The strange attractor extracted from the Phyllaphis time series. This graph was produced by iterating Eq. 6 2200
times on the computer. The first 200 points were discarded, and the last 2000 points were plotted in the N, vs. N,_, vs. NV, _,
phase space. To aid in visualizing the attractor, a projection of the attractor onto the N,_, vs. N,_, plane is also shown.

with the shape of the ACF, which rapidly decays to
zero and does not show any signs of periodicity there-
after. Thus, our result suggests that density fluctuations
of almost three orders of magnitude observed in this
population were produced by density-independent fac-
tors. Nevertheless, the population is regulated around
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Fic. 1. Phvllaphis fagi: observed time series (A), and

trajectories predicted by the response-surface model (RSM)
without noise (B), and with noise (C) (¢, is normally distributed
with mean zero and standard deviation o = 0.2).

an equilibrium, as indicated by the RSM result of ex-
ponential stability and significant regressions of 7, on
both N, (F,ss=7.31,P<.0l)and N, , (F, 55 = 7.00,
P < .05).

Equilibrium dynamics: damped oscillations. — Two
of the six cases classified as damped oscillations were
nonstationary. One, the southern pine beetle (Den-
droctonus frontalis), may have been misclassified, since
we do not know how to detrend a series with the kind
of nonstationarity exhibited by the southern pine beetle
(constant mean but increasing amplitude of oscilla-
tions). The second nonstationary case, Hvyloicus pi-
nastri showed a trend in the mean. Removing the trend
did not alter the RSM result, but did produce stronger
evidence for periodicity in the ACF (ACF was signif-
icantly negative at the half-period, but not significantly
positive at the full period).

The damped-oscillation dynamics reconstructed by
RSM for the stationary cases ran the complete spec-
trum from rapid to slow convergence to the equilib-
rium. The slowest convergence to equilibrium was
found in the fall webworm population (Fig. 6B), which
is one of the populations with ACF suggestively, but
not significantly periodic. It is known that populations
characterized by oscillations siowly converging to an
equilibrium will behave like noisy limit cycles in a
stochastic environment (e.g., Poole 1977). Thus, add-
ing a modest amount of stochastic variation to the
deterministic dynamics extracted by RSM produces
sustained pseudoperiodic oscillations (Fig. 6C).

Complex dvnamics: limit cycles and quasiperiodici-
ty. —The three insect time series that were classiiicd by
RSM as limit cycles or quasiperiodic dynamics were
also the ones for which the ACF had a significantly
periodic component (Fig. 3E, F, and G ond Table 3).
Morcover, the period of extracted oscillations was very
close to the observed period: 8 vs. 9 yr for larch bud-
moth (Fig. 7), 7 vs. 8.5 vr for gypsy moth (Fig. 8). and
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FiG. 12. Four mammal time series for which the autocorrelation function (ACF) was significantly periodic. (A) lynx. (B)

belyak hare, (C) colored fox, (D) arctic fox.

2 vs. 2 yr for sycamore aphid (Fig. 9). The relative
amplitude of the oscillation in the larch budmoth and
the sycamore aphid was also matched by the RSM
trajectories (Figs. 7 and 9), although RSM underesti-
mated the amplitude of gypsy moth oscillations. Such
a close correspondence between patterns observed in
actual time series and the time series generated by
response surfaces is a strong indication that RSM is at
the very least capable of correctly reconstructing pe-
riodic complex dynamics.

Complex dynamics: chaos.—Finally, in one case,
Phyllaphis fagi. RSM-extracted dynamics were of the
chaotic kind. The “strange’’ nature of the attractor ex-
tracted from this time senes is apparent when it is
plotted in the N, — N, , — N,_, phase space (Fig. 10).
It is not clear, however. how robust this result is. Does
the prediction of chaos depend on a delicate balance

of RSM-estimated parameters? We addressed this
question by performing a sensitivity analysis on the
data set. We excluded each data point in turn, esti-
mated the response surface for the reduced data set,
and determined its qualitative behavior. Our results
indicate that the prediction of chaos in this case was
not due to a freak combination of *‘just right” data
values, since chaos was extracted in 9 out of 17 reduced
data sets, with the rest divided between limit cycles (2
cases, with periods of 8 and $5), stability (3 cases). and
diverging oscillations leading to extinction (3 cascs).
RSM-predicted dynamics (Fig. 11B and O were
characterized by penods of exponenual growth tor 3=
4 yr (lines of constant slope on the log scale) followed
by crashes, as well as by periods of rapid oscillations.
Some features of the observed trajectory were similar
to RSM dynamics. Observed nime senes had two pe-
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FiG. 13. Colored fox: observed time series (A) (only the
middle 40 yr are shown), and trajectories predicted by the
response-surface model (RSM) without noise (B), and with
noise (C) (¢, is normally distributed with mean zero and stan-
dard deviation ¢ = 0.2).

riods of almost exponential growth (3 and 4 yr), with
the first period followed by a crash (what happened
afier the second period is unknown), and there was a
period of rapid oscillations during the middle portion
of the time series (Fig. 11A). On the other hand, the
actual trajectory did not exhibit a rigid regulatory ““ceil-
ing” that was a characteristic feature of simulations.
Another point of similarity between the observed and
extracted dynamics was that ACFs of both exhibited
weak periodicities, with a period of 7 yr in the data
and 5 yr in the RSM model.

At this time we know little about the ability of RSM
to extract deterministic chaos from data. In addition,
the data are sparse. Therefore we cannot make any
definite statements about whether endogenous dynam-
ics of the Phvllaphis population are chaotic or not.
However, the fact that RSM did extract chaotic dy-
namics in at least one case indicates that the region
within the parameter space where the model (Eq. 6) 1s
chaotic overlaps with the region enclosing parameter
estimates for actual insect populations. In other words,
one does not need to postulate biologically unrealistic
values of parameters to obtain chaotic dynamics within
the framework of the model (Eq. 6).
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Vertebrate data sets

The time series of vertebrate populations exhibited
a similar spectrum of ACF patterns. In particular, ex-
amination of ACFs suggested that there were four cy-
clic mammal populations (Fig. 12). Vertebrate popu-
lations also exhibited many of the same dynamic
behaviors that we found among insects: 3 cases exhib-
ited unstable oscillations leading to extinction, 6 cases
were classified as exponential damping, 11 cases as
damped oscillations, and 2 as quasiperiodic dynamics.
There were no cases of chaos. Of the four mammal
populations that had significantly periodic ACF, two
were found to have quasiperiodic RSM dynamics (lynx
and belyak hare). RSM-reconstructed dynamics for the
colored fox and the arctic fox were damped oscillations.
The damped oscillations regime is more plausible than
a four-point cycle for these populations because the
ACF peaks were of rather small magnitude: ACF at
the first peak, 4 yr (ACF[4]) was <0.4 (compare this
with the lynx ACF[10] = 0.6, or the larch budmoth
ACF[9] = 0.7). Such a sharp drop-off in ACF reflects
a much noisier-looking time series of the two foxes,
compared to either lynx or belyak hare, and therefore
is more consistent with RSM-indicated oscillatory
damping, than with limit cycles. The period of damped
oscillations predicted by RSM was 4 yr (Fig. 13). the
same as the pattern in the ACF. This result once again
demonstrates the ability of RSM to accurately mimic
the patterns observed in actual time series.

DisCuUssSiON

Our results are very different from those of Hassell
et al. (1976), who concluded that all but 2 of their 24
insect populations had exponentially stable point equi-
libria. By contrast, our response-surface methodology
(RSM) found exponential stability in only 3 of our 14
insect populations. The remaining populations were
classified as unregulated (one case), damped oscilla-
tions (six cases), limit cycles (one case), quasiperiodic
oscillations (two cases), and chaos (one case). The ver-
tebrate examples exhibited a similar spectrum of dy-
namics, although there were no cases of chaos. We do
not wish to claim that all of these classifications (es-
pecially the two most extreme ones, Phyllaphis and
Phyliopertha) are correct. This fairly small number of
examples does, however, include convincing cases of
periodic dynamics (damped oscillations, limit cycles,
and quasiperiodicity) and one case with parameter val-
ues at least approaching those producing chaos. We
conclude, then, that the complete spectrum of dynam-
ical behaviors. ranging Irom e¢xponential stability to
chaos, is likely to be found among natural populations.

The contrast between our findings and those of Has-
sell et al. (1976) resuited from three important differ-
ences in methodology: (1) fitting actual time-series data
instead of the two-step method of Hassell et al.. (2)
using a model with a much more flexible functional
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FiG. 14. Response function estimated for larch budmoth: (A) 7, is a function of N, only, and (B) r, is a function of both

N_iand N,_,.

form, and (3) accounting, albeit indirectly, for the mul-
tidimensional nature of population dynamics that could
be due to interactions with other populations within
the community, or to population structure. We believe
that the last of these differences is the most critical.
Indeed, fitting data with a first-order model (only terms
involving N,_, [the previous year’s density]), which in
all other respects was identical to model (Eq. 6), pro-
duced results very similar to those of Hassell et al.: 1 ]
cases of exponential stability, 2 cases of damped os-
cillations, and one limit cycle (the sycamore aphid). It
is revealing that this truncated model, as well as the
analysis of Hassell et al. (1976), classified the larch
budmoth population in the Engadine Valiey in Swit-
zerland (see Baltensweiler and Fischlin 1987) as ex-
ponentially stable, although this population is arguably
the most convincing ¢xample of a quasiperiodic at-
tractor in our data set. This misclassification happened
because in this population there is little effect of N, ,
on r, (the rate of population change), and a large cffect
of N, . (compare Fig. 14A to 14B). When we reduce

the dimensionality of the model by ignoring N,_., we
turn a clean, strongly nonlinear response surface in
three dimensions into a cloud of largely uninformative
points in two dimensions. Fitting the model 1o these
points then yields a gentle slope (Fig. 14A), indicating
mild direct density dependence and thus stability.
The flexibility of our RSM model, provided by in-
clusion of both the Box-Cox transformation and qua-
dratic terms, also was essential for correct classifica-
tion. For example, the quadratic term (although not
the second lag) was necessary for an accurate recon-
struction of the sycamore aphid dynamics. Fitting a
model with either one or two lags but no quadratic
terms leads (o a classification of damped oscillations.
in contrast to the conclusion of a two-point limit cycle
obtained by a quadratic RSM (with either one or both
lags). Simulations of the RSM model with no quadratic
terms produced an ACF that decayed to zero much
faster than the ACF of either the data or the full RSM
model. In addition, the full model came much closer
to reproducing the perfect alternation of increases und
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decreases seen in the observed series. Thus, the qua-
dratic term was essential for reaching the correct con-
clusion in this case.

The preceding examples suggest that leaving out im-
portant factors, such as delayed density dependence or
strong nonlinearities, may lead to incorrectly classi-
fving a population as more stable than it actually is.
In other words, use of overly simple models for re-
constructing endogenous dynamics from data may be
biased in favor of finding stability. This may well apply
to our own analysis, since regressions of r, on lagged
population densities indicate that lags of order higher
than two are not infrequent (P. Turchin and A. D.
Taylor, unpublished analysis). Analysis of cases with
higher dimensional response surfaces might well result
in additional findings of complex dynamics, though
the feasibility of such expanded analysis will be limited
by the relatively short length of a typical ecological
time series.

The methodology used in this paper is by no means
perfect. For instance, it cannot effectively handle sys-
tems with multiple equilibria. By applying a standard
model to each case, we also risk misclassifying some
instances by using an inappropriate model. As we not-
ed above, inclusion of additional lags may be appro-
pniate in a number of cases (subject to data constraints).
However, our model may be more complex than need-
ed for some systems; whether such overfitting in any
way biases the resuits is unknown but under investi-
gation.

Another limitation is that our approach currently
lacks any means for determining *“‘confidence inter-
vals™ around our dynamical predictions. Confidence
limits can be obtained for each parameter estimate of
the model (Eq. 6), but they tell us nothing about how
variation in parameter estimates will affect our con-
clusion about the type of extracted dynamics. Another
potential problem is the estimation bias that arises
when models such as Eq. 6 are fitted to data with
substantial observation errors (Walters and Ludwig
1987).

In closing we note that much controversy surround-
ing the issue of population regulation stems from the
one-dimensional viewpoint, held by many, that at-
tempts to place all populations within the spectrum
ranging from tight control around a stable point equi-
librium (regulation) to little or no dynamical feedback
in population density (no regulation). Bias against com-
plex endogenous dynamics is so strong that most dis-
cussions or criticisms of population regulation do not
mention (c.g., Wolda 1989)—or even dismiss out-
right—the possibility that populations may undergo
cyclic or chaotic fluctuations. The following quotations
show that this view is shared both by experimentalists:
“the ranty with which populations fluctuate cyclically
in nature ..." (Hairston 1989:6). and theoreticians:
“deterministic stability is the rule rather than the ex-
ception, at least with insect populations™ (Nisbet and

Ecology. Vol. 73, No.

Gumey 1982:55). Our results suggest otherwise, We
argue, thercfore, that natural populations cannot be
ranked within a one-dimensional spectrum going from
no regulation to tight regulation around a point equi-
librium. Instead, a two-dimensional scheme needs to
be emplqyed, with one axis indicating the relative
strength of the exogenous (density-independent) com-
ponent, and the other axis indicating the type of en-
dogenous dynamics.
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