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COMPLEX DYNAMICS IN ECOLOGICAL TIME SERIES'

PETER TURCHIN AND ANDREW D. TAYLOR
SOIIIhn" Forf'st Expm'melll Slatioll. 2500 Shmepon Hi,ll_y, PiIleVi/I,., LouisiQIIQ 71 J60 USA

Abstract. Although the possibility of complex dynamical behaviors-limit cycles.
quasiperiodic oscillations. and aperiodic chaos-has been recoanized theoretically. most
ecologists are skeptical of their imponance in nature. In this ~per we develop a meth-
odology for reconstructina endogenous (or deterministic) dynamics from ecolQlical time
series. Our method consists of fittina a response surface to the yearly population change
as a function of lagged population densities. Usina the version of the model that includes
two lags. we fitted time-series data for 14 insect and 22 venebrate populations. The 14
insect populations were classified as: unreaulated (I case). exponentially stable (three cases).
damped oscillations (six cases). limit cycles (one case). quasiperiodic oscillations (two cases).
and chaos (one case). The vertebrate examples exhibited a similar spectrum of dynamics.
although there were no cases of chaos. We tested the results of the response-surface meth-
odology by calculatina autocorrelation functions for each time series. Autocorrelation pat-
terns were in agreement with our findings of periodic behaviors (damped oscillations. limit
cycles. and quasiperiodicity). On the basis of these results. we conclude that the complete
spectrum of dynamical behaviors. ranaina from exponential stability to chaos. is likely to
be found among natural populations.

Key words: aulocorrelalion funclion; chaos; comp/~x d~t~ministic dynamics; d~/a)'t'd Mnsily d~-
Pf'ndenc~; dynamical behaviors of popu/41ions; ins«t populallon dynamICS; limil C)'C/~s; long-t~m
population r«ord.s; nonlinear time-snin mode/ling; quasi/H'rlodicilY; time-series analysIS.

. INTRODUC'TJON

The relative importance of density-dependent vs.
density-independent facton in determining population
abundances and dynamics is a central issue in ecolOJY.
Much of the debate over this question has focused on
two opposina viewpoints (e..., Nicholson 1954, An-
drewanha and Birch 1954). Accordina to the first view-
point populations are regulated around a stable point
equilibrium by density-dependent mechanisms. while
the second one maintains that population chanae is
largely driven by density-independent factors. There
is. however, a third possibility. In addition to stable
point equilibria. density-dependent processes can pro-
duce complex population dynamics-limit cycles,
quasiperiodic oscillations, and aperiodic chaos. While
the possibility of such dynamics has been recognized
theoretically since the 1970s (May 1974. 1976), most
ecologists have remained skeptical oftbeir importance
in nature.

One well-known attempt to determine the frequency
of various kinds of dynamic behavion in insect pop-
ulations was made by Hassell et aI. (1976). They con-
cluded that most natural populations show monotonic
damping (the most stable kind of equilibrium behav-
ior). with only 1 case (out of24) of damped oscillations.
I case of a limit cycle. and ~') cases of chaos. D.:o;pite
a number of caveal~ listed 0) Hassell 1.'1 ill. (1916). this

result was very inftuential in convincina ecologists that
complex dynamics are rarely found in nature (e.g., Ber-
ryman and Millstein 1989, Nisbet et aJ. 1989). In this
paper we aflue that the results obtained by Hassell et
al. (1976) laracly resulted from their overly simple
method of analysis. Most imponantly, they used a sin-
ale-species model that lacked delayed density depen-
dence. Delayed density dependence, however, is ex-
pected to arise as a result of biotic interactions in
multispecies communities and as a result of population
structure (Royama 1981, Murdoch and Reeve 1987:
L. R. Ginzbura and D. E. Taneyhill, unpublished
manuscript), and in fact is found in many insect pop-
ulations (Turchin 1990), Using a single-species model
without delayed density dependence biases the results
in favor of stability, since complex dynamics are more
likely in hiaher-dimensionaJ systems, and mistakenly
analyzing such systems in fewer dimensions will tend
to hide this complexity (Guckenheimer et al. 1977,
Schaffer and Kot 1985).

One approach to hiaher-dimensional analysis of eco-
logical time series has been advocated by Schaffer and
co-workers(Schaffer 1985,SchafferandKot 1985.1986,
Kot et al. 1988), who used the method of"phase-space
reconstruction" in which unknown densities of inter-
acting populatl,'ns are re-prcsented wIth I:!~ged d~"O;I-
ties or :he studl.:d population. Sc;;h41lfcr ..:1,.1 Kot (1 \}/\o,
examined time series of several natural populations
and concluded that reconstructed dynamics of these
;'!opulati('r1~ rtsem~~,'d ch3ns. The major "e3k~'
such anal)sl5. ho~t:vcr, is Its reliance on visual .!il.J
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inal investigators' selection of populations for study is
inherently biased. In particular. forest pests exhibiting
outbreaks clearly are over-represented.

Considerations of space prevent us from fully dis-
cussing our results for all 36 time series (Table I and
Table 2). As a compromise, we show the complete
spectrum of results for all series in one group-insects.
We selected insects for detailed discussion panly be-
cause we are most familiar with this group. More im-
ponantly, insect data sets tend to be more reliable.
since the majority of insect data were collected with
the specific goal of quantifying insect population fluc-
tuations, unlike the data extracted from fur returns or
bag records. Nevertheless, as will be seen later, many
of the patterns found in mammal and bird data sets
are very similar to insect patterns.

therefore inherently subjective) examination of recon-
structed attractors (Berryman and Millstein 1989. Ell-
ner 1989).

In this paper we build on ideas of both Hassell et al.
(1976) and Schaffer and Kot (1986). Our goal is to
develop an objective methodology for extracting de-
terministic dynamics from shon and noisy ecological
time series. Unlike Hassell et al. (1976) who specified
a panicular equation with which to model data. we
used a general and flexible methodology described by
Box and Draper (1987), the response-surface meth-
odology (RSM). We followed Schaffer and Kot (1985)
by using lags to represent the multidimensional dy-
namics of the system (e.g., unknown densities of in-
teracting species or age structure). We used our meth-
odology to reconstruct deterministic dynamics from
long-term records of population fluctuations of 14 in-
sects (with some funher comparisons to 22 mammal
and bird species).

Since the methodology proposed here is new. we do
not know how well it succeeds at reconstructing com-
plex dynamics from data. This is especially true for
detecting chaos. However, methodolOlies for detecting
periodic behaviors (e.g., limit cycles) are well under-
stood. Accordingly, we begin by using one of these
methodologies, which is based on estimating the au-
tocorrelation function (ACF) for each data set. We use
ACF patterns to characterize presence or absence of
periodic behaviors in natural populations. and then
compare ACF results to conclusions reached with the
response-surface methodolOJY. Our loaic is that ifRSM
is not capable of extracting limit cycles from data, then
there is little hope that we can use it to detect chaos.
If, on the other hand, we can accurately reconstruct
one kind of non equilibrium behavior ,limit cycles, then
confidence in our ability to reconstruct another kind,
chaos, is correspondingly enhanced:

Investigating time series with autocorrelation
functions

As the first step in our analysis of the population
time series, we used the qualitative diagnostic tech-
niques based on estimating the autocorrelation func-
tion (ACF: Box and Jenkins 1974: for discussions of
ACF in ecological context see Fineny [1980], Nisbet
and Gurney [1982». Prior to the analysis the values of
population density at each year, N" were log-trans-
formed, L, - loa Nt. The au~ocorrelation function is
estimated by calculating the correlation coefficient be-
tween pairs of values L,_. and L, separated by lag T
(1' = I, 2, . . . ). These correlation coefficients are then
plotted as a function of lag T.

The shape of the estimated ACF provides insights
regarding two aspects of population dynamics: station-
arity and periodicity. A process is stationary if its dy-
namical propenies do not change during the period of
the study. Stationary processes fluctuate around con-
stant mean levels, with constant variances. As will be
seen later, our ability to reconstruct the endogenous
dynamicsofa system depends considerably on whether
they are stationary, or not. ACFs of stationary pro-
cesses are characterized by an exponential decay to
zero, either monotonic or oscillatory (Box and Jenkins
1974).

Other ACF patterns indicate various forms of non-
stationarity. A possible cause of non stationary dynam-
ics is density independence, perhaps arising because
density regulation only occurs at extreme levels-
.,ftoars" and "ceilinp"-that were not encountered by
the population during the study. Such a population
undergoes a "random walk," in w~;,.h !h;; ..-,,;;'..:..:.,"
&radually wanders away from its initial density. There
is, then. no true mean around which fluctuations occur.
Alternatively. environmcnlal ..:iI..nges ~;"I.'urr:~c ~'~ .

time scale comparable to the length of the obsen'ed
time series could produce a gradual trend in the mean.
In either of these situations, the ACF will decay slowcr
than e~ponentially, and will become incrcasingly neg-
ative at long lags (Fig. I A).

METHo~

The data set

We collected and analyzed every ~trial animal
population time series we could obtain, subject to the
following criteria: (I) Data were annual and continu-
ous; if a time series had missing data, only the longest
unintenupted period was used. (2) Time series had to
contain at least 18 yr of continuous census data, so
that no less than half the total degrees offreedom would
always be available for the error tenn in our response
surface model (see Reconstructing endogenous d)'na,n-
ics . . . . below). (3) The data were for a single locality
(spatial scale having been determined by the original
author). Where several time series were available for
the same species, we selected the longest one. to avoid
overrepresentation of much-studied species.

We exercised no selectivity beyond applyina these
criteria. Nonetheless, our data set cannot be regarded
as representative of natural populations. since the orig-
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- I. Summary of insect time series.
- .-

Species

Ph.l-lloprrrha hart/cola (prden chafer)
Choristont'UFa .fumiferana (spruce budworm)
Dendrolimus pini (pine spinner moth)
H.\"loicus pinastri (pine hawk-moth)
Dendroaonus .frontalis (southern pine beetle)
Panolis }lammeD (pine beauty moth)
L \.mantr/a monacha (nun moth)
Fiupalus piniarius (pine looper)
H.\phantria CUrIeG (fall webworm)
I.espula spp. (wasps)
Drepanosiphum platanoides (sycamore aphid)
L.\.,nantria dispar <lYPSy moth)
Zeiraphera diniaM (larch budmoth)
Ph)'l/aphis fag; (beech aphid)

TABLE
--

Time period

1947-197'
1945-1972
1881-1940
1881-1930
19S8-1987
1881-1940
1900-1941
1881-1940
1937-19'8
1921-1946
1969-1987
1954-1979
1949-1986
1969-1987

Reference
-, ..

Milne 1984
Royama 1981
Schwerdtfeaer 1941
Schwerdtfeaer 1941
Turchin et aI. 1991
Schwerdtfeaer 1941
Bejer 1988
Schwerdtfeaer 1941
Morris 1964
Southwood 1967
Dixon 1990
MODt8Qmery and Wallner 1987
BalteDSweiler and Fischlin 1987
Dixon 1990

Using lags to represent multidimensional
dynamics of the s.vstem

Numerical chances of a population typically affect
and are in turn affected by the population abundances
of resources. natural enemies. and competitors. Thus.
in order to understand and predict how a population
chanaes with time. we need information about the
abundances of interacting species. However. usually
data are available only for a single population. and we
never know abundances of all populations in the com-
munity. This difficulty can be overcome by considering
the population change from the previous year t - I to

the current year t as a function of not only previous
year's density, N,-I, but also of densities N'_2' N,-"
. . . . The mathematical justification for this method-
ology is provided by a theorem proved by Takens
(1981). and the method has been successfully used in
many physical and chemical applications (e.g.. Argoul
et aI. 1987), where it is called "attractor reconstruction

TA8U 2 Summary or venebrate time series

Species Time period.
1821-1934
1819-1930
1834-192.5
1834-192.5
1834-192.5
1914-19.51
1914-19.51
1914-19.51
1841-1903
1884-1908
1933-19.55
1932-1954
1932-1954
1932-19.54
1932-19.54
1152-1849
11~2-1'111
1862-1'/:I~
191.5-1912
19.51-1913

IQ'4-ICJ52
1911-1"41

Reference

Moran 1953
Elton 1942
Elton 1942
Eton 1942
Elton 1942
Keith 1963
Keith 1963
Keith 1963
Leigh 1968
Naumovl971
Naumov 1971
~butin 1960
L'lbutin 1 Q60
L'lbutin 1960
~butln 1960
Jones 1914
jon...,. I'll J
\1!Jdl...lon 1, '..
Kclth 1963
Loeryand

Nichols 1985
L1A."k IQ(~
liII:.. I ~)4

Nonstationarity can also be caused by externally
driven periodic changes in the mean. The resulting
dynamics have been called "phase-remembering qua-
si-cycles" (Nisbet and Gurney 1982), since the exOl-
enous forcinJ factor maintains the reaularity of the
oscillation despite random perturbations in abun-
dances. The ACF of such a system miJht look like the
one in FiJ. I C: it does not decay to zero, but rather
oscillates around zero with constant amplitude. The
period of oscillation of the ACF is determined by the
periodicity of the external forcinJ factor. In ecolOJY the
most important such periodic factor is seasonality. 8y
usina only data sets that reported population densities
on a yearly basis, however, we have avoided the com-
plications of seasonality.

In addition to externally driven nonstationary pe-
riodicity, stationary periodicity may arise from the en-
doJenous dynamics of the system. Population fluctu-
ations with an end~ous periodic component ("phase-
foraettinJ quasi-cycles," Nisbet and Gurney 1982) win
be produced when the deterministic dynamics are
damped oscillations (around a stable point equilibri-
um), a limit cycle, or "weak" chaos (Poole 1977). The
ACF of these systems is characterized by an oscillatory
decay to zero (FiJ. 1 D). In contrast. a nonperiodic sta-
tionary system, resultina from exponential stability (of
a point equilibrium), will have a monotonically de-
cayinJ ACF (Fig. 18).

As a diapostic tool the estimated ACF is much more
useful than "eyeballinJ" the observed time series. 8y
averaging over, and thus smoothing, the noisy time
series, ACF reveals the periodic pattern in the data if
it is present. The average period of oscillations is readi-
ly determined by observing at which lags ACF achieves
its maxima. The speed with which ACF maxima ap-
proach zero reveals the strenJth of the periodic com-
ponent, that is. how long the process "rememb..'rs" its
history. Finally, a quick. Jlthough crude. test of the
hypothesis that there is a periodic component in p0p-
ulation fluctuations can be performed by determlninJ
whether ACF at the !:lg equal to one period is grcall'r
than the QS% conl1dcnce limit.

Lynx
Foxes (two species)
Colored fox
Manen
An:tic fox
Mink
Muskrat
Coyote
Snowshoe hare
Varyina hare
Squirrel
Belyak hare
Lynx
Fox
Wolf
Parchment beaver
Wolverine
Rahbll
Rulfcd Grouse
Black-capped

Chickadee
Heron
Circal I I
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FIG. I. Theoretical shapes of autocorrelalion functions for (A) a process with nonstationary mean and no periodicity; (B)
a stationary process with exponential return to equilibrium; (C) a process driven by an exogenous periodic force. or phase-
remembering quasi-cycle; (D) a stationary process with endogenously generated periodicity. or phase-forgetting quasi-cycle.

is, the maximum lag time beyond which a past value
of population density has no direct effect on the current
population change (autocorrelations can persist much
longer than p. since past values of N affect intermediate
values, which in turn affect present).

in time delay coordinates" (Schaffer 1985, Ellner 1989).
Representing the unknown densities of interacting spe-
cies with delayed density dependence is also a vener-
able tradition in population ecology (H utchinson 1948,
Moran 1953, Benyman 1978, Royama 1981). Essen-
tially, one replaces the "true" multivariate system de-
scribing deterministic population change

N,' = GI(N:-" Hl-I' . .., N~-I)
N; = G2(N:-1, Hl-" . . ., N~_'>

N," = GIr(Nl-a, Hi-., . . . , N:-1)

(where N,' is the density of species i at time t. and G'
is a function describing the change in the density of
species i with respect to the densities of interacting
species) with a single equation for one species that
involves lags

N,I=P(Nl-1,Nl-z,...,Nl-,,). (1)

It is important to note that Nt can refer not only to
populations of interacting species, but also to abun-
dances of different cohorts of the same species, if the
population has age, physiological, or spatial structure.

The above argument leads us to the following general
model:

N,=F(N"I,N'-2,...,N,_p,E,), (2)

where we have added the exogenous component E, to
the equation for population change. ("Endogenous"
refers to dynamical fcedbacks affecting the system, in-
cluding those that involve a time lag, e.g., natural en-
emies. "Exogenous" refers to density-independent fac-
tors that are not a part of the feedback loop.) We will
model the exogenous component as a random, nor-
mally distributed variable with mean zero, and vari-
ance (71. The quantity p is the order of the process. that

Reconstructing endogenous d.vnamics with
response-surface methodology

Our major goal in this paper is to develop a meth-
odology that would objectively determine the type of
the dynamic behavior that characterizes the endoge-
nous component of population change. Several ap-
proaches have been suggested. all based on the method
of reconstructing the attractor in time-delayed coor-
dinates described in the preceding section. One is to
estimate the dimensionality of the reconstructed at-
tractor (for the explanation of this approach see Ellner
[1989]). This approach appears to work for perfectly
accurate data even with relatively shon time-series (50
points). although dealing with noisy data sets remains
problematic (Ellner 1989). Another approach relies on
the direct estimation of Lyapunov exponents from ex-
perimental time series (Eckmann and Ruelle 1985. Wolf
et al. 1985; for an explanation of Lyapunov e~ponents
see Abraham and Shaw [1983». This method requires
enormous amounts of data: a minimum of several
thousand data points is needed to characterize a low-
dimensional attractor (Vastano and Kostelich 1986).
The method of Sugihara and May (1990). which uses
nonlinear forccasting to detect chaos in noisy time se-
ries. also requires substantial amounts of data (500-
1000 points in their applications).

Making as few assumptions as possible about the
nature of the process that has produced the observed
time series is a powerful feature of the above m~thods.
but It is also their weakness. Such non parametrIc. mod-



February 1992 COMPLEX DYNAMICS IN ECOLOGICAL DATA 293

'\,
~
",p~

.~~~:..:.:..:::~:!::~..:;;;.~ ~

(0) with

X
FIG. 2. Results of ftttina a function Y - aX""

polynomials of second (-) and third order (- --)

el-independent approaches typically require plentiful
data points. In ecology, where the length of time series
rarely exceeds 20-30 yr, one is forced to use a para-
metric approach, which is much more frupl with data
points.

The approach that we followed in this paper consists
of approximating the function Fin Eq. 2. This function
describes the behavior of trajectories on the recon-
structed attractor, and thus knowins its properties gives
us a complete description of the system dynamics. For
example, the dynamic behavior of F could be formally
characterized by calculatins its dominant eisenvalue
and dominant Lyapunov exponent. Alternatively, one
may determine the type of dynamics simply by iter-
ating Eq. 2 on the computer, and observing the re-
sultins dynamics. We have followed the latter course
in this paper.

A potential problem associated with usina a para-
metric approach, however, is that one may happen to
choose an inappropriate model with which to approx-
imate F. This possibility can be minimized by usins
the seneral method of response-surface flttins de-
scribed by Box and Draper(1987). Briefty, this method
is similar to regular regression in that it employs poly-
nomials for approximating the shape of F. However,
both the response (dependent) variable and the pre-
dictor (inde~dent) variables are transformed using
the Box-Cox power transformation (Box and Cox 1964),
with the transformation parameter (the exponent) be-
ing also estimated from the data. In the followins par-
agraphs we describe the logic and details of the ap-
proach with which we have extracted endosenous
dynamics from ecological time series.

The flnt step is to decide on the number of lags p
to include in the model, that is, the "embeddins di-
mension" (Schaffer 1985). Ideally, since the correct p
is unknown, one should start with a low-dimensional
model and then increase the dimension until the result
does not depend on funher increase in dimensionality.
In practice, due to data limitations (primarily the lensth
of a time series) only a few lags can be examined. In
their attempt to extract deterministic dynamics from
data, Hassell et aI. (1976) used a model with only one
la& (only direct density dependence):

N, - AN,-.(l + aN'-I)-d. (3)

We took the next step and used a model with two lags
(in other words, we added delayed density depen-
dence). Thus, the aeneral model (Eq. 2) becomes

N, - F(N, I' N, ~. I,). (4)

Biolosical considerations indicate that F can be rep-
resented 3S a product of V, I and the per-capIta re-
placement ratej(JV,-I, ,V, ,. t,). In geno:ral,J'wili have
a simpler form, and can be approximated with a poly-
nomial of one order lower than F. For example, Iff is
a monolonll:ally decr"';j~lns function of," I and .,.
it can be approximated with a first-order polynomial

y

I

- .'.

(together with appropriate transformations of the pre-
dictor variables), while the function F will have a max-
imum and will need to be approximated with a qua-
dratic polynomial. These considerations lead us to the
following model:

N, - N,_J"{N,_" ,V,-~, E,). (.5)

We are now in position to estimate / by fitting a re-
sponse surface to the observed replacement rate
N,IN'-I as a function of N'_I and N,_~. Hiihly nonlinear
dependence of the replacement rate on laaaed popu-
lation densities in several data sets and in some the-
oretical models (P. TUKhin and A. D. Taylor, personal
observation), necessitated using polynomials of at least
second order (see Box and Draper 1987). However,
polynomials by themselves are notoriously bad at ap-
proximating both the function and its derivative, es-
pecially for I~-like functions that are characterized by
rapidly changing derivatives. Consider, for example,
data plotted in Fig. 2. Fittina a quadratic polynomial
to the nonlinear function represented by points, we find
that at high values of the predictor variable, the fitted
function has a positive slope, while the actual function
has a negative slope, Correct estimation of the slope
of/is crucial to the success of accurately reconstructina
endoaenous dynamics. since whether an equilibrium
is stable or not, and whether the attractor is periodic
or chaotic will depend on the derivatives of.(. Using
higher-desree polynomials does not help, even though
they provide a progressively better approximation to
f. since higher-dqree polynomials "oscillate" around
the true function (e.g" the cubic polynomial in Fig. .2).
In addition. such an approach is very wasteful of de-
gr~ of freedom. A better approach, proposed by Bo~
and Cox (1964), is to power-transform either predictor.
or rl.'sponse \;Irlablcs. IJr rn)111 the I(:-~arllhm:, .It-
ur:llly cmbedded in the power translormatlon lam II)',
unce lettina' - 0 is equivalent to a loa transformation
(Box and Cox 1964; see also SobI and Rohlf 1981:
4.2~'::rll

Whllc transformana predictor vanablcs alrcct~ uni~
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This model has a total of eight parameters (six param-
eters defining the quadratic surface and two transfor-
mation exponents). The best transformations (8-val-
ues) of the predictor variables for any specific system
are unknown, and need to be estimated from the data.
The transformations were estimated by fitting the mod-
el (Eq. 6) by least squares for all combinations of 8.
and 82 equal to {-I, -0.5,0, . ..,2.5,31 (using 10&-
transform when 8, = 0) and selecting the 8.values that
resulted in the smallest residual sum of squares (Box
and Draper 1987). The farther the estimated 8, is from
I, the more nonlinear is the transformation.

The type of RSM-extracted dynamics was deter-
mined by iteration of the model (Eq. 6) on the com-
puter. The initial values HI and H2 were set equal to
the mean population density of the observed series.
This procedure decreased the likelihood of beina mis-
led by multiple attractors, if any were present. The
simulated trajectory was plotted as an Nt vs. Nt-I phase
plot. If the trajectory approached a single point, the
system was classified as stable. If the trajectory settled
onto several points, the dynamics were classified as a
limit cycle. In many cases the trajectory would not
settle onto a finite number of points, but instead all
the points in the phase space would be Iyina on an
ellipse (after discarding transients). Such dynamical be-
havior, called "quasiperiodic" in mathematical liter.
ature, results when the period of the oscillation is ir-
rational, so that the solution never repeats itself exactly
(Schaffer and Kot 1985). This kind of behavior is com.
monly found in discrete models of order> I, such as
the model (Eq. 6). From the ecologist's point of view,
the distinction between limit cycles and quasiperiodic
dynamics is not very important, so we will treat them
together as a sinaie category. FinaUy, a "Stranae" at.
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FIG. 4. The time series of Drndrol;mus pin; and its au-
tocorrelation function (ACF). (A) actual data; (B) quadrati-
cally dettended data.
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FIG. 5. Population ftuctuationl in Df'nd'I,,',onllS ",'",uils
and Its autocorrclatlon function (A('F). Dala a~ plolll-d on
the anlhmetlc (not loa-lranslorrnl-dl sc:alc.

the functional shape of f. transformation of the re-
sponse variable also affects the error structure. Popu-
lation data are non-negative. often ript-skewed. and
more variable when the mean is larae. Taking log-
transforms of the response variable. a standard pro-
cedure in population ecology (Moran 1953. Fineny
1980. Royama 1981. Pollard et al. 1987). tends to
alleviate all these problems at the same time (Ruppen
1989). AccordinalY. we loa-transformed the replace-
ment rate N,I N, ,. obtaining the rate or population
change. " . 10g("',I.\', .). Defining X - I'~ I and Y 0=
I\~ :. the above argument leads to the rollowing model
for extracting deterministic dynamics rrom data:

" ~ an + a,X + alY + ailX'

+- a~:~ + a,~.rY + f,. (6)
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J~3. Summary of reconstructed dynamics.

Species Autocorrelation function Response-surface model result
Phy/lopertha horticola No regulation

Choristoneura fumiferana
Dt"ndro/imus pini

Exponentially stable
Exponentially stablet

H}'/oicus pinastri Damped oscillations

Dendroctonus froma/is Damped oscillations;

Pano/is flammea Exponentially stable

Lymantria monacha Damped oscillations

Bupa/us piniarius Damped oscillations

Hyphantria cuni'a Damped oscillations

Vt'spula spp. Damped oscillations

Drepanosiphum platanoides Limit cycle (2 yr)

Lyman/ria dispar Quasiperiodicity (- 7 yr)

Zeiraphera di"iana Quasi periodici ty (~ 8 yr)

Ph,vl/aphis fag; Chaos

Non-stationary
Non-periodic
Non-stationary or a very lonl cycle

Non-stationary
Non-periodic.
Non-stationary
Non-periodic.
Non-stationary
Non-periodic
Stationary
Non-periodic
Stationary
Non-periodic
Stationary
Sugestive of periodicity

Stationary
Sugestive of periodicity

Stationary
Suuestive of periodicity

Stationary
Periodic (2 yr)

Stationary
Periodic (8.5 yr)

Stationary
Periodic (9 yr)
Stationary
Suuestive of periodicity. Autocorrelation function of the detrended series suaeSt5 periodicity.

t Damped oscillations extracted from the detrended series.
* Diverling oscillations and chaos extracted from the first and second half of the series, respectively.

'tractor, indicating chaotic dynamics, can look much
like an ellipse that has been stretched and then folded.
Another possibility is for a strange attractor to be sep-
arated into several discontinuous pieces (see Schaffer
[1987] for the explanation of many routes to chaos,
and examples of phase graphs for various kinds of
attractors),

When iterating the model (Eq, 6) using an estimated
response surface with noise, or a chaotic response sur-
face without noise, the trajectory occasionally jumps

TABLE 4. Estimated response-surface parameten, as defined by Eq. 6.

Species t; ',~ '~ Go Q1 a" a" -ICI

,-I1~

;~~
I.'
0.0
0.'
0.0
3.0
3.0
0.'
1.0

-0.5
,0.5

2..1

0:1
-1#

l.oj
2.0
I.'
3.0

- 1.0,

1..0.
-1.0

0.0
-1.0

0.5
0.0
30

- 2.637
0.028
0.163
0.339
0.~91
1.306

-1.370
0.655
0.408
~.241
2.722
2.894

-4.174
1.131!

0.399
-0.282

0.034
-0.217
-1.157
~ 2.660
-0.262

0.003
-().(>61
-10.251- 3.665
-0.208

4.34q
.. "- '-

6.280
-0.007

-0.66.5

-0.326

0.193
-0.010

0.062
-1.522

J632
-0.646

0.292
-8.170
-1.7QO
-0.452

-0.003

-0.081

0.000
0.029

.-0.211
0.700
0.054
0.000
U.WI
3.986
0.646
0.005

-1.~80
0.564

-2.817

0.000

0.089
0.005

-0.125
-0.000
-0.002

0.115
G.I:"/)
0.303

-0:027
1,1'3

-0.124

u,OOl

Phyllopertha hortico/a
Choristoneura fumifi'rana
Dt'ndro/imus pinni
JIy/oicus plnastri
Dt'ndroctonus frontalis
Pano/isllammi'a
Lr,nantria monacha
Bupa/us Plnlurius
I/.rphantria ,unea
Vi'spula spp.
Dri'panosiphum p/atanoldn
Lymanlria dlSpar
Zetrap"rra dinzana
PhrllaphI5/1l'"

outside the range of observed N, values. This causes a
difficulty, because the shape of the response surface
where it is not constrained by data points may be Quite
strange, e.g., the surface could blow up to infinity. In
order to prevent such occurrences, the values of the
function/(N,_., N,_:>, at the boundary of the box in the
N,_, - N'_2 phase space defined by the maximum and

the minimum of the observed series, were extrapolated
for areas outside the box. In other words, when the
simulated trajectory left the minimum-maximum box,

.661

.002

.024

.009

.386

.013

.037
1J()5
1!4t1
.JSS
.108
.297
.s'"7
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The Dendroctonus frontalis population exhibited a
different kind of nonstationarity, in which the mean
stayed more or less constant, but the amplitude of the
oscillation increased with time, with both the peaks
becoming higher and the troughs lower (Fig. 5). One
possible explanation of this pattern is increased insta-
bility of the Dendroctonus population as a result of a
several-fold enrichment of this beetle's food base over
the last 30 yr (Turchin et al. 1991).

Several insect populations appeared to have periodic
dynamics: significant periodicity was found in the ACFs
of three populations (Fig. 3E, F, and G), and the ACF
was suggestive of an oscillation in an additional four
cases (Fig. 3H,J, K, and L). In each of the three periodic
cases the ACF was of the phase-forgetting kind, that
is, the peaks in ACF decayed at higher lags. This sug-
gests that oscillations in these populations are driven
not by an exogenous periodic force, but by endogenous
dynamics.

f'0.1.0
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'\ Reconstructed endogenous d.vnamics

Applying response-surface methodology (RSM) to
the insect time series indicated the following spectrum
of endogenous dynamics: no regulation (one case); sta-

v ,
\I
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FIG. 6. Hyphantria cunea: observed time series (A), and
trajectories predicted by response-surface model (RSM) with-
out noise (8), and with noise (q (t, is normally distribuled
with mean zero and standard deviation IT - 0.2).
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~the computer program evaluated the function /(N,_"
N,-J at the point on the box boundary nearest to the
point (N,-.. N,-J. 4

8}
3 1\ 1"\: ~

j
RESULTS

AUlOCO"ela!ionjunction (ACF) patterns ~
Several insect data sets exhibit ACFs suggestive of g

nonstationarity. The ACF of Phyllopertha horticola, .-I

the garden chafer, does not decay to zero, but instead
becomes progressively more negative as the lag in-
creases (Fig. 3A). Two other populations appear to
oscillate around a nonstationary mean (Figs. 4 and 3C).
The level around which the Dendrolimus pini popu-
lation is fluctuating appears to ha ve first decreased, and
then increased, while the population of Hyloicus pi-
nas!ri exhibited a downward trend. We estimated the
long-term trend for Dendro/imus by fitting a Quadratic
polynomial to Nt as a function of time. Subtracting the
estimated trend from the time series ("detrending").
we obtain a series that appears to fluctuate around a
constant level. and whose ACF is of the periodic phase-
forgetting kind (although not Quite significantly peri-
odic at 95% level) (Fig. 4). This example shows that
the ability of the ACF to detect periodic behaviors is
sensitive to whether the underlying process is station-
ary or not (see also Box and Jenkins 1974).
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FIG. 7. /./'/ruph('ra dIIllUIIU: obsenl'd tim... ~...n...s (AI. and

trajectorIes predicttd by r...sponse-surtace model (RSMI ~'ith-
out noise (8). and with noise (C) (f, is normally distnbuttd
with mean L.:ru oind stan~rd deviation" - 0.2). Note that
the dcterministic trajectory in (8) does not e\actly repeat t ."~. t

t'v~ry oscillation. This is an ~x3mpl~ of quasI pen odic ~hav-
lor. In which thl." period of oscillation IS an irrational number.
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that RSM fitted the vapries of the data rather than
the actual relationship, producinl a meaningless result.

Equilibrium dynamics: exponemial stability. -Of the
three cases classified by RSM as exponentially stable,
one (Dendrolimus pini) had an ACF that exhibited ev-
idence of non stationarity. When the Dendrolimus data
were made stationary with quadratic detrending, RSM
sugested that this population may be in the oscillatory
damping regime, which agrees with the periodicity ex-
hibited by the ACF of the detrended series (Fig. 4).
This result demonstrates the sensitivity ofRSM results
to nonstationarity.

The case of Choristoneurafumiferana presents a puz-
zle. Althou&h it was suaested that this population un-
dergoes periodic outbreaks (Royama 1984), regressing
r, on !ailed population densities did not detect any
signs of density-dependent reaulation. The shape of the
ACF is consistent with either of the two hypotheses:
that the budworm population cycles with a very long
period. or that it is nonstationary (for example, the
population could be trackina a long-term oscillatory
trend in its food base). It is clear that data on more
than a sinaie outbreak will be needed before we are
able to reach any conclusions about this insect's dy-
namics.

The final case for which RSM indicates exponential
stability is Panolisflammea. This finding is consistentYEAR

FIG. 8. Lyman/ria dispar: observed time series (A), and
trajectories ~ictcd by the response-surface model (RSM)
without noise (8), and with noise (C) (f, is nonn"ly distributed
with mean zero and standard deviation G' = 0.2).
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ble. exponential damping (three cases); stable. oscil-
latory damping (six cases); limit cycle (one case); quasi-
periodicity (two cases); and chaos (one case) (Table 3).
The parameten defining estimated response surfaces
are listed in Table 4 for each insect species. In the
following subsections we will consider each of these
categories in turn. paying particular attention to wheth-
er the RSM results are consistent with those from the
ACFs. and to the effects of non stationarity.

No regulation.-lteration of the model estimated by
RSM for the garden chafer. Phyl/opertha hort;cola, ex-
hibited unstable behavior: at first the population grew
at a very slow rate. and then it suddenly crashed (pop-
ulation density decreasinl by about five orders of mag-
nitude). Regressions of r, on lalled population densi-
ties Nt ~ I and N'_2 (Turchin 1990) did not indicate any
density regulation in this population. sugesting that
the garden chafer population may undergo a density-
independent "random walk." This conclusion is sup-
poned by the nonstationary shape of the ACF (Fia.
3A). and is In agreement with the previous analysis of
Milne (1984). With a v~ry !;lrgc numhcr ofdala points
that were aenerated by a density-independent popu-
lation process. RSM wouki fit a level plane to Ihe scat-
terplot of r. as a function of N. I and N..~, Since we
had to deal with a limited amount of dat.1. II .1pJ)l.'.1rs

L-
2~

~
YEAR

FIG. 9. D'I'panosiphuM p/alanoldes: observed time series
(AI, and trajectories predicted by the ~sponse.surfar:e model
fRSMI u'~houl nol~ ,III. .lnd ~ilh nol~ () (t, I' ~ '.-',;:i.
distnbutcd with ml:.ln Icro and sundard dl:vrallun " ., _:
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with the shape of the ACF, which rapidly decays to
zero and does not show any signs of periodicity there-
after. Thus, our result suggests that density fluctuations
of almost three orders of magnitude observed in this
population were produced by density-independent fac-
tors. Nevertheless, the population is regulated around

i:
01
0

an equilibrium, as indicated by the RSM result of ex-
ponential stability and significant regressions of r, on
both N,_, (F,ss = 7.31, P < .01) and N'-2 (F,ss = 7.00,
P < .05).

Equilibrium dynamics: damped oscillations. - Two
of the six cases classified as damped oscillations were
nonstationary. One, the southern pine beetle (Den-
droctonusfrontalis), may have been misclassified, since
we do not know how to detrend a series with the kind
of non stationarity exhibited by the southern pine beetle
(constant mean but increasing amplitude of oscilla-
tions), The second nonstationary case, H.vloicus pi-
nastri showed a trend in the mean. Removing the trend
did not alter the RSM result, but did produce stronger
evidence for periodicity in the ACF (ACF was signif-
icantly negative at the half-period. but not significantly
positive at the full period).

The damped-oscillation dynamics reconstructed by
RSM for the stationary cases ran the complete spec-
trum from rapid to slow convergence to the equilib-
rium. The slowest convergence to equilibrium was
found in the fall webworm population (Fig. 68). which
is one of the populations with ACF suggestively. but
not significantly periodic. It is known that populations
characterized by oscillations slowly converging to an
equilibrium will behave like noisy limit cycles in a
stochastic environment (e.g., Poole 1977). Thus, add-
ing a modest amount of stochastic variation to the
deterministic dynamics extracted by RSM produces
sustained pseudoperiodic oscillations (Fig. 6C).

Cofnplc.\: d.vnafnics: limit c.vclt's and quasiperiodici-
/.v. - The three insect time series that Wl're C!3SS;:;':u by
RSM as limit cycles or quasiperiodic dynamics ".ere
also the ones for which the ACF had a significantly
periodic ~I.)mponent (Fig. 3E. F, and G ::1 T;ob:..- 3).
Moreover, the period of extracted oscillations was very
close to the observed period: 8 vs. ') yr for larch bud-
moth (Fig. 7), 7 vs. 8.5 yr for gypsy moth (Fig. 8). and

10 20

YEAR

FIG. II. Ph vI/aphis jagi: observed time series (A). and
trajectories predicted by the response-surface model (RSM)
without noise (B), and with noise (C) (f, is normally distributed
with mean zero and standard deviation t1 = 0.2).

:.: ~~~::::c=:::=:,,:= ::::£>

FIG. 10. The stranae attractor extracted from the Phyllaphis time series. This pph was produced by iterating Eq. 6 2200
times on the computer. The first 200 points were discarded, and the last 2000 points were plotted in the N, vs. N'-I vs. ;V,-,
phase space. To aid in visualizing the attractor. a projection of the attractor onto the N'-I vs. N,_, plane is also shown.
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FIO. 12. Four mammal time series for which the autocorrelation function (ACf) was sianificantly periodic. (A) lynx. (8)
belyak hare. (C) colored fox. (0) arctic fox.

of RSM-estimated parameters? We addressed this
question by performing a sensitivity analysis on the
data set. We excluded each data point in turn, esti-
mated the response surface for the reduced data set,
and determined its qualitative behavior. Our results
indicate that the prediction of chaos in this case was
not due to a freak combination of "just right" data
values, since chaos was extracted in 9 out of 17 reduced
data sets, with the rest divided between limit cycles (2
cases, with periods of 8 and 5), stability (3 cases), and
diverging oscillations leading to extinction (3 cases).

RSM-predicted dynamics (Fig. 118 and C) \\ere
characterized by penods of exponentl:!! growth I"f -'-
4 yr (lines of constant slope on the loa scale) followed
by crashes, as well as by periods of rapid oscillations.
Some features of the observed trajectory were similar
to RSM J:-namics. Observed time senes had t"o r~-

2 vs. 2 yr for sycamore aphid (Fig. 9). The relative
amplitude of the oscillation in the larch budmoth and
the sycamore aphid was also matched by the RSM
trajectories (Figs. 7 and 9), although RSM underesti-
mated the amplitude of gypsy moth oscillations. Such
a close correspondence between patterns observed in
actual time series and the time series generated by
response surfaces is a strong indication that RSM is at
the very least capable of correctly reconstructing pe-
riodic complex dynamics.

Comple.t" dynamics: chaos.-Finally. in one case.
Ph.vl/aphisfaKi. RSM-extracted dynamics were of the
cnaollc kind. The "strange" nature of the attractor ex-
tracted from this time senes is apparent when it is
plotted in the N, - Nt I - N,.! phase space (Fig. 10).
It is not dear, howev~r. how robust this result is. Does
the prediction of chaos d~pend on a delicate balance
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2 Vertebrate data sets
(A)

The time series of vertebrate populations exhibited
a similar spectrum of ACF patterns. In particular. ex-
amination of ACFs suggested that there were four cy-
clic mammal populations (Fig. 12). Vertebrate popu-
lations also exhibited many of the same dynamic

I behaviors that we found among insects: 3 cases exhib-

ited unstable oscillations leading to extinction. 6 cases
were classified as exponential damping. 11 cases as
damped oscillations, and 2 as quasiperiodic dynamics.
There were no cases of chaos. Of the four mammal
populations that had significantly periodic ACF. two
were found to have quasiperiodic RSM dynamics (lynx
and belyak hare). RSM-reconstructed dynamics for the
colored fox and the arctic fox were damped oscillations.
The damped oscillations regime is more plausible than
a four-point cycle for these populations because the
ACF peaks were of rather small magnitude: ACF at
the first peak. 4 yr (ACF[4» was <0.4 (compare this
with the lynx ACF(IO] = 0.6. or the larch budmoth

, ACF[9] = 0.7). Such a sharp drop-off in ACF reflects
a much noisier-looking time series of the two foxes.
compared to either lynx or belyak hare. and therefore
is more consistent with RSM-indicated oscillatory

) damping. than with limit cycles. The period of damped
oscillations predicted by RSM was 4 yr (Fig. 13). the
same as the pattern in the ACF. This result once again
demonstrates the ability of RSM to accurately mimic
the patterns observed in actual time series.
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FIG. 13. Colored fox: observed time series (A) (only the

middle 40 yr a= shown), and trajectories predicted by the
response-surface model (RSM) without noise (8), and with

noise (C) (E, is normally distributed with mean zero and stan-
dard deviation.,. - 0.2). DISCUSSION

Our results are very different from those of Hassell
et al. (1976), who concluded that all but 2 of their 24
insect populations had exponentially stable point equi-
libria. By contrast, our response-surface methodology
(RSM) found exponential stability in only 3 of our 14
insect populations. The remaining populations were
classified as unregulated (one case), damped oscilla-
tions (six cases), limit cycles (one case), quasiperiodic
oscillations (two cases), and chaos (one case). The ver-
tebrate examples exhibited a similar spectrum of dy-
namics, although there were no cases of chaos. We do
not wish to claim that all of these classifications (es-
pecially the two most extreme ones, Phy//aphis and
Phy//opertha) are correct. This fairly small number of
examples does, however, include convincing cases of
periodic dynamics (damped oscillations, limit cycles,
and quasiperiodicity) and one case with parameter val-
ues at least approaching those producing chaos. We
conclude, then. Ihal thl: complete spectrum of dynam-
ical behaviors, ranging Irom exponenlial stability 10
chaos, is likely to be found among nalural populatIons.

The contrast between our findings and those of Has-
sell et al. (1976) resulted from three importanl differ-
ences in methodology: (I) fitting actual time-series dala
instead of the two-step method of Hassell et al.. (2)
using a model with a much more Ilexible functional

riods of almost exponential growth (3 and 4 yr), with
the first period followed by a crash (what happened
after the second period is unknown), and there was a
period of rapid oscillations during the middle portion
of the time series (Fig. 11 A). On the other hand, the
actual trajectory did not exhibit a rigid regulatory "ceil-
ing" that was a characteristic feature of simulations.
Another point of similarity between the observed and
extracted dynamics was that ACFs of both exhibited
weak periodicities, with a period of 7 yr in the data
and 5 yr in the RSM model.

At this time we know little about the ability of RSM
to extract deterministic chaos from data. In addition,
the data are sparse. Therefore we cannot make any
definite statements about whether endogenous dynam-
ics of the Ph.vl/aphis population are chaotic or not.
However. the fact that RSM did extract chaotic dy-
namics in at least one case indicates that the region
within the parameter space where the model (EQ. 6) is
chaotic overlaps with the region enclosing parameter
estimates for actual insect populations. In other words.
one does not need to postulate biologically unrealistic
values of parameters to obtain chaotic dynamics within
the framework of the model (Eq. 6).
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FK1. 14. Response function estimated for lan:h budmoth: (A) r, is. function of N,
N'_I and N'_2.

only, and (B) r, is a function of both

form, and (3) accounting. albeit indirectly, for the mul-
tidimensional nature of population dynamics that could
be due to interactions with other populations within
the community, or to population structure. We believe
that the last of these differences is the most critical.
Indeed. 6ttina data with a nrst-order model (only terms
involving Nt-I [the previous year's density]), which in
aU other respects was identical to model (Eq. 6), pro-
duced results very similar to those of Hassell et al.: II
cases of exponential stability, 2 cases of damped os-
cillations, and one limit cycle (the sycamore aphid). It
is revealing that this truncated model, as well as the
analysis of Hassell et al. (1976), classified the larch
budmoth population in the Engadine Valley in Swit-
zerland (see Baltensweiler and Fischlin 1987) as ex-
ponentially stable, although this population is arguably
the most convincing c\amplc of a quasiperIodic at-
tractor in our data set. ThIs misclasslhcatlon happened
because in this population there is little elfcct of Nt I

on 't (the rate of population change), and a larle effect
of ,V, : (compare FIg. 14A 10 I ~B). Wh.:n we rcdu,-c

~

the dimensionality of the model by ianoring jV,-~, we
turn a clean, strongly nonlinear response surface in
three dimensions into a cloud oflarlelY uninformative
points in two dimensions. Fitting the model to these
points then yields a gentle slope (Fig. 14A), indicatina
mild direct density dependence and thus stability.

The flexibility of our RSM model, provided by in-
clusion of both the Box-Cox transformation and qua-
dratic terms. also was essential for correct classifica-
tion. For example. the quadratic term (although not
the second lag) was necessary for an accurate recon-
struction of the sycamore aphid dynamics. Fitting a
model with either one or two lags but no quadratic
terms leads to a classification of dampc.-d oscillations.
in contrast to the conclusion of a two-point limit CYl:le
ubtained by a quadratic RSM (with either one or both
lags). Simul:lIIOnS of the RSM model ".I!~ no qu..dratlc
tc:rms produced an ACF that decayed to zero much
faster than the ACF of either the data or the full RSM
model. In addition. the full modd came much closer
to rl:producing thc: pert'ect alternation of inl:rl.';1~..', ..;1";
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Gurney 1982:55). Our results suggest otherwise. We
argue. therefore. that natural populations cannot be
ranked within a one-dimensional spectrum goina from
no regulation to tight regulation around a point equi-
librium. Instead. a two-dimensional scheme needs to
be emplqyed. with one axis indicating the relative
S1ren&th of the exogenous (density-independent) com-
ponent. and the other axis indicating the type of en-
dogenous dynamics.

decreases seen in the observed series. Thus. the qua-
dratic term was essential for reaching the correct con-
clusion in this case.

The preceding examples suggest that leaving out im-
portant factors, such as delayed density dependence or
strong nonlinearities, may lead to incorrectly classi-
fying a population as more stable than it actually is.
In other words, use of overly simple models for re-
constructing endogenous dynamics from data may be
biased in favor of finding stability. This may well apply
to our own analysis, since regressions of r, on lagged
population densities indicate that lags of order higher
than two are not infrequent (P. Turchin and A. Do
Taylor, unpublished analysis). Analysis of cases with
higher dimensional response surfaces might well result
in additional findings of complex dynamics, though
the feasibility of such expanded analysis will be limited
by the relatively short length of a typical ecological
time series.

The methodology used in this paper is by no means
perfect. For instance, it cannot effectively handle sys.
tems with multiple equilibria. By applying a standard
model to each case, we also risk. misclassifying some
instances by miDI an inappropriate model. As we not-
ed above, inclusion of additional lags may be appro-
priate in a number of cases (subject to data constraints).
However, our model may be more complex than need-
ed for some systems; whether such overfittina in any
way biases the results is unknown but under investi-
gation.

Another limitation is that our approach currently
lacks any means for determinina "confidence inter-
vals" around our dynamical predictions. Confidence
limits can be obtained for each parameter estimate of
the model (Eq. 6), but they tell us nothing about how
variation in parameter estimates will affect our con-
clusion about the type of extracted dynamics. Another
potential problem is the estimation bias that arises
when models such as Eq. 6 are fitted to data with
substantial observation errors (Walters and Ludwig
1987).

In closing we note that much controversy surround-
ing the issue of population regulation stems from the
one-dimensionai viewpoint, held by many, that at-
tempts to place all populations within the spectrum
ranging from tight control around a stable point equi-
librium (regulation) to little or no dynamical feedback
in population density (no reaulation). Bias against com-
plex endogenous dynamics is so strong that most dis-
cussions or criticisms of population reaulation do not
mention (e.I., Wolda 1989)-or even dismiss out-
right-the possibility that populations may undergo
cyclic or chaotic l1uctuations. The following quotations
show that this view is shared both by experimentalists:
"the rarity with which populations fluctuate cyclically
in nature. . ." (Hairston 1989:6). and theoreticians:
"deterministic stability is the rule rather than the ex-
ception, at least with insect populations" (Nisbet and
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