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SUMMARY

"

(I) Gregarious behaviour is an important factor influencing survival and reproduction
of animals, as well as population interactions. In this paper I develop a model of
movement with attraction or repulsion between conspecifics. To facilitate its use in
empirical studies, the model is based on experimentally measurable features of individual
behaviour.

(2) Attraction among individuals leads to movement which is biased towards areas of
high population density. However, aggregations can arise only if mutual attraction is
strong enough to dominate the dispersive effect due to random motion. I use the model to
define the conditions for formation of an aggregated spatial pattern in homogeneous
space. The model is applied to the aggregative movement in Aphis varians.

(3) To investigate how spatial inhomogeneity can interact with density-dependent
movement I consider a population of animals foraging for a patchy resource, e.g. insect
herbivores moving among patches of their host-plants. The results of the model indicate
that gregarious behaviour of herbivores strongly amplifies the effects of patch size on
herbivore density. Field studies of the Mexican bean beetle-garden bean system provide
experimental support for this theoretical prediction.

(4) The modelling framework developed in this paper provides a tool for studying
effects of aggregation on predator-prey and competitive interactions, since demographic
and population interaction terms can be readily added to the model.

..

~
""

INTRODUCTION

Aggregative behaviour is. an important factor influencing survival and reproduction of
animals (Allee 1931). For instance, both theory and experiments suggest that gregarious
behaviour can increase an animal's chances of avoiding capture by a predator (Hamilton
1971; Taylor 1977; Calvert, Hedrick & Brower 1979; Cappuccino 1987; Turchin &
Kareiva 1988). An aggregated pattern of animal distribution may also affect the outcome
of population interactions. In particular, the stability of predator-prey interactions may
be enhanced by patchy distribution of prey, if predators concentrate their attack where
prey is abundant (Hassell 1978; Hassell & May 1985; but see Kareiva 1987). Similarly,
coexistence of competing species is promoted when the distribution of the superior
competitor is contagious (Atkinson & Shorrocks 1981; Ives & May 1985).

Most theoretical studies of the consequences of aggregation to population dynamics
assume at the outset the contagious distribution of organisms, without examining the
pro~s by which animals clump together. One exception is the' L1-model' of population
redistribution proposed by L. R. Taylor and R. A. J. Taylor (Taylor & Taylor 1977;
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FIG. I. Random walk in one-dimensional space. See text for e~planation.

Taylor 1981a,b). The A-model explicitly incorporates attractive and repulsive interac-
tions between organisms. However, both the logical structure and predictions of the A-
model have been severely criticized (Hanskl 1980, 1982; Anderson et al. 1982; Kennedy
1985; Thorarinsson 1986; see also response by Taylor et al. 1983).

The goal of this paper is to develop an alternative to the A-framework for modelling
aggregative movement. I build on the idea of Taylor & Taylor (1977) that individual
movement is modified by attraction or repulsion between conspecific organisms, but
attempt to avoid the flaws in their model. I make a consistent effort to base the models on
experimentally measurable features of individual behaviour in order to facilitate their use
in empirical studies. Two case studies illustrate the steps involved in modelling
aggregative movement in real-life situations.

The models developed in this paper relate the behavioural pattern of interactions
between organisms to population-level phenomena. Their purpose is to predict the
population redistribution patterns, and ultimately be useful in the study of species
interactions. Fortunately, recent developments in the theory of random walk and
diffusion processes provide guidelines for constructing behaviourally based movement
models (Keller & Segel 1971; Skellam 1973; Segel 1978; Okubo 1980; Aronson 1985;
Kareiva & Odell 1987). I use this diffusion framework to describe gregarious movement.
With the purpose of illustrating the basic ideas, I begin with a simple and, therefore,
somewhat unrealistic formulation of the problem. However, eventually I indicate how to
build more realistic features of movement behaviour into the model.

A MODEL FOR AGGREGATING POPULATIONS

Random walk with attraction among individuals

Consider a population of animals that move randomly until they perceive a conspecific,
at which time they bias their movement towards that individual. The population is
distributed along one-dimensional discrete space with the distance between spatial nodes
equal to A.. Let p(x,t) be the probability of finding an organism of any spatial position x at
time t. In this paper my main focus is on movement in one dimension. However, all
models (with the exception of the model for correlated random walk in Appendix I) can be
directly generalized to two dimensions (see below).

During the time interval f any individual can make a step of length;' right with
probability R(x,t), left with probability L(x,t), or make no move with probability N(.T,t)
(Fig. I). Movement of organisms is influenced by each other in the following way: (i) when
there are no other animals at adjacent positions, each animal moves randomly, i.e. the
probabilities of moving left or right are the same; (ii) if there is a conspecific on an adjacent
pos:ition, the animal moves there with conditional probability k (conditioned on the
presence of the other animal), or ignores the neighbour with conditional probability I - k.
When the local population density is low. we can ignore the probability of having more
than one conspecific in the immediate vicinity of each moving individual.
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These assumptions imply that at low density (p cC I),
1R(x,/) = zr(x, I) + kp(x + ).,/)
1L(x,/) = 2r(X,/) + kp(x + ).,/) (I)

where r(X,/) is the random component of movement

r(x,t) = I-N(x,/)-kp(x+).,t)-kp(x-).,/).

When the local density increases, for example as a result of aggregation, the eqns (I) win
not strictly hold, since the probability that there are conspecifics both on the left and on
the right can no longer be neglected. In addition, at high population densities the
attraction between individuals can be greatly reduced, or even reversed, becoming
repulsion. Instead of postulating any particular mechanism ofbehavioural interactions at
high population densities, I simply assume that k is a decreasing function of P(X,/).
Appendix I shows that under certain circumstances k can be approximated by a linear
function of p. (Note that there is a constraint on the magnitude of k, since
r(x,/)+kp(x+).,/) +kp(x-).,t)+ N(x,/) has to sum up to one.)

If there are no births and deaths, P(X,/) satisfies the recurrence equation (Okubo 1980):

P(X,/) = N(x,I--r) p(x,t--r) + R(x- ).,1- -r)p(x- ).,I--r)

+L(X+).,I--r)p(x+).,I--r). (2)
This equation can be used to predict how the probability distribution P(X,/) changes with
time (by numerical iteration on the computer). However, it has several disadvantages.
First, eqn (2) is difficult to deal with analytically. Second, the spatial domain within which
movement occurs is usually continuous, which means that there is no unique ( or natural)
way of breaking it into a lattice of discrete points. Taking a diffusion approximation of
eqn (2) avoids these problems. There are several methods of achieving a diffusion
approx.imation (Segel 1978; Okubo 1980) but I have chosen to follow Okubo (1980).

The first step is to expand all terms in Taylor series, and the result is (Okubo 1980):

a a ).2 a2-raiP(X,/) = - ).a;[~X./)P(X,t)] + "2 W(P(x,t)p(X,/)] + O().3) (3)

where bias ~x,t) = R(x,t) -I..(x,t) and motility .u(x,t) = R(x,t) + I..(x,t) = I - N(x, I). O().J)
denotes the terms of the order).) and higher. -

To calculate b(x,/) we substitute R(x,/) and L(x,/) from eqn (I), and again expand in
Taylor series:

~(X,l) = R(X,I) - L(X,I)

- k[p(x + A,1)-P(X-A,I»)

= 2k1.~P(X") + 0(1.3). (4)
Substituting c5(X,I) in eqn (3) results in

a 2).2 a[ a-P(x,l) = --- kP(X.I)-p(x,l)
01 t ox o.\"

. 0

I ).2 Q2
~ + 2T aX2(Jl(x.t)P(.~.t)]

axP(.~.t)0().3)
A-'"'

0(;'3)4" +:"':~i~i!~:;'~:"" 5)
T
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The next step in obtaining the diffusion approximation is to take limits in such a way that
i. 2 and T-+O at the same rate, i.e. lim;..t-O ;.2 IT = d; for details about this limiting procedure

see Okubo (1980). Since O().3)/T-+0 the equation becomes

~ = -2 a I au' . 02

01 h(kU~} +~-.:--(pu) (6), / or
where I substituted continuous density u instead of p(x,t), and set d equal to I by
measuring movement on the appropriate time scale.

The first term on the right hand side of eqn (6) represents aggregative movement at a
rate k in the direction of increasing population gradient au/ax, while the second term
represents random movement at a rate Jl. Repulsive movement, which can be modelled by
assuming that animals move away from conspecifics (i.e. effectively multiplyingk by -1)
results in movement biased in the direction of decreasing population gradient. Equation
(6) with constant negative k is identical to the biased random motion model of Gurney &
Nisbet (1975) (see also Gurtin & McCamy 1977; Shigesada, Kawasaki & Teramoto 1979;
Shigesada 1980). Gurney & Nisbet (1975), however, derived their model by assuming that
the probability of moving to an adjacent position was biased because animals preferred to
move down the population gradient. By contrast, my derivation of eqn (6) does not
require that organisms can actually sense, or measure, the population density gradient (cf.
Keller & Segel (1971) who show how individual cell behaviours can result in the average
movement of the collective up the chemical gradient).

While k=const may be a reasonable assumption for overdispersing populations, it is
almost certainly not true for real aggregating organisms. Since there is a limit to how
many animals can be packed in a unit of space, movement has to become repulsive once a
certain density (J) is exceeded. Thus, k will be a function of u, k(u), its shape being
determined by the details of the organisms' behaviour. For simplicity I assume a linear
function for k (Appendix I provides some justification for this choice):

k(u) = ko ( 1-~) (7)

where ko is the maximum degree of gregariousness (at u = 0), and (J) is the critical density at
which movement switches from aggregative to repulsive. Substituting eqn (7) into eqn (6)
and rearranging terms on the right side results in

au 02 (Jl at = aX2 2u-k~ + 3W2k0; u3 ). (8)

General case: random walk with density-dependent parameters

Equation (8) is of the general form:

a2auat = or ci>(u) (9)

where lj>(u) = (p/2)u-koli! + (2ko/3(JJ)u-'. From now on I will refer to (9) as the
'aggregation-diffusion equation', or ADE. The special case eqn (8) describes a population
of animals which at low density bias their movement towards each other. In deriving eqn
(8) I have implicitly assumed that the distance at which an animal can perceive a
conspecific, u, is comparable to the average move length, or the 'mean free path' (in the
course of the diffusion approximation this assumption translated into lim,:_o (u/ i.) = I).
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FIG. 2. Effect of interactions among individuals on the shape of the diffusion function ctI(u): (a)
density-independent. (b) overdispersive. (c) weakly aggregative. and (d) strongly aggregative

modes of movement.

This scheme will probably be appropriate for many insects that use visual cues to orient
towards conspecifics, for example, Euphydryas males (Odendaal, Turchin & Stermitz

1988).
There are two alternative ways of deriving the ADE, each of which makes different

assumptions about the behavioural basis of aggregation. The first alternative assumes
that there is no bias in movement, but instead the motility is a function of population
density. Such a formulation leads to eqn (9) with t/>(u) = !.u(u)u. (To see this, set k = 0 and
.u=.u(u) in eqn (6).)

The second alternative assumes that perception distance is much greater than a move
length. This scheme leads to an integral-differential model (see Appendix I), but it can also
be approximated by the ADE. The following analysis, therefore, can provide qualitative
insights for a broad range of random walk formulations.

Analysis of the ADE

The non-linear diffusion function cf>(u) in eqn (9) can have several different shapes,
depending on the nature ofbehavioural interactions between organisms. Consider, first,
the simplest case: individuals move completely independently of each other, i.e. simple
diffusion. In this case cf>(u) = Du, that is, cf>(u) increases with u at a constant rate D (Fig. 2a).
The rate of increase cf>'(u) (the prime denotes differentiation with respect to u) is analogous
to the mathematical concept of Fickian diffusivity. (The identity between cf>'(u) and the
diffusivity can be seen by rewriting eqn (9) in the 'Fickian form':

au a [ ,au ]-= -- -cf>(u)- .)
at ax ax

Thus, in the case of no interactions cf>(u);s rate of increase D is the diffusion constant.
If interactions between moving individuals are repulsive, then movement rate will

increase with population density, since at high densities organisms continuously come
into contact and induce each other to disperse. In this case the diffusivity will increase with
density and cf>(u) will be of the shape shown in Fig. 2b.

In the case of aggregative movement, on the other hand, the diffusivity will initially
decline as u increases. since organisms in low density localities will on average reduce their
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movement rate, compared to organisms in denser areas. However, as discussed above, at
very high densities movement of any real organisms has to be overdispersive. i.e. Fickian
diffusivity increases with density. Thus, the shape of <I>(u) for aggregative movement is
characterized by its rate of change first decreasing, and then increasing again once a
certain critical density is passed (Fig. 2c,d). Case (d), which I term 'strong aggregation',
differs from case (c), 'weak aggregation', in that <I>(u) has a maximum and a minimum
(which in mathematical language means that the diffusivity <I>'(u) becomes negative for
some region of population densities). As we shall see later, these two cases have very
different consequences for the equilibrium distribution of organisms.

To gain general understanding of the model (9) we need to characterize the spatial
distribution pattern which evolves with time as a result of population movement. In other
words, we need to examine the nature of the equilibrium solutions of (9). This requires
that we specify some spatial region, the initial density of organisms in this region, and the
behaviour of organisms at its borders. I will assume that the population is distributed
within a favourable habitat extending from .X'=o to ,,"=L. and at time 1=0 the
distribution of organisms along x is described by some function, say f(x). The region
extending from x = 0 to ,X' = L is surrounded by a hostile habitat. Animals crossing the
borders are permanently lost to the population, either because they immediately move
away, or because they are killed by the hostile conditions outside the favourable region.
The density on the borders is maintained at Uo by (possibly infrequent) immigration. In
the extreme case when the habitat outside the region fO,L] is absolutely hostile and there
are no immigrants arriving from other patches, the density on the borders will be
maintained at O. This type of boundary condition is called absorbing. Another kind, the
reflecting boundary condition under which animals turn away upon encountering habitat
borders, leads to similar results.

The following formulation, known as 'the initial-boundary condition problem', states
these conditions succintly:

q2-ou- = t;(u)
01 or

u(x,O)=f(x), O~x~L (10)
u(O,I)=u(L,I)=Uo, 1>0.

To find the equilibrium solutions U(x) I set the time derivative to zero, i.e.
(02/0x2)t;(U) = (OU/OI)=O. Integrating this equation twice, I o6tain ~u)=Ax+B, where
A and B are constants to be determined from boundary conditions. Since
t;[u(O)J=t;[u(L)J=~Uo), .4=0, and B=t;(Uo). Thus, -an solutions at equilibrium must
satisfy

tP(u) = tP("o) (11)

In other words, at equilibrium population density can only have as many different values
as there are roots toeqn (11). If there is only one root, uo, then the equilibrium distribution
U(XFUo anywhere within the model's domain, i.e., organisms are evenly distributed.
Equation tP(u) = cons! can have only one root if movement is density-independent,
overdispersive, or weakly aggregative, since a line parallel to the abcissa can intersect tP(u)
at only one point (Fig. 2). Any initial peaks of density in such populations tend to even out
with time.

In strongly aggregating populations tP'(u) is negative for some range of densities, and
for certain "0 eqn (II) can have three roots (Fig. 3a). Therefore, any ti(.\") that is a
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FIG. 3. (a) An example of f/>(u) for strongly aggregating populations. (b) The shape of ~u)
estimated for A. lIarians (see the next section).

combination of flat pieces at heights corresponding to the three roots of eqn (11) is a
steady state, provided u(O)=ri(L)=Uo (see Fig. 4). The stability analysis of eqn (11)
indicates that the smallest and the largest roots of (11) correspond to stable equilibria,
while the intermediate root corresponds to an unstable steady state (Appendix II).
Numerical solving of eqn (9) on the computer suggests that the actual solutions never
develop discontinuities at the 'jump points', "but instead approach the discontinuous
steady state closer and closer with time.

-
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FIG. 4. An example of steady state distribution, I1(x), for a strongly aggregating population in a

homogeneous domain.
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Negative diffusivity and aggregation

Negative cP'(u) complicates the analysis of the ADE since the standard initial-boundary
value problems involving negative diffusivity are not well-posed (A It 1985; Aronson
1985). Mathematical problems are well-posed when they have a unique solution that
depends continuously on the initial conditions. i.e. the solution varies a small amount if
the initial conditions are changed slightly (see Haberman 1983 for a discussion of well-
posedness). Unlike simple diffusion. which smooths out any initial bumps and dips of the
population density profile. negative diffusivity exaggerates such unevenness. The stability
analysis of eqn (II) (Appendix II) indicates that in the negative diffusivity regime any tiny
perturbation of the initial conditions will grow out of all proportion under the inftuence of
the aggregative force. As a result. depending on the initial distribution, the density profile
at equilibrium can be broken into clumps of any size. from very wide to very narrow.
Thus. the model clearly fails when it predicts that very narrow 'aggregations' consisting of
a fraction of an individual are possible. In addition. the rectangular shape of the clumps at
equilibrium does not seem to be a realistic representation of real aggregations.

The reason for such seemingly strange behaviour of the model is that aggregating
populations are characterized by movement of organisms up the population gradient.
The steeper the gradient, the stronger is the aggregative bias. which in turn causes the
gradient to become steeper. As aggregation proceeds the population gradient becomes
more and more vertical and. as a result, aggregation clumps have very 'sharp' borders.

Alt (1985) reviewed various modifications of the diffusion equation that avoid the
problem of ill-posedness. These modifications, however. are much less transparent
analytically. The appeal of the simpler model (9) is that it offers analytical insights into the
mechanics of aggregation. In addition. the loss of accuracy associated with collapsing
more complex models to the ADE may be slight in many applications. For example. I
compared the ADE predictions to the numerical solutions of the equation for discrete
random walk (2) (unlike continuous diffusion models. the underlying discrete models are
well-posed, see Aronson 1985). The predictions of the discrete model with density-
dependent motility and no bias agreed with the ADE in all particulars. The ADE correctly
predicted whether the equilibrium distribution was fiat. or clumped for all sets of
parameter values that I tested. Moreover, the equilibrium aggregation clumps of the
discrete model were rectangular, and the.heiJbt of each clump was within the round-off
error of th~ height predicted by the ADE.

I also compared the solutions generated by eqn (2) with aggregative bias and constant
motility to the ADE. These solutions also were in a qualitative agreement with the
diffusion model. The ADE correctly predicted how values of ko and II. affected formation
of aggregated clumps. However, clumps generated by the discrete model with an
aggreptive bias were not completely rectangular: in some cases the clumps had rounded
edges, and in others there were narrow 'spikes' at each clump edge. The ADE slightly
overestimated the population density within aggregations (by 5-10%). These numerical
results indicate that despite the mathematical problems associated wtih the ADE. it can
provide valid qualitative insights into the mechanics of aggregation.

Aggregatu'e mOL'ement in Aphis varians: an e.~ample

'Before continuing with the general discussion of the ADE. I will illustrate how one
might go about estimating the non-linear diffusion function cP(u), by applying the ADE to
movement of Aphis rarians. a herbivore offireweeds (Epilobium anguslifoliuIII). At Mt. St
Helens. where Turchin & Kareiva (1988) studied the population dynamics of this aphid,
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A. l'ar;ans often fonns huge clusters of up to several thousands nymphs, aptera and alates.
We asked the question: Do these clusters fonn passively as a result of low aphid mobility
and high reproductive rate, or is there also active aggregation due to aphids moving in a
density-dependent manner? To answer this question we quantified the effect of conspecific
density on the rate of movement initiation (i.e. the motility). We also measured how the
probability of movement tennination at any spatial point depended on the number of
conspecifics there (for experimental details see Turchin & Kareiva 1988).

As a first step in building the diffusion model, consider aphid movement in the absence
of conspecifics, Most movement of apterous aphids occur within a single fireweed shoot
(because they cannot fly from one shoot to another). Since we can represent the position
of an aphid with a single number, e.g, the distance from the tip of the shoot, the space
within which movement occurs is one-dimensional. To measure the parameters of aphid
random walk along a fireweed stem, we observed apterous aphids placed singly on
fireweed shoots, In the absence of conspecifics the probability that an aphid would initiate
movement in an hour was ~O.2S. After initiating movement, aphids wandered along the
stem, frequently reversing the direction of their movement. The movement phase lasted
on average half an hour, during which time aphids were displaced 2-40 cm along the stem,
The mean squared displacement, which is an estimate of ).,2, was 400 cm2 (note that the
correct way of estimating ;'2 is to average the squares of observed move lengths. not to
square the average move length). Thus, if each aphid moved independently of
conspecifics, the distribution of aphids would be described by the equation for passive
diffusion:

0., A1 01at - T aX:i(Jlu), 2)

where }J = 0.25 h -I and f = I h. In this equation the units of tare h, x is the position along

the fireweed stem in cIn, and u is the number of aphids per I cm of stem.
Movement of A. varians, however, is not independent of conspecifics. First, by

observing single aphids and aphids in colonies, we found that the probability of initiating
movement for aphids in the densest colonies was only one-sixtieth of that for single
aphids. Second, P..op(x,t), the conditional probability ofmoving to a position .\", given that
movement was initiated, increased with the number of aphids at x (Fig. 5). The latter
result does not necessarily imply that aphids were attracted to the clumps of conspecifics
from a distance. One possible explanation is that aphids wandered randomly until they
came in contact with conspecifics, at which point they settled and initiated feeding
(cf. Ibbotson &. Kennedy 1951; Kennedy &. Crawley 1967).

My general policy in this paper is to use polynomials to express functional dependence
of parameters on density, since polynomials are readily fitted to experimental data and are
easily manipulated algebraically (although other functions such as fractional powers or
exponentials may allow greater flexibility for expressing density dependence. at the
expense of tractability). Accordingly, I estimate }J(u) as ~(l -0'039u+ 3.9 x 10-4w). and
P..op(.\",t) as 0.012+0'015u-3 x 10-4ul. Analogously to eqns (I), p..op has a density-
independent part (0'012) and a density-depcndent part Ku=0.015(1-0.02u)I' (where K
itself is a function ofu). The bias IS is the difference between the unconditional probability
of moving to (x+ ).) and that of moving to (.\" - ).). The probability of moving to .\"+ ;.. for
example, is the product of the probability that movement is initiated. }J(.\".r), and the
probability of stopping at .,,+ i., P ..op(.",t). Thus,
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l5(x,t) = R(.\",t) - L(x,t)

= P 510P('\" + ).,t).u(X,t) - P 51op(X - ).,t)Jl(X,t)

= KJl(x,t)(u(x + ).,t)-u(x-).,t)].

In other words, 'gregariousness' k = Kp (cf. eqn 4). Now that we have identified p and k we
substitute these functions in eqn (3) and, after some algebra, obtain the ADE

au ).2 iJ2- - --f/>(u), (14)
01 t or

with f/>(u) that is plotted against u in Fig 3b. I will use this estimated f/>(u) to illustrate the
general points raised in the next section.

Analysis of the ADE continued
One of the questions that motivated the preceding theory was, what characteristics of

animal movement can lead to formation of aggregations? The general model of density-
dependent movement, eqn (9), indicates that not all varieties of gregarious movement will
result in aggregations. Pattern formation in homogeneous space can occur only if cp' is
negative for some range of densities. In the example of movement with attraction (eqn 8),
aggregations can arise if

(is\

for some u. Since <p' is a quadratic functIon in u, it intersects the abscissa (i.e. the quadratic
equation has real roots) if its discriminilnt is greater than zero:

4ko (ko-~) > 0 (16)

i.e. koClJ > jJ, ko being positive. This condition indicates that whether aggregations can
form or not depends on the balance of the aggregative 'force', measured by koClJ and the
dispersive force due to random movement, measured by Jl. If the aggregative tendency ko
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is weak, or the threshold density at which movement becomes repulsive, w, is too low,
then random movement dominates aggregative response, i.e. animals tend to move down
the population gradient.

The shape of q,(u) estimated for A. varians indicates that movement in this aphid is
strongly aggregative, since the slope of cP(u) is negative for 15 < u < 50 (Fig. 3b).
Consequently, the ADE model predicts that formation of aphid clumps is possible. In
general, actual pattern formation will depend on both boundary and initial conditions,
but the shape of the aphid q,(u) is such that the boundary conditions do not matter. This
is due to the fact that q,(u) intersects the abscissa. Thus, even if the aphid density at
boundaries Uo is kept at 0 (i.e. all aphids leaving the shoot never return, and there is no
immigration from other fireweed shoots), the equation q,(u)=4>(Uo)=O will still have
multiple roots, and aggregation is possible. The situation is different in the case of
Mexican bean beetles (discussed later). because their q,(u) does not intersect the abscissa
(see Fig. 10). As a result. if Uo is too low. then the horizontal line at height 4>(uo) will
intersect the function q,(u) in only one place. Any initial clumps of beetles will eventually
disappear due to the drain of beetles over the patch boundary.

Finally, whether aggregations form and where they form depends on the initial
distributionf(x). For example. if aphids are distributed so evenly along the fireweed stem
that u never exceeds 10, then nowhere is q,' negative (Fig. 3b). and no aggregations are
expected to arise. If. on the other hand. the initial distribution of aphids has a peak of 20
or more aphids cm-l, then this density peak will grow and eventually turn into an
aggregation.

All models developed in this section and in Appendix I assumed that space was
homogeneous. This situation is rarely found in nature. Spatial heterogeneity interacts
with aggregative movement to produce complex patterns of contagious distribution. For
example, one would expect that aggregations will be more likely to arise in locations
where abiotic conditions are favourable, or food resources abundant. Other spatial
parameters can also affect the aggregation pattern when favourable habitats are patchily
distributed: the distance to the nearest habitat 'island', habitat size and shape. The next
section gives an example of how aggregative movement and spatial heterogeneity can
interactively produce complex distribution patterns, and how aggregation can amplify
very subtle gradations in spatial variables into dramatic gradients in population density.

.
EFFECTS OF HABITAT SIZE AND DENSITY-DEPENDENT MOVEMENT

ON PLANT-HERBIVORE INTERACTIONS

The relationship between patch size and herbivore density varies enonnously among
different plant-insect systems (Kareiva 1983). Much of this diversity may reflect
differences in movement behaviour between herbivore species, and in particular
differences in the nature of interactions among individuals. To pursue this question, I
develop a model that simultaneously examines the effects of gregariousness and habitat
size on population densities of herbivorous insects. Although primarily intended for
herbivore-plant interactions, it can be applied to most animals foraging for patchily
distributed resources.

SuppOse that herbivores move within host patches by taking short flights, or hops
among plants, and that their movement fits the assumptions of a simple random walk. In
particular, they do not change their movement pattern at the patch boundary, so that
emigration from the patch occurs as a result of random movement. Once outside the
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patch. the herbivores are pennanently lost to the system because they drastically increase
the length of their flights. and as a result quickly leave the patch vicinity. A one-
dimensional diffusion model (later in this section I will consider an example in two-
dimensional space) fitting these assumptions can be written as follows:

OU tJ2u
--i+D-
01 Ox2

u(x,O)-f(x), 1>0 (17)

u(O,I)-u(L,I)-O, O~x~L
where u is the population density, and i is a constant immigration rate, which is
independent ol~ :.sition (as though herbivores were raining from the sky). D is the
diffusion constant. and L is the patch size. The insect density at the boundaries is kept at 0,
since any insect that crosses the boundary is assumed to be pennanently lost to the patch.
There are no birth or death tenns in the model, because it is ass'umed that immigration and
emigration are of much greater importance in detennining the population density, than

birth and death.
Next, I generalized to allow density-dependent movement within patches:

ou 02at = i + a:x:z<P(u) (18)

with the same initial and boundary conditions. I will assume that

.u k -2 2k 3
<I>(u) = -u- u- +-u

2 3(1)

This equation, which has five parameters: .u, k, (J), ;, and L can be reparameterized into a
two-parameter equation. First, substitute dimensionless variable y instead of x:

xy--.L
x-yL;

4k
2k__2+U--u- 3wJl
p

Second. express u in w units:
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Let ~=~ and fJ=~L2, then the equation becomes
.u WJl.

v-2a;w + ~V3 = (Jy(l-y). (20)

Parameter (X measures the strength of interactions among individuals relative to random
motion. while {J does not have an obvious interpretation except that it is proportional to
the square of patch size; y is rescaled position and v is rescaled herbivore density.

Qualitative results
By examining eqn (20) we can deduce how aggregative movement influences the shape of
the density profile that a herbivore population attains within a patch. First. note that eqn
(20) is the formula for calculating herbivore density v at each spatial point y. Second. the
shape of the left side of (20)

f(v) = V-21XV2 + ~IXV3

is completely specified by IX, the parameter that reflects the intensity of mutual attraction
among individuals. The easiest way to understand the effects of aggregative movement is
to start with the case of no aggregation, i.e. IX = o. When herbivores move independently of
each other, their density will be described by the parabola v = py( 1 - y) (Fig. 6). The
maximum of the parabola is in the centre of the patch, because the centre is farthest
removed from the diffusive losses at the boundaries.

Next consider the case of 0 < IX < I for whichf(v) is a monotonically increasing function
(that is, weak aggregation). As in the case of no aggregation, eqn (20) has only one root for
each y. Weak aggregation, however, causes the parabola to bulge up slightly (Fig. 6).

When IX exceeds 1, then for some values of Py(I- y) eqn (20) will have three roots, two
of which ~orrespond to stable steady states. Thus, at equilibrium any point of v(y) can be
characterized as follows.

(a) Only a low equilibrium is possible if py(l- y) <fmin, wherefmin is the value off(t') at
the local minimum (Fig. 7a).

(b) Both high and low equilibria are possible iffmin<Py(I- y)<fmax (Fig. 7a).
(c) Only a high equilibrium is possible if fm-x < Py(I- y) (Fig. 7a).

For example, the equilibrium distribution for the strongly aggregative movement shown
in Fig. 6 is uniquely determined only in the regions near patch edges, where all points are
at the low equilibrium. In the middle of the patch, however, the value of p}'( 1 - y) exceeds
fmin and both high and low equilibrium states are possible.

When IX becomes greater than 4/3, fmin becomes negative, and Case 1 (only low
equilibrium) is no longer possible. Figure 8 summarizes the possible equilibrium density
profiles that are associated with various combinations of aggregative intensity (:x.) and
patch size (P). Note that wherever there is more than one equilibrium. any point can be in
either high or low state. The actual solution for a particular patch size will depend on [he
initial herbivore densities and will be a combination of any number of high and low
segments. In other words, the model does not predict whe[her aggregations will actually



88 Models of aggregative movement

-~

~
;

~

~-,, ".. ...

~

FIG. 6. Equilibrium distribution for (...) the density-independent movement, a=O; (---) the
weakly aggregative movement, a = 0- S; and (-) strongly aggregative movement, a = 1.1.

arise in any particular patch. The best that the model can do in a context of a real plant-
herbivore system is to make a probabilistic statement on the expected frequency of
aggregations in patches of differing sizes.

Quantitative results
The next step in the analysis is to determine how interactions among individuals affect

the quantitative relationship between patch size and the herbivore density. In the
reparameterized system the average density is given by

I
V = f v(y)dy.

0

When animals move independently of each other (~=O), v=fJ/6, i.e. the average density
increases linearly with fJ ( Fig. 9). Weak gregariousness accelerates V's rate of increase, but
not to any large extent (Fig. 9).

When ~ > I the notion of average density is no longer clearcut because there is no
unique equilibrium distribution for v. To overcome this problem I examine the minimum
and maximum average density that a population of herbivores can attain within a patch.
Let max v(y) be the distribution of herbivores in which v(y) is at the high equilibrium
wherever possible. Then the maximum average density is

Vmax = r max v(y)d"."
0

and Vmin is defined analogously. Average density can lie anywhere between the maximum
and the minimum values, depending on the initial conditions. Strongly aggregative
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FIG. 8. Effect of« and fJ on the shape of the density profile attained by the herbivore population
wi\hin a patch. (a) All points within a patch are at the low equilibrium. (b) Both high and low
equilibrium are possible in the centre of the patch. (c) Both equilibria possible everywhere in the
patch. (d) Only high equilibrium in the centre, both equilibria possible at the edges. (e) Only high
equilibrium in the centre. only low at the edges. and both possible in the intermediate regions. See

text for details.
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FIG. 9. Effects of 2 and patch size on average herbivore density: ~ - 0 (density-independent
movement), 2 -O'S (weakly agreptive movement). and 2 - 1.2S (strongly aggregative move-

ment).

movement introduces a striking threshold effect in the relationship between patch size and
herbivore density (Fig. 8). In small patches aggregations cannot arise due to drain of
insects across the borders, and the average density there is almost unaffected by mutual
attraction (Fig. 8). However, as patches become large enough to support aggregations,
the density of herbivores within these patches begins to increase precipitously. Thus,
interactions among individuals can radically affect the spatial pattern of animal
distribution among resource patches.

The effects of overdispcrsing movement can be investigated by changing the sign of the
quadratic term of f(v):

f(v)=v+~+~

As expected, repulsive movement reduces the effect of patch size on insect density (Fig. 9),
but the magnitude of this effect is slight."

Injluence of bean patch size on the densities of Mexican bean beetles
To illustrate the ideas developed in this section, I will apply the ADE model to an

association between Mexican bean beetles (Epilachna varivestis) and their hosts,
Phaseolus vulgaris (see also Turchin 1986, I 987a,b). First. I will briefly describe how
movement of these beetles is affected by the density of conspecifics. Then I will consider
whether or not beetle movement is strongly aggregative and, if yes, what this implies for
the relationship between host-patch size and beetle numbers. Finally, I will compare the
model's predictions to the results of an independent experiment that measured the
numerical response of beetles to patch size in the field.

I studied the effect of conspecific density on beetle motility by placing beetles within
bean patches in groups that varied from I to about 40 beetles per plant. At low beetle
densities their motility (measured as the probability of moving from the bean plant in a 2-
h period) was not affected by the numbers of conspecifics on the plant (Fig. I I a). Once the
beetle density increased past 20 beetles plant - I, however, the motility went up (Fig. II a).
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ouat = dd,p(u)

f/>(u) -= iJl(U)U-ku2 +

1.2
d=-

t

(21)
2kJ
-u
3w

'.,
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'R2 ( r )fj1(U) = ~ 1-:R2 (22)

for 0 ~ r ~ R. Here r is the distance from the patch centre, R is the radius of the patch, and i
is the immigration rate. Similarly to the one-dimensional case, if movement is unaffected
by the presence of conspecifics then the population density surface within the patch is
paraboloid. Strongly aggregative movement causes the paraboloid to bulge up and may
lead to formation of clumps within the patch. The graph of fj1(u) against u indicates that
movement of Mexican bean beetles is strongly aggregative (Fig. 7b). Whether or not
aggregations can arise within a patch will depend on the patch radius and the immigration
rate. A' realistic value of i at my experimental site was about 0,04 beetles plant - I h - I
(Turchin 1987a). Given this value of i, the model predicts that a small patch. such as a
single-plant patch with R~0'5 m. would have no beetle aggregations forming within it
(Fig. 7b). A large patch with R=2.5 m, on the other hand, can have aggregations in its
centre (Fig. 7b). Thus, one would expect to see a qualitative jump in the average beetle
density as one increases the patch's radius.

Experimental results bear out this prediction of the model. As part of an experiment
designed to measure the effect of host-plant density and patch size on the numbers of
Mexican bean beetles, I monitored beetle numbers in a set of single-plant patches and in a
set of large patches (Turchin 1987b). The experimental patches started without beetles,
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and the subsequent beetle densities within them reflected the balance of immigration to
and emigration from a patch. Both single-plant patches and hexagonal large patches can
be roughly approximated with circles of radii R=0.5 m, and R=2.5 m, respectively.

The average number of beetles per plant in the experimental patches increased from
0.02 on single plants to 0.18 in large patches. Moreover, the beetle density profile within
large patches was similar to the theoretical density profile predicted by the model: the
beetle density was highest in the centre, and decreased towards the patch border (Fig. 12).
Note the wide standard errors for the estimates of beetle density at the two central
positions (x ~ O' 5 m). Beetle numbers plant-I were more variable in patch centres because
most beetle aggregations (operationally defined as u~4 beetles plant-I) were located
there. This result agrees with the prediction of the model that beetle aggregations should
arise near the patch centre (see Fig. 6). While these comparisons between the model and
the data are not conclusive (since (J) could not be estimated directly), they suggest that the
model may capture the key features of Mexican bean beetle behaviour underlying their
numerical response to host-patch size.

CONCLUSION

Ecologists have long recognized that gregarious behaviour can strongly affect individual
fitness and population dynamics (Allee 1931; Hamilton 1971; Thornhill & Alcock 1983;
Taylor 1986). Gregarious behaviour is common in nature, since many animals spend part
or all of their life in groups (Pulliam & Caraco 1984). In consequence, the dynamics of
animal grouping have been a subject of many theoretical studies (see Okubo 1986 for a
review). However, the primary focus of these studies was the composition and social
structure of animal groups. Because these models do not explicitly deal with the temporal
and spatial changes in the population density, they are not well suited for use in the

contex.t of population dynamics.
In their model of population redistribution Taylor & Taylor (1977, el ante) proposed

that the displacement L\ is related to population density p by the following expression:

(23)~ =f.[(p/po)P_(p/po)~.
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where e and exponents p and q are constants. The first term on the right hand side
represents emigration due to population pressure, while the second term represents
congregation. Po is the population density below which movement is dominated by
aggregation, while above Po movement is dispersive. The model of aggregative movement
developed in this paper is somewhat similar, since it also has a term representing
movement towards high density areas (the aggregative component), and a term
representing movement down the population gradient (the random component).
However, its underlying logic is different from the A-model. Instead of single displace-
ment, the ADE model is expressed in terms of movement rates. In other words, it assumes
that movement is maintained throughout the organism's life, rather than being
co~centrated in a single bout of dispersal, followed by a sedentary life style.

Another difference between the two approaches is that while the A-model has been
applied to explain the patterns of variation in insect numbers on the geographical scale,
the focus of the AD E is on 'trivial movements' of organisms (Southwood 1962), rather
than migration. Thus, at least in its present form, the ADE model cannot be used to
address such issues as why the variability in population abundance and average
population density are related by a power law (Taylor, Woiwod & Perry 1978). The
appropriate spatial scale for the ADE model is a unit of habitat, such as a patch of host
plants, or an archipelago of habitat patches.

At such spatial scales, random walk and associated diffusion models offer a useful
framework for dealing with the effects of gregarious movement on population
interactions. There are several advantages of using this framework.

(a) It can reflect the biological features of animal movement, since it is possible to
derive different models of population redistribution from different sets of
particular assumptions about movement.

(b) It provides a very compact description of animal movement. For example, the
equation (OU/OI) = (02/or)4>(u) can represent aggregative, or overdispersive move-
ment.

(c) Its equilibrium solutions (1-+00) are easy to characterize algebraically.
(d) It is flexible, since density-dependent growth and population interaction terms can

be added to the model in a straightforward manner.
One of the failings-of ecological theory in the past has been in producing models that

could not be easily applied to natural populations in the field. 'The ideal behavioural
model of movement would have easily estimated, biologically interpretable parameters'
(Dye 1983). In this paper I have attempted to develop models that are based on
experimentally measurable features of individual movement. I also illustrated the steps
involved in building a diffusion model with attraction between conspecifics in two case
studies: aggregative movement in the aphid A. varians and in the beetle E. variveSlis.

The derivation of the aggregation-diffusion model from the random walk formulation
can be readily generalized to movement with variable step length (e.g. Aronson 1985). and
to movement in two dimensions. This derivation is especially appropriate for animals that
alternate bouts of movement with periods of rest or feeding, and choose random direction
for each subsequent move. However. for many other animals the assumption of
independent directions for each move is violated. because they tend to move in the same
general direction as the previous move. Such movement can be described as 'correlated
random walk' and it can be approximated by a diffusion equation (Segel 1978; Okubo
1980; Kareiva & Odell 1987, see also Appendix I). Unfortunately. the diffusion
approximation for correlated random walk has been worked out only for movement in
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one dimension, while any realistic representation of animal movement requires at least
two dimensions. Clearly there is a need for more research in how to represent more

realistic modes of movement.
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APPENDIX I

Alternative random walk formulations

In this Appendix I consider several more realistic formulations of random walk with
attraction. compared to the scheme in the main body of the paper. My purpose here is to
show how the parameters of the ADE can be expressed in quantities readily estimated by
observing movement behaviour of individual insects.

Long distance attraction
In deriving the diffusion equation for random walk with attraction I have assumed that

walkers can perceive conspecifics only when they are ). spatial units away. the same
distance as the length of the average step. This is not a very realistic assumption. since
many insects can locate conspecifics from distances far exceeding the 'mean free path'. e.g.
by using acoustic signals (Thornhill & Alcock 1983). In addition. there is usually no set
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distance at which conspecifics are perceived; instead the probability of perception declines
continuously with distance. One possible way of modelling long-distance attraction is as
follows. Let the probability that a conspecific s units away is perceived (and reacted to) be
kH(s), where H(s) is normalized so that Ii:' H(s)ds= I. Then the probability of perceiving a
conspecific on the right is the product of k H(s) and the probability that another insect is s
units away, u(."+S,I), summed over all possible values of s.ln other words, the probability
of perceiving a conspecific on the right is Ii:' kH(s)u(." + s,I)ds. The probability of
perceiving a conspecific on the left is obtained analogously. The bias of random walk is
defined as the difference between the probabilities of perceiving conspecifics on the right

vs. left,

X) X)

~x.t) = k[ f H(s)u(x + s.t)ds- f H(s)u(x-s.t)ds). (24)
0 0

This expression for bias was used by Kawasaki (1978) in a model for aggregative random
walk. He obtained an analytical solution for the case when H(s) = const. i.e. the
probability of perception does not decline with distance. This means that every insect has
perfect knowledge of the population distribution and biases its movement in the direction
of the highest population numbers. A more realistic assumption. however. is that H(s)
declines with distance to zero. When the attraction range is comparatively small. the
diffusion equation with the integral bias can be approximated by a fourth order parabolic
equation (Alt 1985). Fourth order terms in diffusion models have been discussed by
Cohen & Murray (1981). To see how the model with the bias given by (24) can be
approximated by a partial differential equation. I will expand u(x+s.t) and u(.~-s.t) in a
Taylor series:

~

cS(x,t) = k J H(s){u(x + s,t)-u(x-s,t)Jds
0

(X) k (X) (X)

= 2kux J H(s)s ds + _3Uxxx J H(s~ ds + J H(s)O(sS)ds
0 0 0

All terms of even order cancel each other 0 If the high order terms are neglected, the
expression for lux density will be of the form -

J=a(u)ux+b(u)uTxxo (26)

For example. if H(s) is a gaussian curve

I r
H(s) - ~ exp- ~

V 2'-6
(27)

then bias is given by

~- 2k 2k.) -3
Q - ~O'ux + ~O' Uyx.y + O(a-). (28)

...; 2n 3...; 2n

This result agrees with the derivation of eqn (4); when the range of perception is short.
i.e. 0' is small. the term with 0'3 is going to be negligible. and the expression for IS reverts to

eqn (4).
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Correia lion bel ween successive moves
Consider a population of animals continuously moving in a one-dimensional space. The
animals move with constant speed v. Let r+(x.l) be the probability of direction reversal
per unit time for animals moving in the positive direction (to the right) at (.T.I). and r-(x.l)
the direction reversal probability for animals moving to the left at (X.I). It can be shown
that regardless of the mechanism by which r+ and r- are determined. the ftux density of
animals is approximated by the following expression (Segel 1978; Kareiva & OdeU 1987):

V2 OU (r- -r+ }I r + v - +' (29)
uX r + r

J- - ,.--+ +r

Substitution of this expression for flux into

Oil 0
-c--J
ot 0."

(30)

leads to a diffusion equation. The parameters of this diffusion equation are directly
measurable by observing the movement of animals. ,For example, one possible scenario is
that the sum of the reversal probabilities for left-moving and right-moving animals is a
constant, and the difference between these probabilities is the difference between the
perceived number of conspecifics to the right and to the left. (If there are more conspecifics
to the right, on average, then animals moving left are more likely to reverse their direction
than animals moving right.) Thus, the expression for,- -,+ is analogous to (24):

IX> ~
,- -,+ = k( J H(s)lI(x + s,t) df- f H(s)u(x-s,t) dfJ. (31)

0 0

Effecl of increasing density on the aggregalit'e bias
Intuition suggests that as the local population density increases. the bias imposed by

mutual attraction should diminish. simply because the probability that there are
conspecifics on both right and left approaches one. I explore this proposition with the
following scheme. As before I assume that (a) an insect moves randomly if there are no
conspecifics nearby. I modify (b) to alow more than one conspecific at a position: (b') if
there is one or more conspecifics on one adjacent position. and none on the other side.
then the insect moves toward the conspecific(s) with the conditional probability k.

I redefine P(X./) as the probability that there is at least one insect at .~. The actual
number of insects found at x will follow the Poisson distribution with the mean p(."./).
This is not to say that insects are distributed randomly; aggregation is expressed in the
spatially varying parameter P(X./). The probability that there are no insects at position
x is equal to exp( - P(X./») (the zero term of the Poisson distribution). Thus.
P(X./) - I - exp( - P(X./)). Analogously to the previous formulation. I define the bias as the
probability that there are insects on the right. but not on the left minus the probability of
insects on the left. but not on the right:

c5(.\"./) = R(.~.l) - L(.\"./) (32)

= kp(.~ + )../)(I-P(.~-;../»)-kp(.\"-)../)[I-p(.\" + ;../)J

= k(p(x + l./) - p(x - ;../»). (33)

Before substituting the expression for P(.\"./) in eqn (33) I expand the exponentials in a
Taylor series around 0:
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exp( - p(X.I)] = I + (- p(,t".l)] + H - p(.t".l)f + . . . (~
Discarding the high order terms ( . . . ) and substituting p(.\",l) in eqn (33) I obtain

c5(X,I) ~ k(p(x + l,I)-P(X-;',1»)-#2(X + ;..I)_p2(X-).,I)].

The first term on the right is identical to eqn (4), but with p(x,t) instead of p(.\",t). It appears
that eqn (4) is the approximate formula for bias resulting from keeping only the first two
terms of the Taylor expansion for exp( - p(x,t)], an approximation that is expected to hold

only when p(x,t) is close to zero (when the mean number of insects at x, p(.\",I), is small it is
approximately equal to the probability of finding one insect at .\", p(x,I».

Proceeding as before, I expand p(x + A,I) and p(x - A.,I) in a Taylor series around x,
while retaining terms of order up to A, After substituting the continuous density u instead
of p I obtain

ou-.o(x,t) = 2).k( I - II) ax

This result differs from eqn (4) by the factor I-u, which ensures that as the expected
number of insects at .'t" increases to unity, the bias of the random walk becomes smaller.
Negative bias for u> I is an artefact of leaving out the higher tenns in eqn (34).

APPENDIX II

Stability analysis of eqn (11)
Although the stability analysis of transition regions is very difficult. standard

linearization methods can be used to determine the stability of each flat piece of U(.,,):

U(x) = Ueq' x e (a.b) c: [0,£]. (36)

where Ueq is one of three roots of eqn (II). I consider small perturbations of Ucq

u = Ueq + v(x,t)

and expand t;(u) in a Tayior series:

IJ(x.r) +

Since v(x,t) is small, the higher order terms can be ignored. The linearized equation is:

av a2
-=
at

a?[t!>(Ueq) + t!>'(Ueq)V]

02= t!>'(Ucq~V

( look for solutions of eqn (37) of the form

v = VI sin q.\" e'" + 1'2 cos q.\" e'"

Substituting eqn (38) into eqn (37) we obtain:

0'= -,p'(ucq)q1
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The perturbation of any given wavelength will grow with time if q > 0, which occurs when
c/>'(Ueq) <0 provided that q~O. Conversely, a uniform equilibrium solution is stable if
c/>'(Ueq) > O. The stability of a steady state does not depend on the shape ~f\disturbance,
since an arbitrary disturbance can be decomposed into a sum of sine .and cosine
perturbations, and all sinusoidal components (except for the one with infinite wave
length) will grow or decay according to the sign of c/>'(Ueq)' ~, ..

Graphical solution of equation c/>(u) = c/>(Uo) (Fig. 3a) shows that the largest and the
smallest roots of the equation (ua, and Uo in Fig. 4) lie in the regions where the slope of c/>(u)
is positive and, therefore, are stable equilibria. The intermediate root, Uun on the other
hand, corresponds to an unstable steady state since it is in region where C/>' < O.

..-~....",. -
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