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ABSTRACT / A fuzzy decision analysis method for integrating
ecological indicators was developed. This was a combination of
a fuzzy ranking method and the analytic hierarchy process (AHP).
The method was capable of ranking ecosystems in terms of envi-
ronmental conditions and suggesting cumulative impacts across
a large region. Using data on land cover, population, roads,
streams, air pollution, and topography of the Mid-Atlantic region,
we were able to point out areas that were in relatively poor condi-
tion and/or vulnerable to future deterioration. The method offered
an easy and comprehensive way to combine the strengths of
fuzzy set theory and the AHP for ecological assessment. Further-
more, the suggested method can serve as a building block for
the evaluation of environmental policies.

Regional analysis of environmental condition and
vulnerability (Boughton and others 1999) represents a
significant assessment challenge (Jones and others
1997). New sources of information from satellite imag-
ery (O’Neill and others 1997) and new principles de-
veloped in landscape ecology (O’Neill and others
1999) provide exciting opportunities. To take advan-
tage of these opportunities, however, a number of tech-
nical problems need to be addressed (e.g., Riitters and
others 1997, Wickham and others 1997).

One of the most important problems of regional
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vulnerability assessment involves integrating informa-
tion from many different sources into an overall rank-
ing of relative risk (Wickham and others 1999). At the
smaller spatial scale of a watershed, focusing on specific
end points (EPA 1998) or devising an index of overall
environmental integrity (Ott 1978, Karr and others
1986, Karr 1991) may represent feasible approaches to
integration, although these simple approaches have
faced serious criticism (DeAngelis and others 1990,
Suter 1993). The problem becomes even more com-
plex at the regional scale where information may be
available on terrestrial and aquatic ecosystems, land-use
changes, and a variety of simultaneous stressors.

One of the critical problems of integrated assess-
ment is dealing with uncertainty that arises from differ-
ent sources, such as error in measurement and/or
modeling, imprecision in knowledge of relationships
between stressors and receptors, and even ambiguity in
the meaning of risk. The set of measured and calcu-
lated values being integrated are complexly interre-
lated and cannot be considered as statistically indepen-
dent. A careful approach to integrated assessment,
founded on state space theory (Johnson 1988, Kersting
1988) or multivariate analysis (Boyle and others 1984,
Smith and others 1989), seems to be required.

© 2002 Springer-Verlag New York Inc.
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Table 1. Indicators of regional ecological conditions®
No. Indicators Abbreviations
1 Population density (1990) POPDENS
2 Population change (1970-1990) POPCHG
3 Human use index UINDEX
4 Road density RDDENS
5 Average atmospheric wet NO3 deposition (1987 and 1993) NOS3DEP
6 Average atmospheric wet SO4 deposition (1987 and 1993) SO4DEP
7 Air pollution: ozone (1988 and 1989) OZAVG
8 Percent of watershed streamlength with forest within 30 m RIPFOR
9 Percent of watershed streamlength with agriculture land within 30 m RIPCROP
10 Percent of watershed streamlength with roads within 30 m STRD
11 Number of impoundments per 1000 km of stream DAMS
12 Percent of watershed with cropland on slopes >3% CROPSL
13 Percent of watershed with agricultural land on slopes >3% AGSL
14 Estimated N load in streams STNO3L
15 Estimated P load in streams STPL
16 Soil loss (estimated from USLE) PSOIL
17 Percent of watershed that is forested FOR %
18 Forest fragmentation FORFRAG
19 Forest edge habitat in 7-ha window EDGE7
20 Forest edge habitat in 65-ha window EDGE65
21 Forest edge habitat in 600-ha window EDGE600
22 Forest interior habitat in 7-ha window INT7
23 Forest interior habitat in 65-ha window INT65
24 Forest interior habitat in 600-ha window INT600
25 Proportion of watershed that supports forest interior habitat at three scales (22, 23, and 24) INTALL
26 Largest forest patch (expressed as proportion of watershed area) FORDIF

“Detailed information of the indicators can be found in the Landscape Atlas of Mid-Atlantic Region (Jones and others 1997).

This paper presents an initial approach to a fuzzy
decision analysis model for ecological vulnerability as-
sessment. The method was a combination of a fuzzy
ranking method and the analytic hierarchy process
(AHP). In addition, principal component analysis
(PCA) was used as guidance for constructing the hier-
archy in AHP. The method was capable of ranking of
ecosystems in terms of environmental conditions and
relative cumulative impacts across a large region.

Materials and Methods

Data

For this analysis we analyzed 26 of 33 indicators (Table
1) provided in the landscape atlas of the Mid-Atlantic
region (Jones and others 1997) on a watershed-by-water-
shed basis, using US Geological Survey (USGS) 8-digit
hydrologic unit maps (USGS 1982), for 123 watersheds in
the Mid-Atlantic region (Figure 1). The other seven indi-
cators were not included because of missing data.

Methods

Fuzzy Ranking. For ecological indicators, uncertainty
is inherent. Hence there is a need to represent values of
the indicators in parallel with their information on

uncertainty. If the indicators are stand-alone, it is not a
problem, as we can define an indicator as a duplex
(value, uncertainty). However, it becomes problematic,
both theoretically and practically, to use such duplexes
in further complicated calculations, as in an integrated
ecological assessment, using a conventional probabilis-
tic approach. One of the main reasons is that the
relationships among stressors and receptors are unclear
and extremely complicated. Within that context, fuzzy
set theory appears to be a good complimentary ap-
proach. With the fuzzy approach, the indicators’ uncer-
tainty can be associated with their values using the
concept of fuzzy set [see Zadeh (1965, 1978), Dubois
and Prade (1980), and Klir and Yuan (1995) for more
details on fuzzy set]. Once the indicators are repre-
sented by fuzzy sets, there are several different fuzzy
techniques that can be used to facilitate different cal-
culations on those fuzzy indicators. Some of them are
fuzzy arithmetic (Kaufmann and Gupta 1991), fuzzy
rule-based modeling (Bardossy and Duckstein 1995), or
fuzzy ranking (Chen and Hwang 1992). Several envi-
ronmental studies in that direction have been seen in
the literature recently. For example, Silvert (1997,
2000) applied fuzzy logic to derive fuzzy indices of
environmental conditions and to classify ecological im-
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Figure 1. Watershed boundaries within the Mid-Atlantic region. Source: USGS, Hydrologic Unit Code Boundaries (HUC250),

1:250,000 scale.

pacts. However, the fuzzy approach in ecological assess-
ment is still considered a relatively new avenue.

If data of an indicator for all of the watersheds under
study are in the fuzzy set format, then fuzzy ranking can
be used to derive a ranking for the watersheds with
respect to that indicator. In this analysis we applied a
fuzzy-ranking method that was recently developed by
Tran and Duckstein (2002). It was shown that this
method overcame several problems inherent to exist-
ing fuzzy ranking methods, namely, inconsistency with
human intuition, indiscrimination, and difficulty of in-

terpretation [see Tran and Duckstein (2002) for a de-
tailed discussion]. In addition to ranking, the suggested
method also can be used to reveal the distance from an
ecological entity to some reference points. A brief de-
scription of the method and its functions to compute
distances for some commonly-used fuzzy numbers are
displayed in Appendix 1.

Principal component analysis (PCA). PCA, which was
originally introduced by Pearson (1901) and indepen-
dently by Hotelling (1933), is one of the oldest and
most widely used statistical multivariate techniques.
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The basic idea of the technique is to describe the
variation of a set of multivariate data with a new set of
uncorrelated variables, each of which is a linear com-
bination of the original variables, using covariance (or
correlation) matrix. PCA involves calculations of eigen-
values and their corresponding eigenvectors of the co-
variance (or correlation) matrix to derive the new vari-
ables in a decreasing order of importance in explaining
variation of the original variables. Usually, if correla-
tions among the original variables are large enough,
the first few components will account for most of the
variation in the original data. If that is the case, then
they can be used to represent the data with little loss of
information, thus providing a suitable way in reducing
the dimensionality of the data.

PCA has been applied in a wide array of studies in
environmental sciences, especially for determining
sources of some substances (e.g., Rachdawong and
Christensen 1997, Statherropoulos and others 1998,
Topalian and others 1999, Yu and Chang 2000) and
revealing the relationships among different indicators
(e.g., Calais and others 1996, Yu and others 1998). PCA
in this study was used as an exploratory tool to reveal
key variables associated with different principal compo-
nents (PCs). That information then was used to guide
the construction of the hierarchy in AHP.

It should be mentioned that the data used for PCA
in this study did not completely meet the assumption of
multivariate normality. It is known that multivariate
normality, which implies linear relationships among
variables, is a condition required in PCA to meet the
assumptions necessary for the use of the general linear
model. However, it can be argued that PCA can be used
as an exploratory tool and some inference may still be
derived from nonnormal data. On the other hand,
transformation of variables, which is a common remedy
for outliers, failures of normality, linearity, and ho-
moscedasticity, often causes increased difficulty in in-
terpretation of the transformed variables. In addition,
as outliers represent extreme ecological conditions—
the focus of this study—their removal or transforma-
tion is not desirable. From that point of view, the data
were analyzed without any transformation except nor-
malization. This was considered reasonable as the
PCA’s general linear model was not utilized in other
steps of the analysis and the aim of PCA in this study was
to reveal the key variables associated with the PCs.

Analytic hierarchy process (AHP). AHP (Saaty 1980)
has been considered the most widely used multicriteria
decision-making method. One of the reasons for AHP’s
popularity is that it derives preference information
from the decision-makers in a manner that they find
easy to understand. AHP is a systematic procedure to

construct and represent the elements of a problem in a
hierarchy format. The basic rationale of AHP is orga-
nized by the breakdown of the problem into smaller
constituent parts at different levels. Decision-makers
are guided through a series of pairwise comparison
judgments to reveal the relative impacts, or the priori-
ties of elements (e.g., criteria, alternatives) in the hier-
archy. These judgments, in turn, are transformed to
ratiosscale numbers representing relative local and
global weights of the elements at a certain level of the
hierarchy. The hierarchy in AHP is often constructed
from the top (goal from management standpoint, e.g.,
environmentally sound development), through inter-
mediate levels (criteria on which subsequent levels de-
pend, e.g., physical, chemical, biological, and socioeco-
nomic criteria), to the lowest level (usually a set of
alternatives, possible actions).

Since the original version of Saaty, there have been
several variants of AHP seen in the decision-making
science literature. For instance, Lootsma (1997, 1999)
modified the scale and aggregation procedure in the
original AHP to come up with the additive AHP and
multiplicative AHP. The AHP’s original version as well
as its two variants developed by Lootsma have been
altered to deal with fuzzy numbers [see Saaty (1977,
1978), Chen and Hwang (1992) for the original model,
and Lootsma (1997, 1999) for the modified versions].
AHP has been applied widely in different environmen-
tal problems (e.g., Saaty 1986, Lewis and Levy 1989,
Varis 1989), especially in resources allocation and plan-
ning (e.g., Ramanathan and Ganesh 1995, Mummolo
1996, Alphonce 1997).

Somewhat different from common AHP applica-
tions, absolute measurement rather than pairwise com-
parison was applied at the lowest level of the hierarchy
in this analysis with the use of the fuzzy ranking method
developed by Tran and Duckstein mentioned above. Its
aim was to rate the watersheds on a single-indicator
basis. As absolute measurement involves a measuring
standard, the watersheds were rated against some ref-
erence points, namely some ideal and undesirable eco-
logical states (conditions) of the indicator under study.
In this analysis, we simply constructed the ideal and
undesirable states for a particular indicator by using its
minimum and maximum values derived from the indi-
cator’s data from all of the 123 watersheds. Then those
single-indicator-based distances of a watershed were
aggregated gradually from the bottom to the top the
hierarchy to come up with an ultimate score for that
watershed. Conceptually, the ultimate score of a water-
shed represents the distance of the watershed to an
arbitrary ideal watershed that has the ideal states for all
of the indicators. Next all of the ultimate scores were



Table 2. Eigenvalues of the correlation matrix

PCs Eigenvalues % of Variance Cumulative %
1 12.322 47.393 47.393
2 3.715 14.288 61.682
3 2.281 8.775 70.456
4 1.696 6.522 76.978
5 1.493 5.744 82.722
6 1.021 3.928 86.651

used to derive a relative ranking for the 123 watersheds,
which in turn can be used to identify and/or to prior-
itize the most vulnerable ecosystems in the study area.

Results

PCA

The PCA was performed on SPSS with varimax rota-
tion as an attempt to minimize the number of variables
that have high loadings on each factor, simplifying the
interpretation of the factors (Everitt and Dunn 1992).
The use of the correlation matrix instead of the covari-
ance matrix in the PCA was to assign equal weights for
all of the 26 indicators in the analysis in forming the
principal components (Chatfield and Collins 1980).

Using 1.0 as the cutoff value for eigenvalues, the first
six PCs accounted for 86.65% of the total variation
(Table 2). Table 3 shows that the first principal com-
ponent (PC1) had high loadings with 12 indicators
(UINDEX, STRD, STNOS3L, STPL, PSOIL, FOR %,
FORFRAG, INT7, INT65, INT600, INTALL, and
FORDIF). PC2 had high loadings with four indicators
(POPDENS, EDGE?7, EDGE65, and EDGE600). The
four high-loading indicators in PC3 were RIPFOR,
RIPCROP, CROPSL, and AGSL and the three high-
loading indicators in PC4 were NO3DEP, SO4DEP, and
OZAVG. PC5 had high loadings with two indicators
(POPCHG and RDDENS), while PC6 had high loading
with only one indicator (DAMS).

By looking at key indicators associated with a PC, an
approximate label can be made for that particular PC.
PC1 was roughly related to the amount and quality of
upland habitat and ecological condition of streams.
The presence of the human use index (UINDEX) in
this group indicated that the quality of upland habitat
and streams had a strong connection with the amount
of urban and agricultural land-use. PC2 was identified
as the amount of forest edge habitat. As population
density (POPDENS) in the Mid-Atlantic landscape atlas
was calculated based on differences in road density
across the region (Jones and others 1997), its existence
in this group was explainable: forest fragmentation was
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highly related to the distribution of road and popula-
tion. PC3 had a clear connection to agricultural activi-
ties. PC4 was highly associated with the quality of air.
PC5 was related to infrastructure and population
change. PC6 was associated with number of impound-
ments. Among the six PCs, the interpretation of PC4
and PC6 was relatively straightforward while those of
the others were somewhat more difficult. For example,
both PC1 and PC2 had several forest-related indicators,
which in turn were highly correlated. Furthermore,
some of them had high loadings on both components
(e.g., FORFRAG, EDGE?7). These factors made the dis-
tinction among components more difficult. On the
other hand, it should be mentioned that the identifica-
tion of PCA components is arbitrary to a considerable
extent. Other PC analyses with different operational
options (e.g., using the covariance matrix instead of the
correlation matrix, or using different rotation meth-
ods) can produce different sets of PCs and probably
different sets of labels. Hence trying to attach to much
meaning to components might be misleading.

AHP

A four-level hierarchy was constructed with its high-
est level for the ultimate scores of the 123 watersheds
(Figure 2). The second level had six components, rep-
resenting the six PCs (so-called PC-based criteria). The
third level contained 26 indicators, each of which was
associated with the PC where it had the highest loading.
The lowest level (the fourth level) was for the 123
watersheds.

Normally in AHP, the next step after constructing
the hierarchy is to carry out pairwise comparison judg-
ments at different levels of the hierarchy to reveal the
criteria’s relative weights. This step, however, was
skipped in this analysis, as our aim was to construct a
baseline model with as few subjective judgments as
possible. To create the baseline model, we assigned
equal weights for the six PC-based criteria at the second
level (i.e., equal local weights of 0.166), implying they
were treated equally. In the same manner, weights at
the third level for criteria associated with the same
PC-based criterion were equally assigned. For example,
equal local weights of 0.5 were assigned for indicators
POPCHG and RDDENS that were associated with the
PCbH-based criterion.

On the other hand, when the model is used for an
actual ecological assessment with actual decision-mak-
er(s) and stakeholder(s) in later phases, pairwise com-
parisons will be carried out thoroughly, following the
common procedure of AHP, to determine the criteria’s
relative weights at all levels in the hierarchy (except the
lowest level). Therefore, those potential real-world ap-
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Table 3. Eigenvectors (loadings) of the correlation matrix

Indicators PC1 PC2 PC3 PC4 PCH PC6

POPDENS 0.207 0.707 —0.139 0.090 0.448 —0.238
POPCHG 0.324 —0.083 —-0.192 —0.284 —0.503 -0.275
UINDEX 0.813 0.502 0.219 0.051 0.043 0.053
RDDENS 0.215 0.061 0.107 0.028 0.764 —0.057
NOS3DEP 0.078 0.102 0.173 0.948 0.074 0.037
SO4DEP 0.082 0.205 0.154 0.912 0.032 0.134
OZAVG 0.141 0.185 —-0.132 —0.598 —0.085 0.528
RIPFOR —0.288 —-0.410 —0.789 —0.063 —-0.026 —0.037
RIPCROP 0.289 0.152 0.864 0.034 —0.169 0.161
STRD —0.602 0.359 0.445 0.019 0.148 -0.157
DAMS 0.045 0.170 —0.146 —0.104 —-0.022 —0.845
CROPSL 0.072 —0.062 0.855 0.233 0.147 —0.021
AGSL 0.120 —0.066 0.899 0.164 0.193 0.048
STNO3L 0.856 0.387 0.126 0.075 —0.127 0.095
STPL 0.854 0.8377 0.113 0.077 —0.136 0.087
PSOIL 0.812 0.184 0.364 0.009 —0.196 0.203
FOR % —0.854 —0.483 —-0.079 -0.029 0.011 —0.057
FORFRAG 0.740 0.551 0.088 0.068 0.244 —0.093
EDGE7 0.664 0.696 0.191 0.116 0.023 0.021
EDGEG65 0.471 0.831 0.175 0.098 —0.042 0.029
EDGE600 0.316 0.869 0.074 0.065 0.010 —0.059
INT7 —-0.921 -0.327 —0.095 -0.008 —0.125 0.045
INT65 —0.952 -0.171 —0.089 0.011 —0.153 0.096
INT600 —0.939 -0.017 —0.109 0.041 —0.168 0.142
INTALL —0.928 -0.010 —0.109 0.059 —0.180 0.157
FORDIF 0.598 0.386 0.171 0.161 —-0.171 0.197

plications probably will have different sets of weights
and consequently have different sets of ranking, which
in turn might not be the same as those in this baseline
analysis. Those differences reflect divergence in public
values, preferences, and priorities of different decision-
makers and stakeholders.

Commonly in AHP, after local weights are deter-
mined, they are synthesized from the second level down
to derive the global weights for all criteria. For exam-
ple, the global weight of a criterion at the third level is
computed by multiplying its local weight by the weight
of'its corresponding criterion in the second level. (Note
that the local weight of a criterion at the second level is
also its global weight as the weight of the single top-
level goal is unity). For this baseline analysis, the global
weights of the indicators associated with the six PC-
based criteria from 1 to 6 were 0.014, 0.042, 0.042,
0.056, 0.083, and 0.167, respectively. Note that, al-
though the global weights of the indicators associated
with different PC-based criteria were different, the
global weights of the six PC-based criteria were equal
(0.166). Of course, as mentioned above, this is just one
particular way of assigning weights for the baseline
model. In real-world applications, different sets of
weights can be derived from different decision-makers
and stakeholders.

Although the global weights were synthesized to re-
veal the criteria’s priorities, actually the local weights
were used in this analysis to compute scores of the 123
watersheds at each criterion in the hierarchy. The aim
of this use was to make the scores computed at all
criteria in all levels of the hierarchy be on the same 0-1
scale, conceptually representing the distances from the
watersheds to the ideal states of the corresponding
criteria. For example, the score at the PCh-based crite-
rion of a watershed computed with the local weights of
POPCHG and RDDENS symbolizes the distance of that
watershed to the ideal state of the PCbh-based criterion
(i.e., a combined ideal state of POPCHG and RD-
DENS). Note that the conversion between scores com-
puted by local weights with those by global weights is
trivial.

Fuzzy Ranking

First, all of the indicators were normalized and scale-
reversed, if necessary, to have them all on the same 0-1
scale with 0 and 1 representing the ideal and undesir-
able reference points, respectively. Then, by applying
the fuzzy distance measure described in Appendix 1,
the distances from a watershed to the ideal points with
respect to different indicators were calculated.

We intended to construct a triangle fuzzy number
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Watershed } Watershed 1
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Figure 2. The four-level hierarchy of the AHP.
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1.0

Triangular fuzzy number
(0.300, 0.500, 0,600);
representing watershed A

D, = 0.485

Triangular fuzzy number
(0.400, 0.500, 0,700);
representing watershed B

Figure 3. Tllustration of using triangu-

Dy =0.518

lar fuzzy number and Tran and Duck-

0.0

stein’s fuzzy distance measure for eco-

Sy

logical indicators.

for an indicator in a watershed by using its value and its
possible range (i.e., its minimum and maximum values)
in that watershed. To illustrate, assume the minimum,
average, and maximum values of NO3DOP in water-
shed A are 0.300, 0.500, and 0.600, respectively. Then
NO3DOP in watershed A can be represented by the
triangular fuzzy number (0.300, 0.500, 0.600)1 [see
Dubois and Prade (1980), Kaufman and Gupta (1991)
for more details on fuzzy numbers]. In the same man-
ner, a triangular fuzzy number (0.400, 0.500, 0.700)
can be used to represent NO3DOP in watershed B
whose minimum, average, and maximum values of

' >
0.300 0.400 0.500 0.600 0.700 NO3DOP

NO3DOP are 0.400, 0.500, and 0.700, respectively (Fig-
ure 3). Using equation A-9 (provided in Appendix
Table A-1), the distances of watersheds A and B to the
ideal state of NO3DOP (representing by the triangular
fuzzy number (0.0, 0.0, 0.0)1) are 0.485 and 0.518,
respectively. Note that both watersheds A and B have
the same average value of 0.500 but different minimum
and maximum values, making their distances to the
ideal state of NO3DOP different.

In fact, the information on uncertainty (e.g., mini-
mum, maximum values, and/or objective/subjective
error estimates) for the 26 indicators was not available
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when this analysis was carried out. Therefore, we could
not construct the designed fuzzy numbers for all indi-
cators in the 123 watersheds as illustrated in the exam-
ple above. Alternatively, we created an arbitrary mini-
mum (maximum) value for an indicator in a watershed
by subtracting (adding) 0.050 to its average value and
then constructed the triangular fuzzy numbers based
on those arbitrary minimum and maximum values. Ac-
cordingly, we expect some slight differences between
results of this analysis and those in future calculations,
when the real information on uncertainty is used in the
calculation.

Next the scores (or distances) computed at the low-
est level were aggregated at other higher levels of the
hierarchy. Scores at the third level were computed by
two different methods: I, norm (sum of the scores)
and L, norm (square root of sum of the squared scores)

as follows:
m
. criterion i . criterion k
Ll . level j - z Wk Dle1/elj+1 ( 1 )
k=1
m
Lo criterion i E w, - (Dcriferitm k)2 (2)
2+ level j - k level j+1
k=1
where Df,;7"" 'is the score at criterion iin the level j; W,

is the local weight of criterion k in the level j + 1; and
m is the number of indicators (criteria) in the level j +
1 associated with criterion i. Scores at the second and
first levels were computed by the L, norm only. The
ultimate scores for the 123 watersheds and their rank-
ings, derived from the two different methods (so-called
AHP-L, and AHP-L,), in turn were grouped into seven
groups ranked from 1 (good condition) to 7 (bad
condition) (Figures 4 and 5). Figure 6 represents
ranges of the scores of the seven groups at the second
level (i.e., the six PC-based criteria) and their ultimate
scores at the top level of the hierarchy for the two
models AHP-L, and AHP-L.,.

Discussion

Some spatial patterns were revealed from results of
this analysis. In general, watersheds located near urban
centers (e.g., Philadelphia, Washington, DC, Pitts-
burgh) had relatively high ultimate impact scores (i.e.,
bad condition). On the other hand, there were several
adjacent watersheds in the southwestern part of the
study area (i.e., West Virginia) that were in good con-
dition in compared with the others in the region. How-
ever, there was no simple spatial transition from the
bad watersheds to the good ones. With the exception of

those in the rank-7 group (i.e., watersheds in relatively
bad condition), the watersheds in other groups were
not clearly spatially contiguous but rather intermingled
throughout the study area. Some relatively good water-
sheds were located right next to some bad watersheds
(e.g., those in the northeastern part of the study area,
close to the Pittsburgh area). It is obvious that water-
sheds are not independent but rather interdependent
in terms of ecological impacts. What happens in one
watershed might have impacts on its neighboring wa-
tersheds to a certain extent. For example, a new trans-
portation line is likely to cause some impacts (e.g., air
pollution, changes in stream flow and sedimentation,
etc.) not only on the watersheds that it goes through
but also on some good watersheds nearby. Hence, even
if there are no direct risks within their boundaries,
good watersheds are not completely safe from degrada-
tion due to interrelated impacts among all of the wa-
tersheds. It suggests that an environmental policy or a
land-use plan applied to either a small or large area in
the region needs to be looked at from the local and
regional points of view simultaneously.

Results of the two models, AHP-L.; and AHP-L,, were
different due to the use of different norms (L, versus
L,) at the lowest level of the hierarchy. However these
differences were considered insignificant. In 21 of 123
watersheds associated groups were different from one
model to another. Furthermore, most of these discrep-
ancies occurred in the groups of rank 2 to rank 6.
There was only one difference in the rank-1 group and
none in the rank-7 group between the two models,
showing that the rank-1 and rank-7 groups were very
stable from one model to another. In other words, the
ecological states of the watersheds in these two groups
were noticeably good (the rank-1 group) or bad (the
rank-7 group) compared with watersheds in the other
groups. This can be explained by the fact that most of
the PC-based criteria scores of the watersheds in the
rank-1 and rank-7 groups were quite distinct from those
of the other groups (see Figure 6). In addition, the
results of both AHP-L, and AHP-L, (i.e., the spatial
pattern of good and bad watersheds in terms of ecolog-
ical conditions) were quite similar to those from the
cluster analysis in the landscape atlas of the Mid-Atlan-
tic region (Jones and others 1997, Wickham and others
1999).

The two models in this analysis are not only able to
provide relative ranking for the watersheds in the study
area, they also can be used for policy-making analysis
and planning evaluation. For example, if a decision-
maker wants to see how a watershed can be improved if
a certain amount of money is spent, these models can
be used as a decision-support tool. To illustrate, assume
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Figure 4. Ranking of watershed groups from AHP-L,, ranging from 1 (for good condition) to 7 (for bad condition).

$5 million will be used to improve the forest cover
along a stream for watershed 2050104 (Tioga). Assume
that with that amount of money, RIPFOR, can be im-
proved from the current value of 0.920 to 0.300, 0.400,
and 0.500 on the best, average, and worst, respectively.
Similarly, RIPAG can be improved from the current
value of 0.862 to 0.200, 0.300, and 0.400 on the best,
average, and worst, respectively. From such informa-
tion, a triangular fuzzy number (0.300, 0.400, 0.500)
can be used to describe RIPFOR as a result of the
conservation program. In the same way, the triangular
fuzzy number (0.200, 0.300, 0.400)1 can be used for
RIPAG. Then the ranking of the watershed can be
recalculated, applying the procedure described above.
Results show that, with such a program, the integrated
score of the watershed can be improved by 0.092 (from
0.599 to 0.507) and 0.075 (from 0.584 to 0.509) in the

models AHP-L, and AHP-L,, respectively. Such im-
provement will move this watershed from the rank-7
group (bad condition) to the next rank-6 group of the
baseline model.

The issue of codependence was very sensitive in this
analysis. Although the first PCs in the PCA comprised
more variables and account for more variation of the
variables (see Table 2), most of the variables in those
PCs were highly correlated. In other words, several
variables in one PC described more or less the same
aspect of the ecosystem. As a consequence, it is likely
that change in one variable will accompany changes in
other variables in the same PC. Therefore, if larger
weights are assigned for those first PCs at the second
level in the hierarchy (for example, use the amount of
variation explained by that PC as its weight), the result
will be biased toward the ecological condition de-
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Figure 5. Ranking of watershed groups from AHP-L,, ranging from 1 (for good condition) to 7 (for bad condition).

scribed by more variables (e.g., forestrelated indica-
tors). On the other hand, one might question why
highly-correlated variables are not eliminated from the
analysis. It can be argued that, although some variables
are highly correlated, they still have their own signa-
tures that are distinct from those of others to some
extent. For example, both of the indicators EDGE7 and
EDGE600—forest edge habitat in 7-ha and 600-ha win-
dows, respectively—describe the condition of forest
fragmentation. However they are derived at two differ-
ent scales, representing the picture of forest edge hab-
itat from two different angles. Hence picking one up
while eliminating the other is not an easy decision to
make. A better approach should be to use both of them
but have some appropriate way to cope with the code-
pendence problem.

Although the use of PCA in constructing the AHP

hierarchy helped to deal with the problem of code-
pendence of indicators to some extent, it did not
solve the problem completely. The reason was, while
some variables were highly correlated, there was no
clear common ground among them. For example,
PSOIL—soil loss estimated by the universal soil loss
equation for agricultural land—showed strong corre-
lations with several forest-related indicators in PC1
(e.g., FOR %, FORFRAG, INT7, INT65, INT600, IN-
TALL, FORDIF). However, they characterized two
different conditions of the ecosystem: conservation
planning on agricultural land and forest conditions.
Changes in conservation planning (e.g., reduce soil
loss on existing agricultural land) are not necessarily
associated with changes in forest conditions. Hence,
by assigning equal weights for all six PC-based crite-
ria, although the first couple of PCs had more vari-
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Figure 6. Ranges of the scores of the seven groups at the six PC-based criteria and their ultimate impact scores.

ables than the others, we somewhat undermined the
contribution of PSOIL to the ultimate score of the
watershed. This problem can be overcome by going
beyond the correlation values and examining care-
fully the relationship among variables to assign more
appropriate weights, instead of equal weights, at the
second and third levels of the hierarchy. However,
equal weights at the second and third levels of the
hierarchy, as in this analysis, were considered reason-
able for a baseline model, when insights of the rela-
tionships among variables have not been verified by
other careful judgments or analyses.

In terms of methodology, the use of absolute mea-
surement with fuzzy ranking in the AHP hierarchy
made the calculation much simpler (i.e., no pairwise
comparisons at the lowest level of the hierarchy, a task
that is practically impossible with more than 100 water-

sheds to be compared). Furthermore, the model was
relatively easy to understand in concept (e.g., the con-
cepts of ideal/undesirable references are familiar to
ecologists and decision-makers).

The use of AHP has shown several advantages. First
of all, it helped to organize a complex problem into a
well-structured hierarchy. Second, the model can be
expanded in the future to include other social, cultural,
and economic components (e.g., putting the hierarchy
in this analysis into another larger hierarchy), moving
from ecological assessment to social, economic, and
environmental policy evaluation.

Conclusions

The key points of this analysis are summarized as
follows:
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® Fuzzy set with appropriate fuzzy ranking method
provided a powerful and suitable way to represent
ecological indicators. This feature is not only impor-
tant for the integration of ecological indicators but
also crucial for environmental policy evaluation in
later phases.

® The use of multivariate statistical analysis in cluster-
ing the indicators in the AHP’s hierarchy allowed
the model to deal with codependence among the
indicators to some extent.

® The AHP provided a productive framework in deal-
ing with complexity (by means of a structured hier-
archy) and in moving from ecological assessment to
environmental policy evaluation.

In terms of scientific contribution, the developed
method offered a quite creative and comprehensive
way to combine fuzzy set theory and decision-making
science for an ecological integrated assessment. The
approach permitted a variety of environmental indica-
tors and monitoring data to be integrated into an over-
all ranking of environmental condition across a region.
This model can serve as the building block for the
evaluation of environmental policies.
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Appendix 1: Tran and Duckstein’s Fuzzy
Ranking Method

The fuzzy ranking method developed by Tran and
Duckstein is based on a distance measure for fuzzy
numbers (FNs), which in turn is based on a distance
measure for interval numbers (INs) as follows:

Distance measure for interval numbers. Let F(R) be the
set of INs in R, and the distance between two INs A
(a,a5) and B (b,,b,) be defined as (Tran and Duckstein
in press):

5 12 12 ay + 2]
DZ(A’B):J J {[( 5 )—i—x(a?—al)]
-1/2

-1/2

_ [(b, ; bg> + 3(by — bl)]}2 dxdy (A-1)
_ [(ul ;— aQ) B (bl;-b2>]2
Al (2]

(A-2)

Distance measure for fuzzy numbers. To be able to deal
with curvilinear membership functions, generalized left—
right fuzzy numbers (GLRFN) of Dubois and Prade
(1980) as described by Bardossy and Duckstein (1995) are
defined first. A fuzzy set A = (a;, a,, as a,) is called a
GLRFN if its membership function satisfy the following:

L for
as — y

G =X= a

1 for aw=x=a
w(x) = — ay ’ YA
R( - ) for a3=x=a,
ay — as
0 else

where L and R are strictly decreasing functions defined
on [0, 1] and satisfying the conditions:

Lix) =Rx)=1if x=0 and
Lix) =Rx) =0if x=1

For a, = a3, we have the classical definition of left—
right fuzzy numbers (LRFN) of Dubois and Prade
(1980). Trapezoidal fuzzy numbers (TrFN) are special
cases of GLRFN with L(x) = R(x) = 1 — x. Triangular
fuzzy numbers (TFN) are also special cases of GLRFN
with L(x) = R(x) =1 — xand a, = as.

A GLRFN A is denoted as:

A= (ay, ay, as, ay)p, - g, (A-4)
and an o-level interval of fuzzy number A as:
Al) = (A(a), A(@)) = (ay = (ay — @) Ly (a),
as + (a; — as) Ry ()  (A-5)

Let F(R) be the set of GLRFNs in R. Using the distance
measure for interval numbers defined above, a distance
between two GLRFNs A and B can be defined as:

2 (A B.) U[!(w)

(Bu@ + Be@\ ] 1 (Au @) — AL (@)
2 3 2

[P [| o) [ o s

Here f, which serves as a weighting function, is a con-
tinuous positive function defined on [0, 1]. The dis-
tance is a weighted sum (integral) of the distances
between two intervals at all « levels from 0 to 1. It is
reasonable to choose fas an increasing function, indi-
cating greater weight assigned to the distance between
two intervals at a higher « level. The equations to
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Table A-1.  Distance functions for some commonly used fuzzy numbers

Fuzzy numbers fla) D2 (A, B, D

Trapezoidal fuzzy numbers el 9
A= G, ), ) (M )~ (w a)
B= (b, by, by, ), 2 2 3\ 2 el
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compute distance for some of the commonly used fuzzy
numbers with two different weighting functions [fla) =
1, representing equal weights for intervals at different «
levels, and f(a) = «, indicating more weight given to
intervals at higher a level] are presented in Table A-1.
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