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EARLY DETERIORATION OF COARSE WOODY DEBRIS’

F.H. Tainter and J.W. McMinn*

Abstract-Coarse woody debris (CWD) is an important structural component of southern forest ecosystems. CWD loading
may be affected by different decomposition rates on sites of varying quality. Bolts of red oak and loblolly pine were placed
on plots at each of three (hydric, mesic. and xerlc) sites at the Savannah River Site and sampled over a Is-week  period.
Major changes were in moisture content and nonstructural carbohydrate content (total carbohydrates, reducing sugars, and
starch) of sapwood.  Early changes in nonstructural carbohydrate levels following placement of the bolts were likely due to
reallocation of these materials by sapwood  parenchyma cells. These carbohydrates later formed pools increasingly
metabolized by bacteria and invading fungi. Most prevalent fungi in sapwood  were Ceratocysfis  spp. in pine and Hypoxy/on
spp. in oak. Although pine sapwood  became blue stained and oak sapwood  exhibited yellow soft decay with black zone
lines, estimators of decay (specific gravity, sodium hydroxide solubility, and holocellulose content) were unchanged during
the 16-week study period. A small effect of site was detected for starch content of sapwood  of both species. Fungal
biomass in sapwood  of both species, as measured by ergosterol content, was detectable at week zero, increased
somewhat by week three and increased significantly by week 16.

INTRODUCTION
Coarse woody debris (CWD) may influence a site for
hundreds of years in the form of snags, logs, chunks of
wood, large branches, or coarse roots. CWD has many
characteristics that contribute to the health of forest
ecosystems, such as creating habitats for wildlife, plants,
and microorganisms. Through degradation these organisms
recycle nutrients to the soil which enhances soil nutrient and
energy content, thus creating richer soils for tree growth
(Harmon and others 1986, Maser and others 1988, and
Spies and Cline 1988). Mortality and breakage of living trees
add CWD. as do harvest operations, while fire may remove
or transform it (Van Lear 1996). Sporadic disasters such as
hurricanes and insect and disease epidemics may also add
CWD to the forested ecosystem.

Our understanding of the dynamics of CWD loading in
southern forests is limited to one study (Waldrop 1996)
which used a forest-succession model to predict loading.
That study suggested that CWD dynamics could be strongly
influenced if inputs (limbfall or tree mortality) and outputs
(decomposition) of CWD vary between different types of
forest sites. Little information is available on decomposition
rates or the number and types of organisms that cause
decay which occur on each site type.

This study examines the populations of bacteria and fungi
that occur across three forest types. These sites were
defined using the landscape ecosystem classification (LEC)
approach developed by Barnes and others (1982) for forests
in Michigan and applied to the South Carolina upper coastal
plain by Jones (1991). To differentiate among sites there
must be interrelationships between vegetation and landform,
between vegetation and soils, and between landform and
soils (Jones 1991). We previously reported the populations
of bacteria that occurred in CWD by site class and species
within the first 16 weeks following placement of bolts of red
oak (Quercus  spp.).and loblolly pine (Pinus taeda  L.) on
these sites (Porter and others 1998). In addition, chemical
decomposition of the sapwood  of both species was
monitored during the 16-week  period and it is the results of
this aspect which are reported here.

METHODS
In April 1995 sample trees between 20-30 cm diameter at
1.4 m above ground were felled and cut into 0.5 m-long
bolts. Red oaks were taken from the Clemson Experimental
Forest, Pickens County, SC, and the loblolly pines were
taken from the Savannah River Site, Aiken County, SC. The
freshly cut bolts were placed on the study plots within 2-3
days after the trees were felled. The study sites were on
LEC units established on the Savannah River Site and
included three sites each of varying moisture availability:
xeric, mesic, and hydnc. The xeric sites were in pine
plantations with little or no undergrowth. The mesic sites
were also in pine plantations but there was more
undergrowth and organic debris present. The hydric sites
were located in mixed-species stands with dense
understories. Since hydtic sites were also located near
streams, the soil was very moist during the study period and
usually had some standing water. LEC classifications were
used in other CWD studies by Bailey (1994) and Hare
(1992).

On each LEC unit, a square plot was established and eleven
sample bolts of each species were placed on the ground
with the longitudinal axis of the bolt parallel with the ground.
The surface of the bolt in contact with the ground was
marked for orientation purposes during subsequent sample
preparation.

The sample bolts were collected at 3,6, 10, and 16 weeks
after placement, in addition to controls processed
immediately after the trees were felled. A randomized
system for bolt selection was created by using a time
schedule for the collection of two bolts of each species from
each site during the different sampling periods. The bolts
were taken to Clemson University and broken down for
analysis the day following collections.

As the bolts were processed, freshly cut cross-sectional
disks were removed and further subdivided into sapwood
(upper and lower) and heartwood (upper and lower). After
preliminary analyses indicated that there were no
differences between upper and lower samples, they were
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@,.&led.  Fresh samples were weighed, dried at 105% to
B stsble  weight, and then reweighed and moisture content
determined  based on oven dry weight. These samples were
then used for extraction and quantification of various
@micaI  components. Duplicate samples were also oven
d@ as described above and then bri@ly dipped in melted
par&n  and spectfic gravity determined based on their water
disPlscement  and oven dry weight.

Non.Structural  Carbohydrates
Non&uctural  carbohydrates are those components of
@dy cells that are located in the cytoplasm and are not a
part of the cell  wall matrix. Subsamples  of 20-60 gm of oven-
dried wood tissues were ground n a Wiley mill to pass a 40-
,,,& screen. Soluble sugars were extracted with 80 percent
dthyl alcohol for 6 hours In Soxhlet extractors. Aliquants
wBrs assayed for total carbohydrate by the phenol-sulfuric
,,&  method (Dubois and others 1965) and for reducing
urgars  (Nelson 1944). Starch was extracted enzymatically
from the sugar-free residue by using Enzyme Method 3 of
Rose and others 1991. All determinations were performed in
MPl icate.

paration  of Extractive-Free Wood
the  subsequent chemical analysis, extra&e-free wood

; prepared using the procedure of ASTM D1105 (1980b).

B Percent Caustic Soda Solubility
5  test measures the degree of decay that has taken place
I mainly extracts hemicellulose and degraded cellulose.

Table l-Chemical composition of oak bolts

The procedure outlined in ASTM D1109-56  (198Oc) was
utilized.

Holocellulose
This test measures holocellulose plus hemicellulose. Both
comknents are easily degraded by many micrqorganisms.
Each sample consisted of 2.0 g of extra&e-free 60-80-
mesh wood meal and was analyzed according to the
procedure outlined in ASTM 01104 (1980a).

Fungal  Biomass
Fungal  biomass is difficult to quantify in woody tissues.
Ergosterol is produced only by certain higher fungi and has
been used as an estimator of fungal  biomass. Ergosterol
was extracted and saponified with irradiation (Young 1995).
Ergosterol was separated from the alkaline methanol
irradiation buffer using a lipophilic copolymer. Total
ergosterol was measured by HPLC using a 4.6 X 150 mm
Sentry Shield RP, 3.5 pm column (Waters Corporation,
Milford, MA).

RESULTS AND DISCUSSION
Oak
The initial moisture content did not differ significantly
between heartwood and sapwood  (81.8I77.6  percent) (table
I), but a significant difference was detected by week 3
(72.1185.5 percent), and both continued to decrease through
week 16 (65.4/54.8  percent). Both hearlwood  and sapwood
were drying out but the sapwood  dried at a somewhat more

Weeks of exposure

Attribute Control 3 6 10 16

Moisture content*
Heartwood 81.82ab 72.08a 70.57a
Sapwood 77.62a 65.51 b 61.89b

Specific gravity’
Heartwood .673a .689a .701a
Sapwood .630b .625b

Total carbohydratesd
.591b

Heartwood 20.66a 13.80a 13.89a
Sapwood 18.72a 23.28b

Reducing sugarsd
10.76b

Heartwood 29.48a 13.96a 14.84a
Sapwood

Starchd
11.15b 16.32a 5.16b

Heartwood 33.55a 35.16a 35.71 a
Sapwood 50.15b

Caustic soda solubilitye
36.36a 34.12a

Hearhvood 24.43a 22.66a 22.72a
Sapwood

HolocelIulosee
23.42a 23.06a 21.79a

Sapwood
Ergosterol’

71.24 73.07 71.85

Sapwood 2.89 59.88 74.90

I1  (percent),  of fresh wood, based on oven-dry weight.
=  Means  within a column followed by the same letter are not different at p =  0.05.

:=  BaW  on oven-dry weight and oven-dry volume.
’  (mg/gX  of oven-dry  weight of unextracted wood.

: z (perwnQ.  of oven-dry  weight of unextracted wood.
o  (pg/g),  Of oven-dry weight of unextracted wood.

67.93a
57.22b

.70la
.57lb

12.17a
8.17b

9.82a
2.74b

30.34a
31.06a

22.00a
21.56a

71.56

48.64

65.35a
54.78b

.719a
.554b

11.90a
6.36b

8.65a
3.36b

30.39a
30.74a

21.32a
20.71 b

71.86

76.52
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Table 2-Chemicai  components of oak sapwood  by LEC site

Weeks of exposure

Attribute 3 6 10 16

Moisture contenta
Hydric
Mesic
Xeric

Specific gravity’
Hydric
Mesic
Xeric

Total carbohydratesd
Hydric
M e s i c
Xeric

Reducing sugarsd
Hydric
M e s i c
Xeric

Starchd
Hydric
M e s i c
Xeric

Caustic soda soiubiiitye
Hydric
M e s i c
Xeric

Hoioceiluiosee
Hydric
M e s i c
Xeric

Ergosteroi’
Hydric
M e s i c
Xeric

64.49ab
66.34a
65.71a

.622ab

.599b

.654a

24.63a
26.13a
19.06b

17.26ab
19.42a
12.266

35.13a
36.09a
3567a

23.62a
23.46a
22.09a

73.32a
72.66a
73.24a

25.76b
130.80a

8.91 b

65.76a 62.37a
58.45a 56.85b
61.45a 52.46b

.583a

.590a

.60la

.574a

.563a

.574a

11.13a
10.77a
10.38a

8.37a
8.54a
7.60a

524a
5.28a
4.95a

2.99a
2.5la
2.72a

32.97a
35.92a
33.49a

30.08b
34.07a
29.02b

20.80a
22&a
22.12a

21.34a
23.04a
20.71 a

71.82a
71.66a
71.47a

71.8la
71.26a
71.60a

136.67a
39.19a
48.84a

26.92a
77.94a
51.92a

60.52a
53.76b
50.08b

.579a

.538a
543a

7.09a
6.36a
5.63a

3.23a
3.90a
2.96a

34.50a
28.11b
29.62b

21.36a
21.15a
19.61a

71.31a
71.85a
72.43a

23.89a
124.93a

96.00a

a = (percent), of fresh wood,  based  on oven-dry weight.
* = Means within a column followed by the same letter are not different at p = 0.05.
’ = Based  on oven-dry weight and o&dry volume.
d = (mg/g),  of oven-dry weight of unextractad wood.
’ = (percent), of oven-dry weight of unextractad wood.
’ = (pglg),  of oven-dry weight of unextracted wood.

rapid rate. Site differences in moisture content began to
show up by week IO (table 2) with the sapwood  of bolts on
hydric sites having a higher moisture content (62.37 percent)
than on mesic (56.8 percent) and xeric (52.5 percent) sites.
By week 16 hydric sites had declined to 60.5 percent, mesic
to 53.8 percent and xeric to 50.1 percent. The relative
moistness of the three LEC units seems to be accurately
reflected in the moisture content of sapwood  of the oak bolts
placed on those sites.

The initial specific gravity of heartwood and sapwood
(0.6728/0.6301)  was significantly different, a difference
which increased through week 16. Specific gravity increased
slightly in heartwood and decreased slightly in sapwood
(0.7194/0.5537)  over the 16week  period (table 1). There
were essentially no diierences in speciftc gravity due to site
class (table 2) throughout the 16week  period. These data
suggest that there was no major wood decay during this
period. The slight, but not significant, declines during the

2 3 4

study are probably reflective of internal checking within the
wood samples, yielding a somewhat erroneous specific
gravity reading, rather than reflecting wood loss due to
decay.

Because of their availability, non-structural carbohydrates
are the first chemical components to be degraded by
invading microorganisms. Nonstructural carbohydrate
contents generally decreased throughout the 16week
period (table 1). initially, there was no difference in total
carbohydrates between heartwood and sapwood  (20.7/18.7
mglg), but by week 3 these declined somewhat in heartwood
and then leveled off through week 16. in sapwood  there was
a slight increase in week 3 to 23.3 mglg and then a sharp
decline to 6.4 mg/g by week 16. Tn both of these tissues
these declines suggest that the pool of total carbohydrates
diminished over the 16week  period. There was no effect of
site class on total carbohydrate content (table 2).



_ The reducing sugar contents generally paralleled those of
total carbohydrates, from an initial high of 29.5 mg/g in
heartwood  and 11.2 mg/g in sapwood  (table 1). Both tissues
declined markedly in reducing sugar contents by week 16
(8.6/3.4 mg/g).  There was no effect of site class on reducing
sugar content (table 2). The decline in total carbohydrates
and reducing sugars reflects the declining activity of
parenchyma cells in the respective tissues as the increasing
populations of bacteria and fungi began to metabolize these
readily available carbon sources.

starch content showed moderate decreases throughout the
16-week period, from a high of 33.6 mg/g in week 0, to 30.4
mg/g  by week 16 (table 1). Sapwood  had a higher content of
starch (50.2 mg1g) than did heartwood and this decreased to
30.7 mg/g by week 16. Site class significantly affected
starch decomposition. On the hydric sites there was no
change in starch content over the Is-week  period (table 2).
On the mesic sites starch decreased from 34.1 mg/g at
week IO to 28.1 mg/g at week 16 (table 2). On the xeric sites
starch decreased from 33.4 mg/g at week 6 to 29.0 mg/g at
week IO (table 2). It is postulated that on the hydric sites
there was sufficient moisture imbibition from the soil to keep
the sapwood  parenchyma cells alive and this enabled them
IO resist invasion and colonization by microorganisms.

One percent caustic soda solubility increased only slightly
between heartwood and sapwood  during the 16-week  period
(table I), but there was a slight increase in sapwood  only at
16 weeks. There were no effects of site class during the
study (table 2).

Table 3-Chemical  composition of pine bolts

Because the one percent caustic soda solubility test showed
little decay loss, holocellulose content was assessed only for
sapwood.  Holocellulose content, likewise, did not vary over
the study period (table 1), and was not affected by site class
(table 2).

Inspection of the bolts during the course of the stud;
indicated that there were visible stain/decay effects in
sapwood  but not in heartwood. The sapwood  became a light
yellowish color with black zone lines. For that reason, fungal
biomass was estimated only in the sapwood.  Initially,
sapwood  contained 2.89 pg ergosterollg,  which sharply
increased to 59.88 pg/g in week 3, and eventually to 76.52
pglg in week 16. Although there was quite a bit of variation,
the data suggest that ergosterol content may have been
greatest on the mesic sites (table 2). Most of this content is
believed due to Hypoxylon  afropuncfatum  (Schwein.:Fr.)
Cooke, which is a common invader of oak sapwood  of
declined or dead trees and also an early invader of freshly
milled lumber (Tainter  and Baker 1996). It has a unique
positional advantage because it colonizes the inner and
outer bark of living oak trees as they grow and mature and is
never more than a few cells away from the nutrient-rich
sapwood  of the living trees. The small, but detectable,
amount of ergosterol in the control sapwood  may reflect
invasion of these bolts during the 2-3 days after their
preparation before they could be processed.

Pine
The initial moisture content differed significantly between
heartwood and sapwood  (46.41105.1 percent) (table 3).

Weeks of exposure

Attribute Control 3 8 10 16

Moisture content*
Heartwood
Sapwood

Specific gravityc
Heartwood
Sapwood

Total carbohydratesd
Heartwood
Sapwood

Reducing sugarsd
Heartwood
Sapwood

Starchd
Heartwood
Sapwood

Caustic soda solubilitve

46.38ab
105.14b

.449a
.554b

8.06a
7.03a

6.98a
3.44a

11.36a
12.64a

40.07a
91.05b

.512a

.592b

6.98a
4.68b

7.36a
1.8lb

2.90a
5.10b

41.93a
81.46b

.482a

.576b

8.03a
4.38b

8.56a
1.60b

2.06a
2.69a

46.92a
75.03b

.493a
.582b

10.73a
4.59b

9.60a
1.60b

2.78a
3.09a

48.45a
70.84b

.452a
.572b

6.46a
4.26b

7.14a
1.04b

.78a
1.40a

Heartwood 19.86a 23.10a 23.31a
Sapwood 13.51 b 13.79b

Holocellulosee
12.85b

Sapwood
Ergosterol’

66.51 67.05 66.98

Sapwood 7.15 18.60 23.89

i  =  (Percent),  of fresh wood, based on oven-dry weight.
c 9  Means  within a column followed by the same letter are not different at p = 0.05.
d  - Based  on ovendry  weight and ovendry  volume.

=  (mg/g),  of ovendry  weight of unextracted wood.
r =  (Percent), of oven-dry weight of unextracted wood.

=  @g/g),  of oven-dry weight of unextracted wood.

27.89a
12.71b

67.76

28.01

21.67a
12.80b

67.41

24.17
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The moisture content of heartwood did not decrease through
week 16. However, sapwood  moisture content decreased to
70.6 percent by week 16. The heartwood columns were
relatively small in these bolts and were likely protected from
drying by the much wetter and thicker sapwood.  Site
differences began to show up by week 3 with the hydric site
at 107.7 percent, mesic at 91 .O percent and zeric at 74.5
percent (table 4) decreasing at week 16 for the hydric site to
percent. As with the oak samples, the relative moistness of
the three site classes seems to be reflected in the moisture
content of sapwood  of the pine bolts placed on these sites.

data, there were no major chemical effects of wood decay
during this time period.

Nonstructural carbohydrate contents generally decreased
throughout the IS-week  period (table 3). Initially there was
no difference in total carbohydrates between heartwood and
69.9 percent, for mesic to 68.0 percent, and for zertc  to 54.6
sapwood  (8.0617.03 mg/g),  but by week 3 differences were
evident (6.9814.68 mg/g),  holding steady through week 16
(6.46/4.26  mg/g)  (table 3). There was no effect of site class
on total carbohydrate content (table 4).

The initial specific gravity of heartwood and sapwood
(0.4488/0.5537)  was significantly different, a difference
which was maintained through week 16, with no significant
change in their relative amounts (table 3). There were no
differences in specific gravity among the three site classes
(table 4) throughout the 16-week  period. As with the oak

The reducing sugar contents generally paralleled those of
total carbohydrates in heartwood, from 6.98 mg/g  to 7.14
mg/g in heartwood of control bolts over the 16-week  period
(table 3). In sapwood,  however, the initial reducing sugar
content of 3.44 mglg steadily decreased to 1.04 rnglg at
week 16, but effect of site class on these contents was not
clear (table 4).

Table 4-Chemical  components of pine sapwood  by LEC site

Weeks of exposure

Attribute 3 6 1 0 1 6

Moisture contenta
Hydric
Mesic
Xeric

Specific gravity’
Hydric
Mesic
Xeric

Total carbohydrate&
Hydric
M e s i c
Xeric

Reducing sugarsd
Hydric
Mesic
Xerlc

Starchd
Hydric
Mesic
Xeric

Caustic soda solubilitye
Hydric
Mesic
Xeric

Holocellulosee
Hydric
Mesic
Xeric

Ergosterol’
Hydric
Mesic
Xeric

1 07.68ab 92.37a
9l.Olab 84.32a
74.48b 67.68b

.60la

.569a

.605a

.575a

.554a

.600a

3.88b
5.32a
4.83ab

3.76a 4.34a
4.80a 4.78a
4.58a 4.63a

2.21a
1.75a
1.46a

2.14a
1.57ab
1.08b

4.12a
5.82a
5.38a

2.8la
2.70a
2.55a

13.97a
13.72a
13.69a

12.94a
12.70a
12.90a

67.lla
66.96a
67.19a

67.11a
66.9la
66.91a

3.94b
11.20b
40.66a

9.97a
24.56a
34.81a

90.32a
71.56b
63.21 b

.555a

.592a

.600a

2.2la
1.63a

.96b

1.30b
3.81a
4.18a

13.69a
12.70ab
11.74b

67.34a
68.02a
67.91a

9.llb
7.28b

67.64a

89.92a
68.01 b
54.58~

.578a

.559a

.578a

3.97a
4.62a
4.18a

1.37a
Ma

1.12ab

.78b
1.96a
1.46ab

13.69a
12.06a
12.66a

67.52a
66.59a
68.lla

13.07b
6.65b

52.80a

’ = (percent), of fresh wood, based  on oven-dry weight.
b = Means within a column followad  by the same letter are not different at p = 0.05.
’ = Based on ovendry weight and ovendly  volume.
d = (mglg),  of oven-dry weight of unextractad wood.
e =  (percent), of oven-dry weight of unextracted wood.
’ = &g/g),  of ovendry weight of unextracted wood.
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Starch content showed dramatic decreases throughout the
l&week  period, from initial highs in heartwood and
sapwood  (11.36112.64 mg/g)  (table 3),  decreasing to
2.gO15.10  mglg  by week 3 and decreasing even more
(0.78/l  .40  mg/g)  by week 16. Starch decreased more slowly
on  hydric sites (table 4).

At the beginning of the study, one percent caustic soda
solubility  was significantly different between heartwood and
sapwood  (19.8603.51)  and these relative amounts did not
change throughout 16 weeks (table 3). Site class had no
effect on this measure of decay (table 4).

Holocellulose content of sapwood  did not vary over the study
period (table 3) or by site class (table 4).

Initially, ergosterol content of sapwood  was 7.15 pg/g  and
this measure of fungal  biomass rose to 18.60 pg/g  by week
3, and to 24.17 pg/g  by week 16 (table 3). Blue stain,
caused by Ceratocyslis  spp. or Ophiostoma spp., was very
evident in these bolts as the study progressed. A detectable
amount of ergosterol in sapwood  of initial samples likely
reflects the rapid invasion and colonization of these bolts
during the 2-3 days before they could be taken to the
laboratory and processed. Although there was considerable
variation in the data,  it was clear that ergosterol was most
abundant in sapwood  of pi?e  bolts placed on the xeric  sites
(table 4). Since the bolts were randomized before
placement, it is unlikely that this is a reflection of pre-existing
co lon izat ion .

CONCLUSIONS
This study suggests that there are detectable increases in
fungal  populations during the first 16 weeks when freshly cut
bolts of pine and oak are placed on the forest floor and
allowed to deteriorate. The bolts begin to dry and the rate of
drying is reflective of site class influences. Declines in total
nonstructural carbohydrate contents, which also were
affected by site class to a limited extent, suggest an
increasing utilization of these carbon sources by invading
microorganisms. The 16-week  period, though, was not
sufficiently long enough to allow detectable deterioration of
woody cells.
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