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Abstract 
 

Near infrared (NIR) spectroscopy is now a widely-used technique in the field of forest 
products, especially for physical and mechanical property determinations.  This technique 
is also ideal for the chemical analysis of wood.  There has been a growing need to find a 
rapid, inexpensive and reliable method to distinguish between preservative-treated and 
untreated waste wood.  It has been demonstrated that NIR spectroscopy, with multivariate 
analysis (MVA), can be used to distinguish between different preservative treatments.  
This technique is rapid, non-destructive, portable and relatively low cost.  The results 
clearly demonstrate that this technique has potential for use in a variety of recycling and 
sorting applications.  It has also been successfully used to predict preservative 
concentrations present in treated wood.  A custom-made NIR scanning system, 
NIRVANA (Near Infrared Visual and Automated Numerical Analysis), was used for the 
automated scanning and prediction of preservative concentration along cross sections of 
ACQ-treated timbers.  This may have potential for use as a quality control tool for wood 
treaters, especially for use with organic co-biocides, for which the preservative penetration 
and concentration cannot be readily assessed.

 
 
Introduction 
 

Preservative-treated wood is widely used for the construction of decks, fences and other 
residential applications.  The primary preservative used for residential applications in the 
United States had been chromated copper arsenate (CCA) until its phase out for virtually all 
residential applications was implemented (US Environmental Protection Agency, 2002).  
This has led to the introduction of replacements such as alkaline copper quat (ACQ) and 
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copper boron azole (CBA).  Increasing amounts of CCA-treated wood reaching the end of 
its service life need to be sorted and processed, following strict guidelines, for its disposal. 

Research efforts into sorting technologies for distinguishing between CCA- and 
non-CCA treated waste wood have been led by Solo-Gabrielle and colleagues (Blassino et 
al., 2002; Solo-Gabriele et al., 2004).  They have used laser induced breakdown 
spectroscopy (LIBS) and x-ray fluorescence (XRF) spectroscopy to quickly and accurately 
differentiate CCA-treated wood from untreated wood, online at a waste sorting facility for 
construction and demolition debris.  Another possibility is the use of near infrared (NIR) 
spectroscopy together with multivariate analysis (MVA).  This has the potential for 
detecting and distinguishing between a variety of preservative-treated wood with or without 
organic or inorganic preservatives, and can be installed online at a waste wood sorting 
facility or used in the field with a hand-held spectrometer (So et al., 2004). 

Early work by Feldhoff and coworkers (Feldhoff et al., 1998) investigated the presence 
of inorganic wood preservatives on timber, this involved spectral evaluation by visual 
means only.  However, the application of MVA techniques to the NIR spectra was first 
reported in So et al. (2004).  This included studying a variety of preservative treatments, 
both organic and inorganic, in which the treatments were identified and distinguished, as 
well as the amount present.  Other recent studies have determined the levels of borate 
(Taylor and Lloyd, 2007) and creosote (Hedrick et al., 2007) in wood. 

When wood is treated with preservatives, there are minimum standards that the wood 
treater must adhere to for quality control, and in the United States, these are provided by the 
American Wood Preservers’ Association (AWPA).  Determining the preservative 
retention and the depth of penetration into the timber is of great importance.  The relevant 
AWPA standards can be very labor-intensive and time consuming.  NIR spectroscopy has 
also been used for these determinations, in which an automated spectra collection system, 
NIRVANA (Near Infrared Visual and Automated Numerical Analysis) (So et al, 2007; So 
et al, 2006), provided rapid and detailed analysis of preservative penetration depth (So et al, 
2007). 
 
 
Materials and Methods 
 
Materials 

Several commercially-treated deck boards were obtained for this study, with the 
following preservative/wood species combinations (described in So et al. 2004): 
CCA/Hem-Fir; CCA/Eastern Hemlock; ACZA/Douglas-fir and ACQ/Hem-Fir.  Details of 
the sample preparation and testing are also available in So et al. 2004.  Commercial 
ACQ-treated southern yellow pine (SYP) timbers were selected for spectral mapping and 
sample preparation is detailed in So et al. 2007. 
 
Near infrared spectroscopy 

NIR measurements were made using a Nexus model 670 FTIR spectrometer 
(ThermoNicolet, Madison, WI, USA) as described in So et al. 2004.  Spectral mapping of 
the treated timber was performed using the NIRVANA system.  Briefly, timber specimens 
were positioned on a Newport motorized stage, while the NIR spectra were collected using 
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an ASD FieldSpec Pro FR spectrometer (ASDI, Boulder, CO, USA).  Further details are 
provided in So et al. 2007. 
 
Multivariate analysis 

Multivariate analysis of the data was performed using the Unscrambler (version 8) 
software (Camo, Woodbridge, NJ, USA).  Multiplicative scatter correction (MSC) was 
applied to the NIR spectra, followed by wavelength reduction to 10 nm spacing.  The NIR 
spectra for the calibration specimens were also averaged to one spectrum per sample.  
Principal component analysis (PCA) was used to observe any clustering and/or separation 
in the sample sets.  Partial least squares (PLS) analysis was performed on the calibration 
spectra and calibration models were generated using full cross validation.  Three 
wavelength ranges (full: 400-2500 nm, visible: 400-700 nm, NIR: 1000-2500 nm) were 
used for the analysis. 
 
 
Results and Discussion 
 

PCA was used to differentiate between the various preservative treatments applied to 
the wood specimens.  This was performed on the complete set of samples.  Fig. 1 shows 
the resultant scores plot.  Although there is some overlap, clusters are clearly evident, 
differentiating the three preservative treatments of CCA, ACQ and ACZA.  It can be seen 
that the separation between the Hem-Fir samples with different preservative treatments 
(CCA Hem-Fir and ACQ Hem-Fir) was much greater than the separation between the CCA 
samples with differing wood species (CCA East Hem and CCA Hem-Fir).  This would 
indicate that preservative type may dominate over any differences in wood species, a 
requisite for sorting preservative-treated wood.  Also, analysis of only the CCA samples 
showed clear separation between the East Hemlock and Hem-Fir species as compared with 
Fig. 1.  These results have been discussed in more detail elsewhere (So et al., 2004). 

 
 

Fig. 1. PCA scores plot from all the NIR spectra collected. 
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PLS regression was undertaken to predict the values of preservative retention for the 
samples, this included the levels of CuO, CrO3 and As2O5, where applicable.  Only the 
result for the complete set of samples is shown here in Fig. 2.  A strong relationship exists 
between the experimentally-determined CuO retention and that predicted by NIR, with a 
correlation coefficient (R2) of 0.98 using five factors.  Strong correlations were also 
obtained for CuO, CrO3 and As2O5 with the CCA samples, as well as the individual sample 
sets (So et al., 2004). 

 

 
 

Fig. 2. Relationship between measured and NIR-predicted values of CuO retention. 
 

NIRVANA was used for the automated spectral mapping of an ACQ-treated SYP 
timber specimen.  This specimen was taken from a fast-growth tree with widely-spaced 
growth rings, exhibiting no obvious heartwood formation.  CuO retention values were 
predicted along the specimen using previously-built models based on small ACQ-treated 
SYP blocks detailed in So et al. 2007.  The resultant plots for three wavelength ranges in 
Fig. 3 show the variation of CuO retention and preservative penetration depth along the 
timber specimen between the specimen end (0 mm) and the pith, with the scan line 
displayed as a dashed line on the image.  The scattered nature of the plot is mainly due to 
the earlywood and latewood bands, with the full wavelength range exhibiting the least 
scatter.  It may be preferable to apply an ‘average’ line to the plot for analyzing the trends.  
Fig. 3 shows that the CuO retention steadily decreases from a maximum value at the 
specimen end (0 mm) to no preservative penetration (i.e., 0 pcf) beyond 80 mm.  A spike 
in the data clearly shows the position of the pith and can be used as a reference point to 
verify sample alignment. An important point to note is that this technique cannot be 
considered a measure of color since the CuO is detected outside the visible region in the 
1000-2500 nm plots.  Similar mapping studies were performed on other treated timbers, 
including a specimen from a slow-growth tree with both heartwood and sapwood present.  
The result from that specimen showed no preservative penetrated the heartwood (So et al, 
2007). 
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Fig. 3. Variation of CuO retention and preservative penetration depth in a section of timber from a fast-growth 
SYP tree 
 
 
Conclusions 
 

This brief summary clearly shows that NIR spectroscopy, in conjunction with MVA, 
has great potential for use in the study of preservative-treated wood.  It has been 
demonstrated that it is possible to use PCA to separate and identify various preservative 
treatments applied to wood.  PLS regression can be used to produce strong correlations 
between the measured and NIR-predicted preservative levels.  Based on such models, 
NIRVANA may be potentially suitable for quality control assessments of treated timber by 
providing both rapid and detailed analysis of both the preservative retention and depth of 
penetration. 
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