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Abstract Coupled gas chromatography/electroantennographic detection (GC-EAD) is a 
widely used method for identifying insect olfactory stimulants present in mixtures of 
volatiles, and it can greatly accelerate the identification of insect semiochemicals. In GC- 
EAD, voltage changes across an insect's antenna are measured while the antenna is exposed 
to compounds eluting fi-om a gas chromatograph. The antenna thus serves as a selective GC 
detector whose output can be compared to that of a "general" GC detector, commonly a 
flame ionization detector. Appropriate interpretation of GC-EAD results requires that 
olfaction-related voltage changes in the antenna be distinguishable from background noise 
that arises inevitably from antenna1 preparations and the GC-EAD-associated hardware. In 
this paper, we describe and compare mathematical algorithms for discriminating olfaction- 
generated signals in an EAD trace from background noise. The algorithms amplify signals 
by recognizing their characteristic shape and wavelength while suppressing unstructured 
noise. We have found these algorithms to be both powerfbl and highly discriminatory even 
when applied to noisy traces where the signals would be difficult to discriminate by eye. 
This new nlethodology removes operator bias as a factor in signal identification, can 
improve realized sensitivity of the EAD system, and reduces the number of runs required to 
confirm the identity of an olfactory stimulant. 
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Introduction 

Coupled gas chromatography-electroantennographic detection (GC-EAD) is a widely used 
procedure for distinguishing insect olfactory stimulants within mixtures of volatile 
chemicals. Insect antennae are exposed to compounds eluting from a gas chromatograph 
(GC) while the electrical potential across them is continuously recorded (Am et al. 1975). 
Voltage deflections are detected in the antennae coincident with the elution of olfactory 
stimulants, and stimulants of particular biological importance for the insect, such as 
pheromones, typically produce relatively larger deflections. The elicitation and comparative 
strength of antennal responses can be used to assess the likelihood that a particular 
compound will be found (after further investigation) to have behavioral activity for an 
insect. GC-EAD has been used effectively by researchers to rapidly screen large numbers of 
candidate semiochemicals or raw extracts of active material for further evaluation in 
behavioral experiments, thereby eliminating unnecessary behavioral tests of inactive 
compounds (Cork et al. 1990; Bjostad 1998). 

The utility of EAD data depends greatly upon the quality of the signal detected from the 
antenna and the signal-to-noise ratio. Noise can be generated within the antennal 
preparation and apparatus by sources of electromagnetic radiation, changing local electric 
fields, changes in the quality of electrode contact with the antenna, amplifier noise, as well 
as movement of the antennae caused by air fluctuations, muscular contractions, or 
mechanical vibrations conducted through the equipment (Van der Pers 1998). This constant 
stream of random background noise and spurious electrical perturbations invariably mask 
some true signals (i.e., potentials presumably arising from stimulated olfactory sensilla), 
and otherwise compete with them for recognition (Fig. 1). Generally, authors have reported 
EAD-detected olfactory stimulation without indicating a specific method for discriminating 
signal from noise. In some cases, authors have stipulated "consistency" or "repeatability" of 
an EAD spike at specific retention times as evidence for an olfaction-generated signal 
(Ellner et al. 2001; Nunez et al. 2002). To improve the repeatability of EAD data 
interpretation, some have employed explicit tests based in the statistical improbability of a 
random noise spike both exceeding a threshold level and recurring at the same retention 
time (Zhang et al. 2001; Zhang and Aldrich 2003; Asaro et al. 2004). Such methods gain 
power through repeated runs of the same compound over the same insect species. However, 

Fig. 1 A composite EAD trace --- SmkisRstb EBB Revs EAD 

illustrating various types of 9 2  7- 

deflections that may be present. 
0 % :  

I 
The lower trace is the raw unfil- t 
tered EAD trace as it is recorded 
fi-om the antenna, and the upper 
trace has had zero-filtering and 
some smoothing applied. Non- 
signal "spikes" are shown at 
locations a, baseline shifts are 
shown at b, and an olfaction 
generated signal is shown at c. 
Smaller random noise perturba- 
tions are seen throughout 
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because these methods discriminate signals using deflection amplitude data alone without 
considering deflection shape, they may require many data runs to resolve genuine olfactory 
responses, and they may be ineffective at distinguishing signals when noise-associated 
deflections are similar in amplitude. 

The signal-to-noise ratio in EAD procedures can sometimes be improved with 
modifications to the associated hardware and antennal preparation technique. For example, 
the signal-to-noise ratio of an EAD preparation that utilizes a single antenna can be 
improved by attaching multiple antennae in parallel to the recording electrodes (Park and 
Baker 2002). In addition, the unique dynamics of olfactory responses can be exploited in 
the use of filters that discriminate between signal and noise. Voltage deflections produced 
by antennae exposed to olfactory stimulants have a characteristic shape and duration (or 
wavelength) that is the product of both the doseltime characteristics of the presented 
stimulus and antenna physiology (Sullivan and Slone, unpublished data). Consequently, 
low-pass filters have been incorporated into EAD amplifiers that attenuate short wavelength 
signals typical of electromagnetic noise while passing the long (i.e., >1-10 sec) 
wavelengths associated with electrophysiological responses (Guerin et al. 1953; Bjostad 
1998; Sasaerila et al. 2000; Leal et al. 2001). The analog EAD signal output is commonly 
converted to a digital stream for data storage and examination with graphical software. With 
the data recorded as a series of numbers representing the antennal voltage measured at a 
fixed interval (e.g., every 0.2 sec), mathematical filters can also be applied to antennogram 
data sets post-collection to extract antennal response from background noise. Such post hoc 
methods are available on commercial EAD software and include smoothing algorithms 
such as moving-average which, like low-pass filters, tend to attenuate noise with shorter 
wavelengths. However, the shape dynamics of olfaction-generated EAD signals are 
adequately distinct to allow discrimination based on more precise waveform characteristics; 
hence, further refinement to such post hoc noise filters is possible. Assuming the 
concentration of stimulant eluting from the GC is not approaching the saturation point of 
the olfactory sensillae, EAD output amplitude will covary approximately linearly with the 
log-transformed concentration of an eluting stimulant (Zhang et al. 2002; Sullivan, 
unpublished data) or the first integral of the amplitude of the flame ionization detector 
output. Hence, the shape of the raw olfaction-generated signal closely resembles that of the 
flame ionization detector (FID) peak. Under normal GC operating conditions (i.e., the 
column is not overloaded and its temperature is programmed to increase constantly), these 
peaks should resemble the bell shape of a normal distribution (Fig. 2). Hence, EAD peaks 
arising from GC-generated stimuli eluting will have an essentially constant wavelength 
- - - -  - - 
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(i.e., peak width) and a high degree of bilateral symmetry between their left and right slopes. 
In this paper, we describe three algorithms that discriminate olfaction-generated signals 

fiom noise in EAD data on the basis of either (1) signal amplitude alone, (2) signal 
amplitude and wavelength, or (3) signal amplitude, wavelength, and symmetry. We then 
compare the signal-discriminating capacity of the three algorithms to one another and to 
discrimination methods based on either general visual appearance of EAD traces or 
retention time consistency of signals. The algorithms are formulated to be applicable to any 
EAD data sets where voltage changes across antennae are detected with a high-impedance 
DC amplifier (such as described in Bjostad 1998 and used in EAD systems sold by 
Syntech, Hilversum, The Netherlands) interfaced with an analog-to-digital converter and 
data management software that allows the final collected data set to be converted to an 
ASCII file and examined in a spreadsheet program. PC-based digital data acquisition 
systems suitable for GC-EAD commonly permit the user to convert recorded data to ASCII 
format (including data acquisition systems sold by Syntech; SRI Instruments, Torrance, CA, 
USA; and DATAQ, Akron, OH, USA), so it should be possible for most GC-EAD 
operators to apply our algorithms to their own data sets. In addition, we have made 
available on the Internet an Excel spreadsheet that performs all of the calculations. 

Methods and Materials 

Apparatus Setup and Data Collection EAD data were collected from the antennae of the 
Nantucket pine tip moth, Rhyacionia frustrana (Comstock; Lepidoptera: Tortricidae), the 
southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Curculionidae), 
and the parasitoid Roptrocerus xylophagorurn (Ratzeburg; Hymenoptera: Pteromalidae) 
using procedures and apparatus described previously (Pettersson et al. 2000; Asaro et al. 
2003; Sullivan 2005). Antennae were mounted between two glass electrodes filled with 
Beadle-Ephmssi ringer solution amended with polyvinylpyrrolidone (Bjostad 1998), and 
the recording electrode was connected to a high impedance guarded input ACIDC 
preamplifier (Syntech). Output from the preamplifier was processed by a signal interface 
box (Syntech IDAC 213) that provided optional baseline control of the analog signal. 
Digitized signal from the FID and the signal interface box were collected at five samples 
per second with a PeakSimple Chromatographic Interface and PeakSimple software (SRI 
instruments). Data were collected without the automatic baseline return filter engaged on 
the IDAC 213. The EAD and FID data files were saved in ASCII format and subsequently 
opened in an Excel spreadsheet as two columns of successive voltage readings from the 
FID and the EAD [note that for data collected with Electro Antenno Detection software 
(Syntech 2004), "EAD session" data files (*.ead) can be saved in ASCII format (*.asc) 
within the "File: Save As" window]. 

Data Transformation We first applied an exponential zeroing filter to the raw EAD data. 
Filtrations of the data in this way converted the approximately Gaussian raw EAD signals 
to "sigmoid" deflections that were essentially identical to the output produced by the analog 
baseline-return filter present on the SYNTECH IDAC 213 signal interface box: 

where Z=zeroed data, t=sample number, E=EAD data (i.e., voltage recorded from 
antenna), and r~zeroing rate [related to the time constant (T.C.) on the SYNTECH IDAC 2/ 
3 by r = 0 . 3 7 ~ ; f , = s a m ~ l i n ~  rate per second. We set r to a value of 0 . 8 w ~ . ~ ~  where w is 
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the width in samples of an average FID peak in the sample run at half its height. This value 
produced positive and negative deflections in the zeroed EAD data that were similar in amplitude. 

We further filtered the zeroed data to remove spurious noise spikes by applying an 
exponential averager (Lyons 1997): 

st = a, 2, + ( 1  - a,) . st-I ,  ( 2 )  

where a,=weighting factor for smoothing. The purpose of the averaging filter is to pass 
deflections that occur at the wavelength expected of an olfaction signal (for EAD data, this is 
the wavelength of the FID peaks) while attenuating the higher frequencies associated with 
noise. For typical GC-EAD recordings where the FID peak width at half-height is 2-3 sec (10- 
15 time steps), we found that a value of 0.15 for a, maximized the difference in amplitude 
between signal peaks and higher frequency noise, thus allowing for the highest S/N ratio. 

We calculated a baseline using a similar exponential averaging hnction: 

where ab=weighting factor for the baseline. The baseline is the axis from which we 
measured height of EAD deflections. Hence, it ideally should attenuate signals with the 
wavelength expected from olfaction signals while passing lower frequencies, thereby 
allowing the baseline to follow the average meanderings of the zeroed EAD data and 
permitting the subtraction of baseline "drift". To achieve this end, we set ab to 0.001. 

Signal Discrimination We transformed the data finally with one of three candidate 
algorithms designed to "filter out" EAD deflections that did not possess specific 
distinguishing characteristics of those produced by olfactory stimulants eluting from the 
GC. Our goal was to design a fbnction whose value ( y )  was large and positive when an 
olfaction-generated signal occurred at retention time t, and small or negative otherwise. 

The first algorithm was the Peak Height method. The amplitude of negative EAD deflections 
from the baseline was measured at time t. This algorithm formalized the process ostensibly used 
by EAD operators during visual evaluation of graphic EAD output, namely, locating negative 
deflections in zeroed data that stand out appreciably from the background noise: 

The second algorithm was the Additive method. In addition to the initial downward 
deflection of the EAD output, a second positive deflection is generated by the zeroing filter 
(Eq. 1) when the raw data stream contains a negative-deflecting Gaussian peak of a 
wavelength similar to the GC peaks. The amplitude of this positive deflection will equal 
approximately that of the negative deflection when the EAD response possesses the same 
wavelength (i.e., peak-width) as a GC-generated stimulus (i.e., an FID peak), when r of the 
zeroing algorithm is set to 0.8w0.05. Hence, for EAD signals generated by GC-eluting stimuli, 
that is, "true" olfactory responses, the sum of the amplitudes of a negative deflection occurring 
at time t and a corresponding positive deflection occurring at time t+w will have a value that 
exceeds that produced by random background noise comprised of random frequencies: 

WA(() = ( b f  - + (~t+w - b l + ~ ) .  PI 
This algorithm tends to filter out EAD deflections with either low amplitude andlor 

inappropriate wavelength, and therefore, was hypothesized to be more accurate at 

Springer 



J Chem Ecol (2007) 33:1748-1762 1753 

discriminating signal from noise than the "Peak Height" algorithm (Eq. 4) which discriminated 
signals by using amplitude alone. 

Finally, in the Minimum method, we recorded the smallest of the negative and positive 
deflections of the zero-filtered EAD data stream at the wavelength expected from an 
olfaction-generated peak as the value of the function: 

This method discriminated specifically against EAD deflections in the zeroed data where 
the negative deflection at time t and positive deflection at t+w differed substantially from 
each other in amplitude: higher function values are generated for peaks with both the 
symmetry of a Gaussian peak and appropriate wavelength. Because this algorithm 
discriminated peaks based on three diagnostic qualities of olfaction-generated EAD signals 
(i.e., peak amplitude, wavelength, and symmetry), we hypothesized that this algorithm 
might result in greater rejection of noise than the two previously described. 

Noise Characterization In the absence of compounds eluting from the GC, EAD output 
had a continuous and predictable noise pattern. The distribution of noise around the 
baseline was normally distributed. In addition, we found that the individual points had a 
high degree of positive serial correlation, with first degree correlations typically above 0.8 
(Slone and Sullivan, unpublished data). Serial correlation in the data peaks would invalidate 
traditional statistical techniques by violating the assumption of independence. 

Signal and Noise Measurement We defined a "peak" as any location where the following 
was true: 

ly, = max (v,-*, vt- 1 , v,, ~ r +  . ~ t + * ) .  (7) 

By using only the peaks, we reduced the amount of points to process and eliminated the 
-0.8 first-order serial correlation present in EAD data (Slone and Sullivan, unpublished 
data). These peak values were normally distributed around their mean, which allowed us to 
use conventional statistical techniques. 

To categorize each peak as either signal or noise, we first identified sections of the processed 
EAD run (ly) where elution of olfactory stimuli from the GC could not have occurred. These 
sections included retention times both before the solvent peak eluted k m  the column (but after 
the initial antenna noise had abated) and after all analytes had eluted at the end of the GC 
temperature program. We then calculated the mean &) and standard deviation (a) of all positive 
peaks within those sections as an estimate of baseline noise inherent in the entire EAD trace. 

Next, a cutoff amplitude was selected to separate true signal peaks above the cutoff from 
noise peaks below the cutoff. This amplitude was set through a combination of the noise 
distribution and the desired probability of committing a type I (false identification of noise 
as signal) error. The experimentwise error probability (aE; typically 0.05) depended upon 
the number of peaks in the data set and the probability that any single peak might trigger a 
type I error (comparisonwise error, a,). The a~ and a, values are related by the following 
equation, functionally similar to the Bonferroni correction (Jones 1984): 

where n is the total number of peaks in the portion of the data stream that is being tested. 
The cutoff amplitude was calculated by finding the value of the z statistic that satisfied the 
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following equation of the normal distribution populated with the calculated values of a, 
and a. (e.g., Mendenhall et al. 1990): 

and adding that value to the mean noise level (A). Any peak that had a value greater than 
(p,+z) was categorized as a signal, and all others were rejected as noise. 

Performance Testing: Simulation We evaluated the sensitivity and noise-rejection capacity 
of the algorithms by applying them to simulated EAD data sets that contained a specified 
amplitude of random background noise and either a simulated olfaction signal (a normally 
distributed deflection of known amplitude and a width at half-height of w), a spurious, 
short-duration deflection event (spike), also of known amplitude, or an instantaneous 
baseline-shift of known amplitude (see Fig. I). For each simulation, tm,=3,000, with 1,000 
samples containing only background noise (used for measuring p and a of the noise) and 
2,000 samples containing background noise plus the simulated signal/spurious event, and 
each simulation was replicated 20 times The specific tests we performed were as follows: 

1. Twenty well-spaced simulated olfaction signals with background noise repeated at 
several signallnoise ratios 

2. Positive and negative simulated spurious spikes randomly generated at a probability of 
0.0125 per time step (-25 spikes per run; these spikes were randomly generated to 
allow for any effects from varied spacing and positive-negative spike interactions). 
These runs were also repeated with the spikes occurring over a range of amplitudes. 

3. Instantaneous positive and negative baseline shifts, randomly generated at a probability 
of 0.0125 (-25 shifts per run; the shifts were randomly generated for reasons described 
in 2 above). 

Performance Testing: Real Data We applied the algorithms to real data sets and compared 
their performance. First, we examined EAD runs from R. fmstrana, D. fiontalis, and R. 
xylophagorum and then compared FID and EAD traces at retention times where the 
different algorithms indicated antenna1 signals. 

Second, we applied the algorithms to noisy EAD runs of D. JFontalis females exposed to 
analyzed extracts of hindguts of D. frontalis males. Eleven electrophysiologically active 
molecules had been previously identified for this combination of insect and test extract 
(Sullivan 2005). We processed 17 individual EAD runs using experimental error rates (aE) 
from a conservative 2.7e-6 to a liberal 0.9999. For each run, we calculated the baseline 
noise level and cutoff amplitude using EAD output after the solvent peak, but before the 
first FID-detectable sample peak eluted from the GC, and again after no hrther peaks were 
detected by the FID. We noted the number of signals detected by each algorithm that 
matched the retention times of the 11 known active molecules and also any signals detected 
at other retention times. Similarly, we performed 17 replicates with each algorithm where 
the digital EAD output from two runs selected at random from the 17 D. fiontalislhindgut 
runs were averaged, then 17 replicates of four runs averaged, 17 replicates of eight runs 
averaged, and finally one replicate of all 17 runs averaged. These runs were all processed 
with experimental error rates (aE) of 0.05. This method of averaging multiple EAD runs 
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from different antennae to improve the signal-to-noise ratio was previously used by 
Sullivan (2005). 

Results and Discussion 

Simulation Testing Tests of the three algorithms that used simulated EAD runs revealed the 
strengths and weaknesses of each, with highly significant performance differences (P<<0.05) 
found among the algorithms in all tests. The Peak Height method was always inferior in 
finding signals to the other two methods, and the Additive method was significantly better 
than the Minimum method (Fig. 3). In terms of noise rejection, the Peak Height method 
was also inferior to the other two methods in cases where the spike amplitude was less than 
eight times, or the baseline shift amplitude was less than three times, the maximum 
background noise amplitude (99th percentile of all noise peaks). With very large spikes or 
baseline shifts, the Additive method rejected less noise than the other methods. The 
superior method for noise rejection was clearly the Minimum method, which rejected large 
spikes and baseline shifts five to ten times better than the other methods. 

The simulation testing was deliberately designed to highlight marginal cases where 
olfaction-generated signals were competing with large amounts of background noise. For 
EAD runs where the amplitude of olfaction-produced deflections stands well beyond the 
background (i.e., those performed with especially good antenna1 preparations and more- 
than-adequate concentrations of stimulants in the test sample), most signals would be easily 
discerned by any of the algorithms or by eye. However, there are often cases where the 
amplitudes of some or all of the signals are small, or the number of spurious deflection 
events in the run are large, and in these situations, the Additive or Minimum methods 
should provide EAD operators with a powerful tool for improving their ability to 
discriminate noise from signal. If the operator's goal is to identify all possible signals in a 
run with the possibility of encountering some false positives, then the Additive method is 
preferable. If the goal is to minimize errors, then the Minimum method is superior. The 
discriminatory power of the algorithms can be enhanced several-fold if applied to data from 

Fig. 3 The proportion of simu- , 1.8 
lated signals that each of the 
algorithms discriminated is 
shown as the mean of 20 repli- --t minimum 
cations plus standard deviation 
error bars at each of several 
signal to noise ratios. An arcsin .- 
(sqrt) transformation was used to I 
linearize the proportional results. 
For S/N ratios <1.5, the Additive 0.8 
method was slightly superior to 
the Minimum method, and both 0.6 
were far better at discriminating - 
the simulated signals than the 0.4 
Peak Height method. For S/N - 
ratios 21.5, all methods discrimi- .5 0.2 
nated all signals 

0 0.5 1 1.5 

Signal 1 Noise ratio 
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- Smat bed, Zeroed EAD --%--- Lag (FID ampfrtude) $ Active mttfecufes 

Fig. 4 Zeroed EAD recording of the parasitic wasp Roptrocerus xylophagorum (Hymenoptera: 
Pteromalidae) and the associated GC trace from a mix of host and associated plant odors. The locations of 
previously determined active molecules (arrow) and significant responses (Additive, diamond; Minimum, 
triangle; Peak Height, square; aE=0.05) from the three algorithms are shown 

multiple GC-EAD runs (replications) because the likelihood that a "false" signal will be 
registered at the same retention time will become vanishingly small with additional 
replication. Statistical tests can also be performed on the frequency that signals are detected 
at a particular retention time to further reject spurious signals and accept only the retention 
times of active compounds; signals should occur with a greater frequency than predicted by 
random chance at the retention times of active molecules (Zhang et al. 200 1; Zhang and 
Aldrich 2003; Asaro et al. 2004). The chief contribution of these two algorithms to 
interpretation of EAD runs is the increase of the effective signallnoise ratio in the data, an 
improvement which reduces the number of EAD runs necessary for a researcher to 
accurately discern electrophysiologically active compounds. 

Real Data Testing All three algorithms successfully discriminated antenna1 signals from 
noise in EAD data from the three orders of insects examined. In an EAD recording of the 
parasitic wasp R. xylophagorum responding to a mix of host and associated plant odors, the 
Additive and Minimum methods correctly "tagged" all of the active compounds [i.e., 
compounds whose activity with olfactory sensillae had been demonstrated by statistical 
analysis of multiple EAD runs (Pettersson et al. 2000; Sullivan, unpublished) in the mixture 
(Fig. 4)]. The Peak Height method failed to detect one active compound and returned five 
apparent false positives at the tail end of active compounds. All methods identified a 
compound at 16.21 min that has not previously been demonstrated as an active molecule. In 
a rather noisy EAD recording of the southern pine beetle, D. frontalis, subjected to the same 
mix of odors as R. xylophagorum above (Sullivan, unpublished), all three methods 
identified signals at all three retention times of compounds with demonstrated olfactory 
andlor behavioral activity with this beetle (Fig. 5). Additionally, all three methods identified 
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LI Peak WQM reapsnss A Miniirnum response + Additive aesponsr; 
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GC retention time jmirr) 

Fig. 5 Zeroed EAD recording of the southern pine beetle, Dendroctonus frontalis (Coleoptera: 
Curculionidae) subjected to the same mix of odors as R. xylophagorurn in Fig. 6.  The locations of 
previously determined active molecules (arrow) and significant responses (Additive, diamond; Minimum, 
triangle; Peak Height, square; aE=0.05) from the three algorithms are shown 

a rather large peak at approximately 10.50 min associated with the elution of p-cymene, 
although this has not previously been demonstrated to be an olfactory stimulant. While the 
Minimum method returned no additional positives, the Additive method detected seven 
additional active retention times that were apparently false positives, and the Peak Height 
method returned two additional false positives. In an EAD recording of a female Nantucket 
pine tip moth (R. fmstrana) exposed to a mixture of host-associated odors (Asaro et al. 
2004), all three algorithms correctly identified signals at retention times of seven known 
olfactory stimulants in the mixture (Fig. 6). The Additive method also detected one 
additional active molecule at 15.70 min that has not been identified previously as an 
olfactory stimulant for this insect, and it returned an additional two false positives. The 
Peak Height and Minimum methods failed to detect two known active molecules, and 
the Peak Height method returned a single false positive. All algorithms also identified 
one FID peak at approximately 16.50 min that had not been shown previously to be an 
active compound. 

The replicated EAD runs from D. Jiontalis females that responded to male D. fiontalis 
hindgut extract were relatively noisy. In general, approximately half of the retention times 
associated with electrophysiologically active compounds were identified at aE=0.05, but 
with clear differences in performance among the algorithms (Fig. 7). The Additive method 
consistently identified more "true" signals than the other two algorithms at any a~ level, yet 
tagged fewer erroneous retention times than the Peak Height method. The Minimum 
method identified fewer signals than the other methods, but showed greater error-rejecting 
capability by not tagging any retention times incorrectly at a~ levels10.05. 

Although the Minimum method had superior error-rejection capacity, the Additive 
method showed the best overall power by consistently producing the fewest false 
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n Peak b i g h t  response A Minimum response + Mditim respotme 
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-0,143 
t 

- 4  
10.00 12~00 84.00 16.00 18.00 20.W 22.00 24.00 

GC retention time (rnin) 

Fig. 6 Zeroed EAD recording of a female Nantucket pine tip moth, Rhyacionia fnrstrana (Lepidoptera: 
Tortricidae) and the associated GC trace from a mixture of host-associated odors. The locations of previously 
determined active molecules (arrow) and significant responses (Additive, diamond; Minimum, triangle; Peak 
Height, square; aE=0.05) from the three algorithms are shown 

classifications per correct classification (Fig. 8). The Minimum method had medium overall 
power, and the Peak Height method had the lowest power with real data sets, returning the 
highest number of false positives per true response. Algorithm traces for the Additive 
method also consistently had higher average signallnoise ratios than output from the other 
algorithms (Fig. 9). Additionally, the Additive method recognized more true olfaction- 
generated signals than is apparently possible by visually comparing peak heights in EAD 

Fig. 7 Average number of true + A r -+ Minimum &us + P ~ a k  Weight trw 
and false significant responses A *, AWilve fsktr - d Minimum bke - B ~ a k  Hsigf7t fake 
(k1 SD) fr& 17 south& ~ i n e  I 
beetle EAD runs producedby 2 t each algorithm using a range of - 15 1 
experimental error rates (aE). The 2 
numbers of signals found were + 1 { 
log(x+ 0.1)-transformed before 
averaging to normalize the 
variances 
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Fig. 8 True vs. false significant 
responses returned from each 
algorithm for southern pine beetle 
EAD runs. Each point shown 
represents the average of 17 runs 
evaluated at a different a~ level, 
ranging from 2.7e-6 firthest left) 
to 0.9999 (fbrthest right). Points 
lower and further to the right 
indicate superior performance 

-4 + - 7 7  

1 1,2 1.4 1,fi 9 3  2 2.2 

In [Wo. of &Z(B responses as Q.1) 

traces, as this latter procedure was ostensibly duplicated by the Peak Height algorithm. 
Thus, our data demonstrate that the Additive algorithm was an effective "amplifier" of 
olfaction-generated responses in insect-produced EAD traces. 

Our analyses of averaged data from randomly selected combinations of EAD replicates 
showed that greater signal-resolving power and improved noise rejection occurred when the 
algorithms were applied to averaged data from progressively greater numbers of runs 

* Additive wa kb h Miaimurn peakg a PEP& Height peaks 

- Mwse r@@cti.on kwl BaseLne (bj - Zeroad EAt) [Z) 

Fig. 9 Output traces (y) from each of the algorithms are shown below a section of EAD output from Fig. 6, 
a female Nantucket pine tip moth, Rhyacionia frustrana (Lepidoptera: Tortricidae) responding to a mix of 
host-associated odors. The output from each method has been standardized so that the mean of the trace is 0, 
and the noise rejection limit is 0.1. The Additive method amplified EAD olfaction peaks relative to noise 
peaks more than the Minimum or Peak Height methods 
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Fig. 10 Results from southern 82 
pine beetle EAD run averaging 
showing increasing numbers of 
true responses and decreasing 
numbers of false responses when g 
more runs were averaged. With 
all 17 runs averaged, the Additive 5 
method found all 11 active mol- --.-+. -.- Addif ive bwt 
ecules with no errors. Data were @ ' -...a .-. Uinbm 
log(x+O. 1)-transformed for anal- -43- Pe& H e i ~ h ~  trrcte 
ysis and back-transformed for + Abdifi\~e falw 
display. Note that the true and $ ,% Minimm fals~ 
false responses are displayed on 
different scales for clarity 

B 5 10 15 20 
No. of EAD replicates 

(Fig. 10). With (xE=0.05, the Additive method consistently identified the greatest number of 
retention times associated with active compounds while committing a modest number of 
errors, and it was the only method to tag the retention times of all 11 active molecules when 
all 17 runs were averaged. When four or more runs were averaged, the Additive method 
also consistently identified a location at 22.75 min corresponding to an unknown singly 
oxygenated monoterpene. Because this was an unknown compound with uncertain 
biological activity, it was excluded from the analysis and was not counted as either correct 
or incorrect. The Peak Height method identified a moderate number of active retention 
times, but it also had the highest number of apparent false positives. The Minimum method 
identified the fewest signals, but it generally had no false positives. Because the EAD traces 
of southern pine beetle responding to hindgut extracts were generally noisy, several 
replicated analyses of averaged run sets were necessary to resolve all 11 active molecules. 
Nonetheless, the analysis in Fig. 10 demonstrates that both the Minimum algorithm and, to 
a greater extent, the Additive algorithm can reduce the number of EAD runs necessary for 
discerning electrophysiologically active compounds. 

Applications Our Additive algorithm represents a powerful tool that can be used to enhance 
the realized signal-to-noise ratio of any GC-EAD system that stores its data digitally. Raw 
data can be copied into a spreadsheet program, transformed, and then examined using the 
graphics capabilities of the spreadsheet. We created an Excel 2000 spreadsheet that contains 
all of the required transformations and calculations. The user pastes raw or pre-zeroed EAD 
data into a column, selects areas of the data with no eluting molecules to calibrate the noise 
level, and enters other information about the data collection methodology. Charts on the 
spreadsheet display the traces and indicate significant impulses found by each of the three 
methods. This spreadsheet is available as electronic supplementary material (doi: 10.1 007/ 
s 10886-007-9338-6). 

In summary, with a novel insect or compound, the optimal use of GC-EAD data for 
identifying olfactory stimulants is of great importance, as an incorrect identification of a 
stimulant could lead a researcher seeking behavior-modifying compounds to waste effort on 
an inactive compound; in contrast, failure to recognize evidence of olfactory stimulation 
could cause an important behavioral molecule to be overlooked. For antenna1 preparations 
of some insect species, the maximum signal level obtainable may be at or below the 
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background noise level (for example, see Russell et al. 2004). As our Additive and 
Minimum method algorithms have the capacity for extracting signals that are similar in 
amplitude to surrounding noise, they should effectively increase the sensitivity of an EAD 
system and may allow data collection where it would not otherwise have been possible. 
Additionally, our algorithms and data analysis procedures eliminate the potential for 
experimenter bias that is inherent in visual evaluation of data sets because the decision of 
whether a deflection event is a "real" signal or not is made by a uniformly applied 
mathematical test. By combining these algorithms with replication, high levels of power 
and discrimination for detecting active molecules in EAD data are provided. 
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