APPLICATION OF SPATIAL MODELS TO THE STOPOVER ECOLOGY OF TRANS-GULF MIGRANTS

THEODORE R. SIMONS, SCOTT M. PEARSON, AND FRANK R. MOORE

Abstract. Studies at migratory stopover sites along the northern coast of the Gulf of Mexico are providing an understanding of how weather, habitat, and energetic factors combine to shape the stopover ecology of trans-Gulf migrants. We are coupling this understanding with analyses of landscape-level patterns of habitat availability by using spatially explicit models to simulate avian movements through stopover habitats. The probability that an individual migrant will complete a migration successfully is determined by the bird’s energetic status and flight morphology, and the quality, quantity, and spatial pattern of habitats encountered during migration. The models evaluate habitat patches according to their distance from the coast, isolation from other patches of suitable habitat, and habitat quality. Evaluation procedures have been developed from available data on the arrival condition of migrants, energetic and morphological constraints on movement, and species-specific habitat preferences. Window analysis and individual-based modeling are used to demonstrate how the abundance, quality, and spatial pattern of habitats interact with the arrival energetic state of migrants to determine the suitability of migratory stopover habitats along the northern Gulf coast. Our goal is to understand how landscape-scale patterns of habitat conversion may be affecting populations of trans-Gulf migrants.

Key Words: birds, landscape pattern, migration, spatial models, stopover ecology.

Ecologists are beginning to appreciate how the spatial and temporal scale of the data they collect influence their understanding of natural patterns and processes (Wiens 1981, 1989; Edwards et al. 1994, Pearson et al. 1996). As May (1994) has recently pointed out “the answers to ecological questions-and ultimately the understanding of ecological systems-depend on whether or not the system is studied at an appropriate scale,” noting an “increasing need for ecologists in general, and conservation biologists in particular, to deal with larger spatial scales than most of us are used to, or happy with.”

Recent declines in populations of nearctic-neotropical landbird migrants (Robbins et al. 1989b, Askins 1990) have prompted a wave of new research into the factors affecting populations of these birds on their breeding and wintering grounds (Hagan and Johnson 1992, Finch and Stangel 1993) and a smaller number of studies on the factors affecting birds during migration (Moore and Simons 1992a, Watts and Mabey 1993, Moore et al. 1995). Designing conservation-oriented studies of the stopover ecology of migrants is complicated by the fact that migration occurs over a broad geographic scale, but over a relatively short temporal scale.

Remote sensing technology and spatial modeling techniques are providing new research tools for investigating how the distribution and abundance of habitats may be affecting wildlife populations. Our objective is to use these tools to understand how variation in the landscape-level pattern of habitats affects migrant birds. We will use spatially explicit models to explore the effects of changing landscape patterns on the probability of a successful migration. These models, while simplistic, incorporate some basic bird biology and analyze landscape-level variation in habitats from the perspective of migrants with different energetic states. We hope that the results of this analysis will be useful in setting priorities for future research and conservation.

The conceptual framework for developing our spatial models is straightforward (Fig. 1). Spring migrants make landfall in landscapes containing habitats that vary in suitability for foraging. The abundance and spatial pattern of high-quality habitat in these landscapes will likely affect the probability of a successful migration. We know that arriving migrants vary in their energetic condition—some are lean, while some have considerable fat stores remaining. As long as favorable habitat is readily available, both fat and lean birds eventually find suitable habitat. But as suitable habitat is lost and accessibility declines, a fat-depleted migrant’s ability to find good habitat may be limited because the benefits of rejecting suboptimal habitat may be outweighed by the cost of finding better sites. Ultimately, the interplay of a migrant’s energetic state and the abundance and spatial configuration of stopover habitats, will determine the likelihood of a successful migration.

METHODS

Landscape-level metrics provide a means to quantify the abundance and spatial pattern of habitat types in study landscapes (Turner and Gardner 1991). The most straightforward measure is the area of suitable habitat types. Habitat connectivity or fragmentation can also be measured using indices of spatial pattern. Examples of such indices include contagion (the probability that...
SPATIAL MODELS OF STOPOVER ECOLOGY—Simons et al.

Mosaic of intrinsic Suitability

Habitat Quality
- High
- Medium
- Low
- Unsuitable

Stopover Time

FIGURE 1. Conceptual spatial model. Migrants arrive along the northern Gulf coast with different amounts of stored fat, and they encounter habitats of varying intrinsic suitability. When high quality stopover habitat is available (lower matrix) birds with both high and low energy reserves find suitable stopover habitat. As suitable habitat is lost (upper matrix) birds begin to use sub-optimal stopover sites, which may reduce the probability of a successful migration, especially for birds with low energy reserves.

two adjacent cells are of the same habitat type), the number and size of patches of each habitat type, and the area of the largest patch divided by the total area of all patches of that habitat type. This final index provides a measure of fragmentation that varies over the interval $[0,1]$ where 0 = highly fragmented and 1 = a homogeneous landscape. These metrics provide a means to quantitatively compare landscapes. The models described below provide measures of landscape conditions from the perspective of migrant birds. These models include (1) a window analysis that assesses the landscape in the vicinity of a bird making landfall, and (2) an individual-based model that simulates the energetic state of birds foraging in habitats of varying quality.

MODEL INPUT PARAMETERS
The parameters in our models included energetic, flight performance, and habitat variables. The energetic status of spring migrants was measured between 1987-1994 using mist nets to sample birds at stopover sites along the northern Gulf coast (Moore et al. 1990, Kuenzi et al. 1991, Moore and Simons 1992a). Birds were weighed on electronic scales to the nearest 0.05 gram, banded, and released. Fat reserves were estimated by visual inspection of all birds, which were ranked on an ordinal scale from zero to five according to the method described by Helms and Drury (1960).

Measurements of birds’ energy reserves and wing spans were used to calculate flight range estimates, using the flight performance equations developed by Pennycuick (1989).

Habitat data were derived from a supervised classification of two 1990 Landsat Thematic Mapper scenes of the northern Gulf coast produced by the National Biological Service Southern Science Center in Lafayette, LA. This map was comprised of 18 original cover types in raster format, with a cell size of 28.5 m X 28.5 m. The 18 original cover types were aggregated to produce four habitat types that were then used in all spatial analyses (see RESULTS).

The habitat associations of birds were determined through a combination of 10-min point counts ($N = 500$ points) at barrier island sites (Moore et al. 1990) and 1-km strip transects (Emlen 1977) at mainland sites ($N = 117$ transects from 9 paired sites, see Table 2 for sampling design; Moore and Simons 1992b). Census results were then used to assign each of the original 18 habitat types to one of four habitat categories that ranged from low (category 1) to high (category 4) suitability as migratory bird stopover habitat. These four habitat categories were used in all subsequent analyses. This ranking of habitat quality assumes that the relative abundance of migrants in stopover habitats reflects relative habitat quality although this assumption was not tested empirically.

SPATIAL ANALYSES
We used spatial analyses to examine how the abundance and spatial configuration of habitats might affect the suitability of stopover habitat for spring migrants. We did this using a window analysis technique and through the application of an individual-based model to our field data and habitat map.

Window analysis
In the window analysis, a hypothetical individual bird was randomly located in a block of arrival habitat.
A window was then projected from the arrival location, with the size of the window reflecting the individual bird’s energetic state. This window represented the area that could be searched and sampled by a bird, given its energetic condition on arrival (i.e., the greater the bird’s energy stores, the larger the window). Habitat measures, such as mean habitat rank, were calculated from all of the cells within a window. The window’s pie-piece-like shape reflected a migrant’s tendency to move northward during spring migration (Gauthreaux 1991). The window analysis allowed us to quantify the range of foraging conditions experienced by arriving birds, and the probability that a single bird would land in an area of specified quality (e.g., very rich, moderate, or poor quality).

Individual-based model

A second approach involved the development of an individual-based model. This method allowed us to begin to examine the relative importance of and the interaction between the energetic state of arriving birds and the spatial pattern of habitat within a landscape. It is impossible to precisely model the details of the behavior and energy dynamics of birds during stopover because of our lack of data and knowledge about these organisms. However, this model incorporates the most basic components of the biology of a migrant: (a) variation in habitat quality, and (b) changes in its energetic state due to foraging.

Our model used an Energy State Index (ESI) to indicate the relative energetic state of birds during migratory stopover. After landing in a random location within 10 km of the Gulf of Mexico, the “virtual” birds moved from cell to cell across the habitat map selecting the adjacent cell with the highest habitat value at each iteration of the model. After visiting each cell, the ESI of a bird was incremented to account for the amount of energy gained (due to foraging) and lost (due to energetic costs of foraging and movement) while occupying that cell.

Foraging costs were held constant for all habitat types, but the foraging gain accrued by birds as they moved across the landscape was determined by the habitat type of the cells the birds encountered. A bird’s ESI was updated as it moved from habitat cell to habitat cell in the simulations. In productive habitats, migrants experienced a net energy gain (ESI gain > ESI cost). In poor habitats, migrants experienced a net energy loss (ESI gain < ESI cost). Foraging gains reflected our estimate of habitat quality based on field observations of the relative abundance of birds in these habitats. Four habitat categories were created from the original habitat types. Foraging gains equaled 0.1 in category 1 (poor) habitats, 0.25 in category 2 habitats, 0.8 in category 3 habitats, and 1.0 in category 4 (rich) habitats. Foraging costs were fixed at 0.5. The pattern of movement from cell to cell was determined by variation in habitat quality in adjacent cells. The model also incorporated a northward bias in movement to reflect the tendency for birds to orient northward during spring migration (Gauthreaux 1991). Birds moved from the current cell to one of the adjacent cell by choosing the cell with the highest value of the following expression: NBIAS*GAIN. NBIAS is a coefficient (range 0-1.00) representing the northward bias. NBIAS has the following values: 1.00 for the cell directly north (N) of the current cell, 0.75 for cells to the NW and NE, 0.50 for cells to W and E, 0.25 for cells to SW and SE, and 0.10 for the cell directly south (S). GAIN is the habitat-dependent foraging gain listed in the previous paragraph. Birds were not allowed to return to previously visited cells. In the individual-based model, a virtual bird began with an ESI of 10.0 and continued moving until it crossed one of two energy thresholds. If it gained enough energy (ESI ≥ 30.0), it left the study landscape on another long-range migratory movement. If its ESI dropped low enough (ESI < 2.0) because it failed to find productive habitats and lost energy, it ran out of energy and died. When an individual either migrated or died, the number of cells visited was recorded. In this way, the relative suitability of different landscapes could be examined by simulating a large number of individuals and keeping track of mortality and the number of cells visited before migration. Higher quality landscapes were characterized by low mortality and a lower numbers of cells visited by successful migrants.

RESULTS

Energetic Parameters

Table 1 summarizes spring data on arrival weight and condition collected from 1987-1992 on Horn Island and East Ship Island, Mississippi, for 14 common trans-Gulf migrants. The mean mass of “0” fat-class birds is close to the fat-free weights obtained in the laboratory (Dunning 1993). The span of annual mean weights measured in the field ranged from approximately fat-free levels, to weights indicating fat stores of about 10% body weight. These data provide reasonable estimates of the variability of energy stores to be expected among spring migrants arriving along the northern coast of the Gulf of Mexico following trans-Gulf migration.

Flight Performance Parameters

Applying these fat store estimates to the flight performance models developed by Pennycuick (1989) provides an estimate of the potential flight ranges of migrants after their arrival at coastal stopover sites (Table 1). Minimum range estimates, based on the range of mean annual arrival weights, indicate that in some years many birds are incapable of further migratory movement (flight ranges of tens of kilometers). Average arrival weights for the period 1987-1992 suggest ranges of tens to several hundred km for most species, while under the best of conditions ranges can exceed 500 km. While observational evidence indicates that migration is concentrated during periods of favorable weather (Buskirk 1980, Gauthreaux 1991), prevailing winds will scale potential flight ranges up or down. For example, a 4 m/sec (14.4 km/hr) head wind reduced these range estimates by approximately 50%, while a 4 m/sec tail wind increased...
Table 1. Arrival Weights and Potential Flight Ranges of Common Trans-Gulf Migrants

<table>
<thead>
<tr>
<th>Species</th>
<th>N</th>
<th>Wing Span (m)</th>
<th>Wet Weight (g)</th>
<th>Fat Free Mass (g)</th>
<th>Mean Mass of Birds (g)</th>
<th>Mean Arrival Mass All Birds (g)</th>
<th>Range of Mean Annual Arrival Weights (g)</th>
<th>Potential Range Still Air (km) with Wind (km)</th>
<th>4 m/sec head</th>
<th>4 m/sec tail wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTHU</td>
<td>31</td>
<td>0.1100</td>
<td>3.64</td>
<td>2.62</td>
<td>2.88</td>
<td>2.9</td>
<td>2.87-2.96</td>
<td>0-21</td>
<td>83</td>
<td>10-32</td>
</tr>
<tr>
<td>COYE</td>
<td>285</td>
<td>0.1725</td>
<td>10.78</td>
<td>8.36</td>
<td>8.86</td>
<td>9.14</td>
<td>7.93-9.61</td>
<td>0-114</td>
<td>298</td>
<td>63-165</td>
</tr>
<tr>
<td>BGGN</td>
<td>44</td>
<td>0.1830</td>
<td>6.00</td>
<td>4.67</td>
<td>5.69</td>
<td>6.16</td>
<td>5.45-8.13</td>
<td>0-310</td>
<td>1390</td>
<td>165-431</td>
</tr>
<tr>
<td>NOPA</td>
<td>82</td>
<td>0.1883</td>
<td>7.60</td>
<td>5.93</td>
<td>6.69</td>
<td>6.97</td>
<td>6.20-7.46</td>
<td>0-161</td>
<td>429</td>
<td>88-234</td>
</tr>
<tr>
<td>WEVI</td>
<td>1554</td>
<td>0.1940</td>
<td>10.04</td>
<td>8.29</td>
<td>10.04</td>
<td>10.65</td>
<td>10.27-10.99</td>
<td>89-231</td>
<td>353</td>
<td>124-338</td>
</tr>
<tr>
<td>SWWA</td>
<td>42</td>
<td>0.1960</td>
<td>18.90</td>
<td>14.70</td>
<td>13.28</td>
<td>13.59</td>
<td>12.77-16.88</td>
<td>0-88</td>
<td>915</td>
<td>52-121</td>
</tr>
<tr>
<td>PROW</td>
<td>176</td>
<td>0.1990</td>
<td>13.94</td>
<td>11.01</td>
<td>11.37</td>
<td>11.94</td>
<td>10.72-13.18</td>
<td>0-192</td>
<td>579</td>
<td>104-270</td>
</tr>
<tr>
<td>HOWA</td>
<td>680</td>
<td>0.2035</td>
<td>10.29</td>
<td>8.20</td>
<td>9.11</td>
<td>9.42</td>
<td>8.86-10.43</td>
<td>0-135</td>
<td>547</td>
<td>75-195</td>
</tr>
<tr>
<td>ACFL</td>
<td>110</td>
<td>0.2050</td>
<td>12.90</td>
<td>10.03</td>
<td>11.38</td>
<td>11.75</td>
<td>11.43-1.19</td>
<td>18-128</td>
<td>188</td>
<td>70-181</td>
</tr>
<tr>
<td>INBU</td>
<td>825</td>
<td>0.2100</td>
<td>15.45</td>
<td>12.34</td>
<td>12.08</td>
<td>13.16</td>
<td>12.07-14.16</td>
<td>0-346</td>
<td>641</td>
<td>157-406</td>
</tr>
<tr>
<td>REVI</td>
<td>2462</td>
<td>0.2400</td>
<td>18.88</td>
<td>14.59</td>
<td>14.34</td>
<td>15.6</td>
<td>14.38-17.56</td>
<td>12-363</td>
<td>874</td>
<td>194-534</td>
</tr>
<tr>
<td>SUTA</td>
<td>370</td>
<td>0.2860</td>
<td>36.50</td>
<td>24.73</td>
<td>25.95</td>
<td>26.94</td>
<td>24.45-29.04</td>
<td>0-169</td>
<td>508</td>
<td>99-232</td>
</tr>
<tr>
<td>GCFL</td>
<td>56</td>
<td>0.2870</td>
<td>35.90</td>
<td>26.06</td>
<td>32.11</td>
<td>32.6</td>
<td>29.79-33.49</td>
<td>0-67</td>
<td>185</td>
<td>42-90</td>
</tr>
<tr>
<td>WOTH</td>
<td>416</td>
<td>0.3270</td>
<td>56.92</td>
<td>42.21</td>
<td>39.03</td>
<td>40.6</td>
<td>39.15-44.98</td>
<td>14-122</td>
<td>664</td>
<td>76-168</td>
</tr>
</tbody>
</table>

c. Source: HOWA, REVI, WEVI, INBU, COYE, NOPA, PROW, SUTA, WOTH, RTHLJ from B. Podum in Dunning (1993): BGGN, GCFL, YTVI, ACFL. SWWA estimated 83% wet weight (77.79%) reported in Dunning (1993).

d. Source: Pennycuick 1969, Prog. 1 has for analysis of powered flight. Estimates assume air at altitude of 350 m above sea level and "0" fat mass for empty body mass.
We have found that birds without fat stores are more likely to be recaptured at stopover sites (Kuenzi et al. 1991, Moore and Simons 1992a), suggesting that birds with sufficient energy stores resume migration sooner or select better habitats. We have also documented differences in recapture rates at different stopover habitats. For example, 20.7% (N = 8,392 total captures, 1988-1991) of the birds stopping at Peveto Beach in southwest Louisiana stay one or more days and are recaptured versus 8.9% (N = 12,080 total captures, 1987-1991) at East Ship Island, Mississippi (P < 0.001). Again, we interpret this difference to be a reflection of habitat quality. Rates of mass gain during stopover are generally higher at the Louisiana site (Fig. 2a), which is consistent with measurements of higher insect prey densities at that site (Fig. 2b). Until we understand more fully the factors that determine the quality of migratory bird stopover habitats, we will be limited to grouping habitats into fairly coarse categories of habitat quality. Nevertheless, habitat groupings that rank habitats according to their suitability for passage migrants are useful for exploring the effect of landscape-level patterns of habitat availability.

Analysis of Spatial Pattern and Stopover Habitat Suitability

In an initial attempt to explore how variability in habitat quality might affect migrants that depend on coastal stopover habitats, we reduced the 18 cover types of our original landcover map to four habitat categories. These categories reflected the relative abundance of migrants in coastal habitats based on our experience and the results of our field censuses (Table 3). These ranged from category 1 habitats (urban, industrial, open water, and beach habitats), which were classified as unsuitable, to category 4 habitats (wetland-forested and deciduous bottomland forest), which we believed to represent the richest stopover habitat types. We then subdivided the coastline into five study areas of approximately 1200 km² each and ranked the areas according to their average habitat rank. Ranks reflected the average habitat score calculated from the reclassified cells within each study area (Fig. 3). Area 2 had the lowest habitat rank followed by areas 3, 4, 1 and area 5 with the highest habitat rank.

Several spatial indices were calculated for areas 1 and 2 as an example of how measures such as contagion can be applied to stopover habitats (Table 4). In this comparison, the contagion indices are similar. That is, the probability that two adjacent 28.5 m x 28.5 m cells will be of the same habitat type is similar in both areas. On the other hand, the juxtaposition of cells of dif-
SPATIAL MODELS OF STOPOVER ECOLOGY—Simons et al.

FIGURE 2. Evidence of variability in stopover habitat quality. (a) Weight trajectories (first and last capture) of individual White-eyed Vireos at stopover sites in southwest Louisiana ($N = 33$) are consistently higher than those on the Mississippi barrier islands ($N = 30$). (b) Abundance of prey for foliage gleaning birds is consistently higher ($P < 0.05$, Student's t-test) at the Louisiana stopover site. See Kuenzi et al. (1991) for sampling methods.

Different habitat types, an edge index, suggests an important difference between the two areas. The probability that cells of low quality (category 1 or 2) habitat will be adjacent to cells of high quality habitat (category 4) is significantly greater in area 1 than in area 2. These transition probabilities may not be important to migrants that arrive along the coast with significant energy stores (i.e., potential ranges of hundreds of km), but they may be very significant to birds with depleted stores and limited ability to search for suitable stopover habitats.

The window analysis allowed us to quantify the variation in landscape-level foraging opportunities experienced by arriving migrants. Within the same landscape, there are likely to be rich as well as poor areas, but an individual bird can only use a small portion of the available habitat due to ecological, morphological, and energetic constraints. Figure 4a illustrates two windows randomly placed in Study Area 5. In the analysis, the size of the window was allowed to vary to simulate the variability in the energetic state of birds arriving in stopover habitats following trans-Gulf flights. For the purpose of this analysis, the window radius simulated birds arriving with effective ranges of from 1-30 km, the lower range of mobility estimated from field and flight performance data.

The technique allowed us to analyze how the
energetic state of arriving birds affected their ability to use available habitats. Figure 5a depicts how increasing the window radius (simulating arriving birds with improving energetic states) affects the mean habitat rank (quality) of the habitats available to migrants. While the lack of a trend may reflect the relatively homogeneous nature of the habitats at this scale, habitat variability appears to decline as the window radius increases, suggesting that habitat suitability thresholds may exist for birds during stopover. This specific result could simply be a sampling artifact, but a similar analysis across a range of landscapes may reveal patterns that improve our understanding of how energetic status and the degree of habitat specialization interact to shape the stopover ecology of migrants. Certainly, the variability in habitat quality in a landscape might be just as important to some migrants as average habitat conditions.

We also examined variability in habitat quality among our study landscapes. Figure 5b shows the mean habitat rank of 50 10-km radius windows randomly placed in each of the five study areas. The richest study area (area 5) showed less variability than the poorer habitats (areas 2, 3, and 4). Again, the biological significance of these patterns is probably a function of the scale at which birds are sampling stopover habitats. For example, in spite of the fact that area 4 (Fig. 3) contains a corridor of rich deciduous bottomland forest, birds arriving in the area with an effective range of 10 km will on average encounter habitats that are of lower quality than the area as a whole (Fig. 5b). Rescaling the analysis, by increasing the effective range to simulate birds arriving with more fat, or reducing the effective range to simulate the effects of headwinds, would undoubtedly alter the rankings of the sites.

Individual-based models provide another tool to evaluate how the spatial pattern and quality of stopover habitats may affect trans-Gulf migrants. Several examples will illustrate how we have applied individual-based models to these questions. The basic premise of the model is that on rich landscapes few individuals should die, and the number of cells visited should be low, while on poor landscapes more individuals will die, and the number of cells visited by successful migrants is expected to increase. Figure 4b illustrates the movement of two “virtual” birds placed randomly within a study landscape. Note that the birds tend to track the richer (darker) habitat types. We might predict that the effects of landscape quality and arrival condition on the movement and survival of birds will not be strictly additive. For example the model can be used to examine...
FIGURE 3. Composition of coastal habitats. Five study areas were selected and classified according to the categories described in Table 3. Mean habitat ranks were calculated for each study area based on the abundance of habitats in each of the four categories. Mean habitat ranks for the individual study areas were: Area 2 (2.27), Area 3 (2.38), Area 4 (2.47), Area 1 (2.56), Area 5 (2.69).

Table 4. Spatial Indices for Areas 1 and 2

<table>
<thead>
<tr>
<th>Index</th>
<th>Area 1</th>
<th>Area 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contagonia</td>
<td>0.389</td>
<td>0.388</td>
</tr>
<tr>
<td>Edge Index<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 and 2</td>
<td>27484</td>
<td>49007</td>
</tr>
<tr>
<td>1 and 3</td>
<td>26518</td>
<td>65183</td>
</tr>
<tr>
<td>1 and 4</td>
<td>10717</td>
<td>6211</td>
</tr>
<tr>
<td>2 and 3</td>
<td>147589</td>
<td>19488</td>
</tr>
<tr>
<td>2 and 4</td>
<td>137474</td>
<td>47672</td>
</tr>
<tr>
<td>3 and 4</td>
<td>81223</td>
<td>61347</td>
</tr>
</tbody>
</table>

^a The probability that two adjacent cells will be of the same habitat type.

^b A measure of the contrast between adjacent cells, e.g., the probability that a high quality habitat cell will be adjacent to a low quality cell.

Whether birds that arrive with very low energy reserves experience disproportionately greater rates of mortality and slower rates of energy gain and if so, how those rates vary with changes in average habitat quality.

Simulations of 200 hypothetical individuals showed that both habitat quality and the arrival energy state index (ESI) affected the percentage of birds that survived to continue migrating (Fig. 6). It appeared that a bird’s energetic state upon arrival was most significant in landscapes of intermediate habitat quality. In very rich (high habitat rank) or very poor (low habitat rank) landscapes, arrival ESI was not well correlated with survival. Landscape suitability, as measured by habitat rank, affected both the mean and variance of the number of cells visited by simulated migrants (Fig. 7). These trends suggest that the relationship between these factors...
is probably not linear, and that the variance in the number of cells visited decreases in richer habitats. As we might expect, the arrival ESI is inversely related to the mean number of cells visited by migrants that survive to continue migration (Fig. 8).

An analysis of variance tested for the effects of mean habitat rank (MAP) and the arrival energetic state (ESI) on the number of cells visited by individuals that survived to migrate. The model used was: Cells visited = MAP + ESI + MAP x ESI. This analysis showed that both the study landscape (Fig. 7; \(F = 226.71, df = 4, P < 0.001\)) and the energetic state of arriving birds (Fig. 8; \(F = 35.69, df = 3, P < 0.001\)) significantly affected the number of cells that migrant birds visited. Moreover, because the interaction term is significant \((F = 6.04, df = 12, P < 0.001)\) we know that the effects of landscape and ESI are not strictly additive. Figure 9 provides

FIGURE 4. Window analysis. (a) Random projection of two windows over study area 5. Shape of window reflects migrant’s tendency to move northward during spring migration. Size of window represents energetic state upon arrival. Cell size 90m x 90m. (b) Individual-based model. Movement of two “virtual” migrants placed randomly in a study landscape. Birds tend to track richer (darker) habitat types.

FIGURE 5. Window analysis. (a) Relationship of window size (radius from 1-30 km) to mean habitat rank \((N = 50 \text{ windows at each radius})\). (b) Mean habitat rank of 50 10-km windows versus the habitat rank of the entire study area map.

FIGURE 6. Effect of arrival energetic state (ESI) and habitat rank on the percentage of individuals surviving in the individual-based model.
evidence that the effect of arrival ESI was greater in the richer landscapes (especially areas 1 and 5). ESI was not a good predictor of the number of cells visited on the poorer landscapes (areas 2 and 3).

DISCUSSION

Spatial models allow us to explore the interplay of organisms and the landscapes they occupy, in particular the relationship between the ecology and behavior of individual species and the spatial variability of the habitats they occupy. We believe that the quality and spatial pattern of habitats, and the energetic status of birds when they arrive at stopover sites impose important constraints on the likelihood that individual birds will migrate successfully.

Techniques such as window analysis allow us to examine how variations in the energetic state of arriving birds and local weather conditions determine the scale at which birds experience stopover landscapes. Individual-based models, while having more assumptions, allow us to conduct a sensitivity analysis of the relative importance of physiological and ecological constraints, and they suggest new hypotheses to test with field data. For example, by projecting current trends in, habitat conversion into the future, we can explore the potential impact on species with differing habitat requirements and flight ranges, or how the interplay of habitat patchiness and arrival energetic state affect the likelihood of a successful migration. Behavioral characteristics of migrants, such as territoriality (Rappole and Warner 1976) and ecological plasticity (Greenberg 1990) can also be incorporated into these models. Such refinements will require better information on the behavioral ecology and habitat requirements of individual species, and the status and trends of the habitats they occupy.

As Moore and Abom (*this volume*) have shown, radio telemetry holds tremendous promise for improving our knowledge of the ecology of migrants at stopover sites. Larger scale studies, while logistically challenging, would also seem well warranted.

Information of this type will be particularly important as landscapes become increasingly modified by human activity. Recent projections indicate that coastal communities surrounding the Gulf of Mexico are likely to experience significant population growth over the next 15–20 years (Fig. 10). If patterns of habitat loss elsewhere are a guide, we can predict that the coastal deciduous and riparian bottomland habitats that are clearly important to migrants will be lost at a disproportionately high rate. We feel that spatial models integrating information about the ecological requirements of migrants and the spatial patterns of stopover habitat will be essential in helping to set research and conservation priorities in the future.
ACKNOWLEDGMENTS

We thank D. Evered, R. Mulvihill, and M. Woodrey for unpublished wing-span data. P. O'Neil, U.S. Geological Survey, produced the original Landsat classification. R. Caldow, J. Clark, B. Danielson, J. Goss-Custard, and S. Mabey provided valuable comments on the manuscript. Funding for this research was provided by the U.S. Fish and Wildlife Service, the National Park Service, the National Biological Service, the U.S. Forest Service, the National Science Foundation, and Oak Ridge National Laboratory.