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A one-~\ldnd \electron-rn~grat~t~n model IS used t o  \tudy the penod~c Irnnitgratlon t)t J populd~~un of hwti 
allele irequrncc Into a ndturul popuiat~on. Den\~ty-dependent \election and trnmlgratlon a e  the prlmap 
factor., affecttnp the drnlogrdph~c dnd genetic chmge ~n the 19l~nd populat~on With the dbsurnptlons of 
complete dorn~n~nce  (CDI or no dom~nance (NDI and homolygote \upenorrt! in time\\. the exlsrrnce dnd 
locatron of global attractors are e \ t~b l~ \hed .  -4nafy\t\ o t  th19 model p r o ~ ~ d e \  rudlrnentur) ~nft~t-matlon about 
ihe mlgratron ot transgene3 Into d ndrurtll population 

K~.\\t.orrl~- Narural \electton: Penodlc lmmgratlon. Complete dorn~nance. S o  dorn~nance: Global attractor 

1. Introduction 

Nat~iral selection 2nd immigration are tuo forces that can profoundly affect the genetic composition 
of populations [6,17]. If immigrants come from a population of individuals with fitness 
characteristics different from those of individuals in the recipient population. for example, because 
of genetic transformation. genes affecting fitness in the former population may become established 
in the latter. e.g., see [2,3.16]. Understanding how such gene movement inff uences sene frequency 
in the recipient population is important because of the way it impacts genetic variability and mean 
population fitness. How the migration rate and migrating allele frequency aflect the type and 
location of attractors in a natural population is currently unknown. 

To study this process in the simplest setting w e  consider the one-island model discussed b! 
Roberds and Selgrade, see Refs I11.151. for a diploid population u.ith ttvo alleles. X and a. at a 
single locus. In each generation a population of constant allele frequency migrates into the island 
from an external source and reproduces with the island population. This model is a discrete-time 
system of two nonlinear difference equations which track the .A allele frequency p and island 
poptilarion density or size .r oter generations. For this stud!. we assume that density-dependent 
selection and immigration are the primar? factors affecting the demographic and genetic 
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evolution of the island population. Because of periodic environmental factors such as 
scabons. climate and food cupplq, we permlt periodic vanations in the ~mmigration. 

Such a modei might rcprehent the migration into a natural populat~on of a population with 
a genetically engineered gene. a transgene. Other discrete models have been proposed tr) 

investigate the mixing o i  transzenlc and natural populations. For mstance. Li [8,91 studied 
three-dimensional models which track population numbers of the three genotLpes for the 
intemction between transgenrc mo$quitoes resistant to malaria and the tc ild type nonresistant 
mosquitoes. Li [9f discocered tristable equilibrium behakior and chaotic behavror tn 
genotype numbers. His models hake neither an immigratron term nor periodicity. 

In this paper. Section 2 discusses model backsround and development. In Section 3. we 
introduce two classical tqpes of fitness relationships ccomplete dominance tCD) and no 
domtnance (ND)]. Section 4 proves the existence of global attractors for models with these 
fitness restrictions and calculates attractor approach rates. IS (1 denotes the constant X allele 
frequency in the immigrating population then the global attmctor is contained within eirher 
the region where p < y or the region where p > q. depending on which homozygote fitness 
dominates. Section 5 provides examples of cyclic attractors and chaotic attractors. Section 6 
considers immigration of a transgene X by assuming that the island population is de$oid of 
the '4 allele, i.e. the initial condition forp is zero. and by allowing immigration with a large '4 

aIIeIe frequency q. Because a transgene may confer a fitness adcantage. we assume CD of the 
AX-genotype. Then the results of Section 4 are used to estimate the rate of evolution of the 
system toward the attractor in the region where p > ci. In fact, numerical simulations of an 
example where immigration is constant and the attractor is an equilibrium indicate that the 
evolution is much more rapid than the crude estimates of Section 4. Hence, for this model an 
immigrating transgene exhibiting CD will ultimately maintain itself in the natural population 
with at least the frequency that it enters the population. 

2. Model background 

For the one island model, the island population density or size .r consists of individuals with 
one of three genotypes, A4, Xa or aa. Let p denote the frequency of the A allele in the island 
population, where 0 5 p 5 1. and hence 1 - p is the frequency of the a allele. The effects of 
density-dependent natural selection determine an average per capita replacement rate or 
firness fQ(xi  for the ij-genotype, where i. j = A. a, which measures fertility and viability of 
that genotype. Allele fitnesses 1, and fa are linear combinations of genotype fitnesses 
weighted by allele frequency and are defined bq f = pf -t ( I - p$\, and 

f J  pf~ , ,  -i- ( 1  - p)fda. The population mean fitness f is siten by f pf A + ( 1  - pv',. 
Following selection in each generation. assume gametes are contributed to the island 

population by immigration from a population with constant allele frequency q where 
0 5 5 I .  Random matins occurs following migration so that the number of additional 
Ltsotes in the next generation produced as a consequence of immigration is denoted by J .  

The Follotving system oT difference equations describes changes in alIele frequency and 
population size between generationc n and n 1 .  see Refs 1 1  1.151: 



%hen \> = 0. t h ~ s  \!\tern IS ~dent~cal t o  the \>\tern previouhl> btudied \'or dens~tydependent 
\election, e.y. 5ee Ref'. 1 131. 

Recau\e penodlc varr;it~t~n\ may ;tf'Sect eco\>\tern heha\ tor-. Cv\t'~ntlno rr ( i l  [ I 1. K ~ n s  2nd 
Schaf'fir [ I O j .  Hen\on f 71. Selgratie .tnd Roberdk [ 141 rind other\ hive in~e\tigatecf the e 1 ' f ~ t \  

UTdtlOfl of per~odrc Iluctu;ttitrt~~ In cco\y\tern parameter\. Here \kc clltou t i~r per~ocilc irnml, 
For J pohltlte Integer k and (J 5 LY < 1. to bt~ld! Irnrnlsratlon oS pt'r~od k .  we nluIt~pIy the 

ionstant ~rnrnigl-atictn j b~ the 1;lctor I - a;, ~ i ,  here - 1 5 q, c r z ,  5 I and y, ( n  - k~ = 

q , ( f r ~  tijr 17 = 0. 1.1 . . .  Thih pt-o\~cie\ Irnrnlgratlon ot'per~clil k tar>ing bettbctln I( I - (1) 

and J (  I - Hence a\ 15 the m;lxlmilm t;lrrJt~on 111 ni~grat~on from the amounr k .  It' 
7 - h - 1  ,,,=,,g,(rt) = 0. e.2 \+hen y,rtl r = s ~ t ~ c  3 7 7  k r .  the11 thc cl\er:izt: unrr-iigrarron crier the tlrnt: 
pctr~od k- 1s L' For g-ctrt = ( - I ) " ,  the imrnlgrarton ha\ per~cld 2. Thc \>\teITl of' d~t'i'erenct. 
cqLratlon\ correipondtny to equation t 1 ,  that rzpre\enth irnmlgratIon ot' perlod X ma> be 
M ri ttc11 ;is: 

It i h  cvnkenient both rnathernatlcalt> and b i o I o ~ i ~ a 1 1 ~  to introduce a per capita migration 
rate for r > 0 gilen by 

vchich measures a constant per capita migrrttion per seneration relatite to the island 
population size .r. Since J is constant. I1c.r) is a decreasing function of popi~lstion site. i.e. 
h' (x )  = - j  r' < 0. hfler replacing j b! .vh(.r) in equation (21. the transit~on equations 
become 

In equation (3). f - /I( I $ agk(t7)l denotes the per capita transition f~tnction for the island 
population. Repeated iteration of equation (3) yields an orbit ((p, , .  .K,~) : rr = 0.  1 . 2 .  . . . } for 
this two-dimensional. time-dependent dynamical s> stem \+ hich is e q u i ~  dent to equation ( 2  
for r > 0. Henceforth. we study the behatior of equation ( 3 ) .  

3. .4ssumptions for dominance in fitness 

tb'hen tu = 0 the phrise space for ,>stern (31 is the \lot In the ( y .  rr-plane d e i ~ p a t e d  b> 

s= ( (p . . t ) :O  5 p  5 I . ( ) <  v }  

tt'hen j = O (i.s it = 0). the bortndar> linei of S. ( p  = 0 ] and ( ( I  = 1 ) .  represent allele 
fiuation :~r-id. therefore. are in\artunt. If Y > 0 ;tnd O < y < I .  point\ on these \erticiil 
boundaneb of 5 21-2 mttpped Into the Interior of' S. Becatl,\e the dy-iam~cal >!stern (3) I >  tlrnz- 
dependent. dif'ttrent orbtth ma\- lntzrwct \\hen plotted In S Including t~mc  ah an ddittonal 
phahe ~ariable ~ c i l l  rerned! this  \ltnat~on. Frank and Setgr~tde [ 5 ]  discti\\ J useful ir~meuork 
for study in: chi\ tlme-penodic dnamical \> \tern b conh~dering the correhponding 



autonomous dynmlcal ?ystem on the cylinder space defined as the Cartesian product X of S 
and the discrete space [O.  I .  . . . . k - t 1 representing time uith the usual product topology, i.e. 

Xconsists of k copies of S referred t(:, as fibers and orbits ol'equation ( 3 )  mote from fiber to 
fiber in 3 k-periodic fashion beciruse the time coordinate is taken modulo k (figure 1). 

Xn equilibrium E is an allele frequency p. 0 5 0 5 1. and u population density 7 > 0 
which remain constant across generations. 1.e. y ,  = p and r,, = 4 for all n. Such an E is said 
to be poi~rncwplzic if 0 < P < 1. From equation [ 3 r .  an equilibrium E = (P .  .t) must satisfy 
the followin: system for a11 n: 

Clear!!. the second equation in equation (4) will not be satisfied for ail n since gk depends 
on n. Hence, equation (3) wiil hate equilibria only if a = 0. Although equation (3) with time- 
dependent immigration will not have equilibria, this dynamical s)stem may hake attracting 
cycles or more general attmctors. 

The level or degree of dominance with regard to genetic control of fitness has been shown 
to influence profoundly the properties of equilibria resulting from the joint effects of 
migration and selection. e.g. see Hedrick [6j. Here be  study stable dynarnical behavior for 
two levels of dominance whsn selection is density-dependent. First, u e  consider the case 
where genotypic fi tnesses exhibit complete dominance (CD). We assume that the presence of 
the allele A confers maximal fitness on a genotype. Thus, for all x > 0 or all x within an 
invariant set. we take 

With CD allele and mean fitnesses become 

For the second case. we assume that the hetero~ygote fitness is the average of the 
homozygote fitnesses. i.2. for all x > 0 

f - ~ ~ ( s j  = (f 4.4(.r) - f,,(.c)) 2. (ND) 

In this case the fitnesses are said to be trtlditice or to exhibit no dominance (ND). See 
Falconer and hlackay [1] or Roughgarden [ l l j  for application of this classical concept to 
selection theory in population genetics. Allele and mean fitnesses become 

In the next section. h e  show that these dominance properties restrict the positions of 
attractors for equation ( 3 r .  



"/ 
F~gure 1. Phase %pace X dnd region H - for per~od-2 trnrnlgratlon 

3. Attracting re,' "IORS 

Because of these dominance assumptions, the evolutionar) beha~ior of the system is 
determined by the relative fitnesses of the homo~ygotes and the frequency of the immigrating 
allele. We show that if fi\x 2 f, then a11 attractors are contained within the region where 
p 2 q and if fa, 2 fz id1  then a11 attractors are contained within the region where p 5 q. 

Biological considerations indicate that if the fitness of the homozygote A4 dominates that 
of the homozygote aa (i.e. fAZi 2 f,,) and that if in each generation the A allele enters the 
island population at a frequency q then the frequency of A in the island population should 
never fat1 below q if it starts above q and the frequency of '4 should increase if it starts beIow q. 
An analogous statement applies when the fitness of the homoz~~o te  aa dominates that of the 
homozygote AX. These assertions are detailed in the following two results. First. the pIane 
[ p  = q )  divides the region ,Y into two subregions (figure I ) :  

3t' = ( (n .p . . r )  : 0 5 n 5 k - 1.q 5 p r 1.0 < x }  and 

For an? set -1 the topolo,oictll ifztrrior and closrrle of \ are denoted Int .\ and CI .I. 
respectivelq. .A set 1 is i~?cc~rirrizr i f  for each (pf,. .r0) E \ then (p,,. r,,) E \ for all 11 2 0. 
Equilibria. cycles and attractors are examples of invariant sets. 

I .  4. I .  ..\ssurrrr CD or  ,VDj%r ~r / i  .r > 0 c m l  rlr~rl 0 < (1 < 1. ffj4'l(.r) 2 f ,,(.r)for ~ r l l  
x > 0 tltrft Int 'FI" crrtd H- (Ire i~lvcrritirrt re,miotls. If:t'.,,(.r L f' , , (x)-fi~r ( I [ /  r > I) ~1rrr1 fitt H - 
anti R- are invirritulr rrgion.~, 



Pnw$ For tlie assertion about the Int R', we chow that ifp,, > y then p,,-1 > q for n 2 0. 
Since 

we nesd to show [hiit the brxkstrd tGrm in rqu~ition ( 7 )  is sreater than 1 .  TRis is equivalent to 

Since > ci and J'I~it(.r,F ) 2 f ,a(x, ,) ,  we have 

Then equation (8) holds because 

A -  - r 1 - , 0 i f  ICD) holds 
f 4 - f  = 

[fx.\(.r,) - f,,(.r,,!](l - p , ) ,  2 2 0 iffND)holds 
(9) 

Also, if p, < 1 then clearly pf,,l < I. Thus Int FfA is inkariant. IF ue assume that pn 3 q then 
the preceding strict inequalities are weakened, which gives that p , , ~  2 q. i.e. that 3-1' is 
invariant. 

To prove the assertions about Ff- we reverse the preceding inequalities usins the - 
assumptions that p, < q and f ,(.r) r f x,(s,. -J 

Notice that .r,, 2 y(1 - aj for n 2 1 because of the immigration. Hence, after the first 
iterate. the inequalities on fitnesses need hold only for .r r y( 1 - a )  to obtain inequalities on 
frcquenc! iterates as summarized in the following corollary. 

COROLLARY 1.2. i4.ssrir?ze CD o r  iVD f o r  cill .r > 0 ~trzd tlrtrr 0 < q < 1 .  Iff A.4(x> 2 f ,,(.r) 
.for ~ l l  .r 2 y( 1 - a )  ufzcl q < p,, < 1 then cl < p,,, f o r  c111 t7 1 1 .  I f  f ,,(.r) r f A,4(.r)  fi>r [ill 
x 2 yt 1 - cur ~ ~ n d  0 < p,, < q bl2en pn-I < q for (ill n 2 1 .  

Also. with similar assumptions on fitness, 3: solution orbit in the complement of 3-1' or 'FI- 
iterates monotonically in p ,  toward X- or R -  as follows: 

L~.\fsr,~ 4.3. Asslinze C D  or ,VDfur crl1.r > 0 ( IPICI  t lu~t 0 < q < 1 .  Iff+\(.r) m f ,,(s) for czll 
.r 2 J( 1 - a )  mzd p, < r l f i~ r  12 2 1 then p,, < p,,-{. fl f',,(.r) 2 f ;\,+(.u) for till .r 2 ~t 1 - aj 
f i 1 2 ~ 1 1  p*, > C/ for IT 2 1 flretz p, > pa*-, . 

Pn)c$ For the first assertion we nesd to sstriblish the inequalit> 



Dl.rr.rc.te wiectron rnodel 1s I 

which is equivalent to showing 

f 4 t ( q  pn)h(l  - lug;(n)) 
> 1 f l l )  

f r h( 1 cugnrn)) 

Clear the denominator. move 311 terms to the right and \ub>t~tiits genotype fitnesses into 
equation ( 1 1 ) to get 

t pt, - q i - 1  - l f (CD) 
0 > Iz(.r,,)( 1 T ag,(n))- + (121 

P 11 [j.u(.rnj - j \ , .4( .c , l ) ]( l  - p , , ) / 2  i f (SD)  

But equation (12) is true \\hen f \,\(.r,,) r f,,(.r,,) and p, < q. Reversing the inequaIitie5 in - 
equations ( 10i -( 12) proves the second assertion. - 

Because of environmental Iimitat~ons, i t  is biolo~icallq reasonrible to assume that the 
population s i ~ e  x is bounded for all generations. An assumption about genotype fitnesses 
which will guarantee this is: 

There exists B > O so that ,tf'4Al(x) < B und rcf,(.r) < B for all r > 0. ('41 

From (A I ). i t  follows that the genotype fitnesses are bounded and approach zero as x -- m. In 
many applications, i t  is assumed that the fitnesses are decreasing functions of .r but that 
assumption is not needed here. Also (A  1 )  implies that .c,, /(p,,. x,) 5 B + ,v( 1  + a) for all rl 

and hence all solutions to equation ( 2 )  are bounded. In fact, if the interval 3 
[ j (  1 - a) ,y ( l  + a )  + B ]  then \be have: 

L 4.4. lf eqlt~ttion (3) scrti~fies (A 1 )  and eitlrer CD or ,YD for ull x > 0 then each 
sollttion (p , .  x,) is conruined irz tlze recttirzgle R = [O. 1 ] x J jbr all rz 1 1 .  

Since soIutions to equation (3) are contained in a compact set R. the next Lemma 
estimates the rate of increase or decrease of p,, as indicated in Lemma 1.3. 

L ~ s l s r ~ \  4.5. .4ssurne (,-I 1 )  crncf either CD crr A 'Df i~r  ull x > 0 ~ lnd  0 < q < I .  Iff %,~(.r) > 
fJa(xf f i r  all .K E 3 the17 there is r > 0 so dlcrt p, 5 q where n 2 1 implies that 

p,,-r 2 p,( I + I . ) .  lff,(.r) > f %,\(.r) fur all x E J' then tlzere is s > 0 .so that p ,  2 q where 
n 3 1 implies tlrat 1 - p,-[ 2 ( 1 - y,,)( 1 f s). rllso, r crnd s ure indeperztlerzt of p,. 

Proof First assume that f ,,\(.r) > f,,(.r~ for all .r E J. From equation (3) it fol1oct.s that 

jl -f4 -f + ( ( q  'p,) - I )h( 1 + a~,(n)) 
?'PI--I = i)n . 

f t h(l T a g , ( t z ~ )  1 .  (13)  L 
For the fractionit1 expression in equation ( I  3 we wish to minimize the numerator and 
maximize the denomrnator. Let mini denote miniE_-(fL\.\(.r) - fJrl(.rjj. Since ( P , ~ .  x,,) E R for 
12 2 1 2nd p,, 5 q. \ then CD hold> . i ~ s  ha\e that 

( 1  - q~'mini 5 ( 1  -p , , ) '~  j*,\(.r,,,~ - fJd(.rq)j - / I (  r,,p I - ay,,(17)1(q -p,,)  ptz 

=J'\ - f - ht.u,j( I T cug,(nr)(ci - pt,r p,, (141 



or when ND holds we have that 

To bound the denominator note that .r,, Z- ,v( I - a1 so  

1 - a  I - L Y  
f(psl. .c,t j  ~ ~ z ( , c , ~ j ~ l  - a g K ( j r ) )  ~ f ' , , ~ ( . r ~ , ) ~ -  5 -- rnau f %_\(XI. ( 161 

I - f f  1 - a  \ E 2  

When CD hotds then r > 0 is defined by 

or when ND hoIds then r > 0 is cistined bc 

Thus from the preceding inequalities i t  follows that 

Now assume that f',,(xj > f hA(.r) for a11 x E J. Define z.,, = 1 - p ,  and note that 

We have the following expression for z+,,-~ sirnilar to equation ( 13) for p,-I 

Since p, 2 q then c, 5 1 - q. If min2 denotes minCEj(fJ,(-r) - f \.a(*)) then when ND holds 
we have that 

and 

This completes the argument. 



The hounds r and r in Lemma 4.5 are rather crude for estimating the number of generations 
required to approach an attractor (we the example In Section 6 ) .  In part. this is because rnax's 
and min's are taken over 311 J However. these exponentla1 rates alh~w us to prove the 
existence of global attrxtitrs. 

Tt-rr:on~x~ 4.6. rl.rrume ('-1 1 ) anti rlrl?rr CD or .Lo ji,r all u > 0 ~rnci rtr~rr 0 < (1 < 1 .  ij' 
f 4 \(.r) ) f,,(v)ji)r alI r E ,7 then eq~lcrtrnrz ( 3  j htrs (J  globt~l ~ ~ r t t - ~ i c r ~ r  in Int ?-it. On ri?e orher 
Il~mtl. rff,,(.r) > f \,\i.r) for- trll .r E ;T then rylicrirotz (3) iztr.~ 11 yloh~11 utrrcrctor trz Ent 3-t-. 

P1710f: For a solution to equation (31. Lemma 1.4 asserts that ( p , .  v, E 72 for all n 2 1. By 
Lemma 4.3. i f f  .l,\(.ri > f,,(.r) and p,, r y for all n then p,, grows exponentially. This 
contradicts the Fact that p,, is bounded by 1. Hence there 1b .\-' so that pv > (1. By Corollary 
4.2. p,, > c/ Sor ail n r ,V. Hence, the open set L' = fc- .  1 j X ( j (  1 - a) .  -( I -t a )  T- B )  is a 
trapping region and the intersection of all forward iterates of Cl L' is the global attractor. 

On the other hand. i f  f,(.r) > f4 , (x)  and p, 2 cl for a11 rz then p,, h i l l  decrease 
exponentiallq by Lemmri 4.5, which is not possible. Hence there is .V so that p, < c/ fur all 
rz 2 ,Y. Thus the open set V = (0.  cl) x @( 1 - a).  y( I +- a )  +- B )  is a trapping region and the 

- 
intersection of all forward iterates of CI V is the global attractor. - 

5. Examples of no dominance (ND) 

If ND is assumed, a variety of attractors may occur and variations in allele frequency on the 
attractor depends on the relationship bet~keen the homozygote genotype fitnesses in 
accordance with Theorem 4.6. Here be  discuss several examples where k-periodic 
immigration is obtained b_v taking g k ( ~ z )  = C O S ( ~ T ~ T I , ,  k )  for n = 0. 1.2. . . . . 

Iff 4,4(.r) > f ,( .x) for a11 .r > 0 then the global attractor is a subset of Int 'HA. i.e. p,, > q on 
the attractor. Let y = 1. q = 0.2 and take 

f \A(-r] = t? and f Jd(,r ) = e ' 0-0 j2. ( 25) 

If the immigration is constant ( a  = 0) then for fitnesses (251 the global attrxtor is the 
equilibrium at (p.1'1 = (0.448.3.54). see figure 33 ) .  If a increases from zero and 
immigration is ?-periodic then a bifurcation occurs resulting in a stable ?-cycle. Such 
bifurcations are expected and discussed in Selprade and Roberds [14] and in Franke and 
Selgrade [5j.  Figure 2(b) depicts this 2-cycle when a = 0.5. I f  the immigration is period-5 
then the atractor is a 5-cycle as seen in tigure 2(c), (d). Note that in figure 3 c ) ,  (1 = 0.2 
so prt > 0.2 on the 5-cycle but in figure ?(dl. y = 0.8 so p,, > 0.8. 

X chaotic attractor may occur if the larger fitness conhidered as the per capita transition 
function for a .;ingIe popillation gices a chaotic one-hump map. For instance. take 

Nt.tte thttt f',i,r.ri > f'\,-l(.r). for all .r > 0 and that map q-,,(-r) is a chaotic one-hump map. For 
our selection-migration rnodc.1. if \: = 0.1. y = 0.92 and imm~gration is constant then the 
global attractor is chaotic. see figure 3(ar. When a = 0 . 5  and k = 1. the attractor for the 
resulting '-periodic immigration consists of t ~ i o  bub\ets (figure 3rb)r cchich iterate to each 



P 

(d) q = 0.8 k = 5 a = 0.5 

(a) q=0 .2  a = O  (b) q = 0.2 k = 2 a = 0.5 

Figure 2. Global attractor4 for fitnr4ses (251 denote\ an ~ttrclcting equ~libriurn. X denotes a polnt on an 
attracting 7- or 5-qcle. 

(a) q = 0.92 a= 0 (b) qz0.92 k = 2  a=0.5 
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other and each 1s simiilrr to  the chaotic attractor in figure 3(a). In more restrictice wtings. 
Fran ke and Selgrrrde [ 5 ]  have shown that each cubset ot the attractor for the tlme-dependent 
sptern i\ homeomorphic to the attrdctor for the time-independent syctem. 

6. Examples of complete dominance (CD) and transgenic immigration 

Suppose the transgene A confers a fitness adcantage to the genotype which possesses it. 
Hence. to use this one-island selection-migration model to study the migration of a transgene 
tnto a nacurrtl population, we assume CD in fitness, i.s. f a , \  = f4, ) f,,. Then the aa- 
genottpe represents the natural population. Hence, system ( 3 )  may model transgene 
imrnisration if a population with large .I\ allele frequenq cl ctnterc a population consisting 
only of the aa genot>pe, i.e. po = 0. Et hflows that 

Here ue  assume that irnmigrrltion is constant ( a  = 01. not periodic in time. Let y = 1. 
cf = 0.9 and take 

f = e I - '  and f,,(.r) = e '-3'. (28) 

In this case, since max,,,, .rf,,(x) = 0.31 then equation (27) implies that pl > 0.67. L'sing 
equation (17) of Lemma 4.5, we compute r =r 0.002. Hence. an orbit starting with p = 0.67 
ccotild require 147 iterates before p, is larger than q = 0.9. However, numerical simulations 
indicate that an orbit with initial frequency po = 0 reaches frequency 0.9 within five iterates. 
Figure 4 depicts three representative orbits approachins the attractins equilibrium at 
( I j .  k) = (0.906, 1.80). 

Thus, after several generations, a transgene exhibiting CD will maintain itself in the 
natural population with at least the frequency that it enters the population. This will also 
occur if 33 holds but the transgene homozysote fitness,f.,,-,, is always larger than the fitness 

Figure -I For iltnr,se\ 1281. hve ttrrJ;r\ ot  ~hree  tjrnlt,  ;vllh :>n = O dpproac!~lng the t q u ~ i t b r i u m  
i,ij 21 I- (0  3%. I % f )  r,: = 0 5 Tor t I. I,; = 1 Tor f x I dnct r,, = 2 5 I * I  
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for the other hornozy-gote.i,,. The example in the next section shows that the locatton of the 
attractor is more subtle if horno~ysote ftness superior~t) does not hold for all r. 

7. Conclusion and future directitins 

With the homozygote superiority assumed here. we establish the existence of glubtll 
attractors in regions bounded by the irnmigratins allele frequency y and we c;llculate 
attractor approach rates. However. i f  the hornc~~ygote fitness curves inrerseat and cross then 
the h>ptrthe\e\ of Theorem 4.6 are not satistied. .Are there conditions on such fitnesses which 
%i l l  predict the positions of attt-dctors'? Conhider a 5 D  model with /v = 0.1. q = 0.5. and 

I 5-0 I5 r  
f-\,\(-~) = e md f d J ( X )  = ej-t)3r.  (29) 

IVith these fitnesses and constant immigration (a = O), the population size .r remains in the 
interval [O. 751. From their graphs (figure 5 ) .  it is clear that f,(.r~ is much larger than fAd4(x) 
for most of the range 0 < .r < 10 and. afier crossing at .c = 10, f&(.r) and f AA(.r) are a~most 
equal for 10 < s < 25. Because of apparent fitness superiorit, of the aa-genotype. one 
would intuitikely suspect that the aa-genotype would dominate the Ad\-genotype and the 
global attractor would be located where p < cl = 0.5. However. numerical simulations 
indicate that the global attractor is the ?-cycle { (po. .r0) = (0.5347. 14.85). ( p i .  xl  ) = 

f0.6173.5.5475)) where p > 0.5. Thus. the size of the area between the homozygote fitness 
curves determines neither genotype dominance nor attractor location. Investigatine the 
position of attractors tthen the homozygote fitness curves cross will be the topic of future 
studies. 

Also. in order to consider more general heterozygote behavior. i.e. not assume that CD or 
ND holds. it would be useful to consider three-dimensional models which track genotype 
population numbers like Li [9]. In these models. migration terms may be included. different 
matin? schemes proposed and post- or pre-selection migration investigated. 

0 3 10 15 20 25 

X 

F~gure S Cross~ng ritnr\\r\ I "9 I 
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