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Global attractors for a discrete selection model
with periodic immigration

JAMES F. SELGRADE"™Y and JAMES H. ROBERDS:§

“Department of Mathematics and Biomathematics Program. North Carolina State University,
Raleigh, NC 27693-8203, USA
iUSDA Forest Service, Southern Research Station. Southern Institute of Forest Genetics.
Saucier, MS 39574, USA
{Received 28 March 2006 in final form 19 October 2006

A one-islund selection-migration mode! is used to study the periodic immigration of a population of fixed
allele frequency into a natural population. Density-dependent selection and immigration are the primary
factors affecting the demographic and genetic change in the island population. With the assumptions of
complete dominance (CD) or no dominance {ND) and homozygote superiority in fitness. the existence and
location of global attractors are estblished. Analysis of this model provides rudimentary information about
the migration of transgenes into a natural population.
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1. Introduction

Natural selection and immigration are two forces that can profoundly affect the genetic composition
of populations [6,17]. If immigrants come from a population of individuals with fitness
characteristics different from those of individuals in the recipient population, for example, because
of genetic transformation, genes affecting fitness in the former population may become established
in the latter, e.g., see [2,3.16]. Understanding how such gene movement influences gene frequency
in the recipient population is important because of the way it impacts genetic variability and mean
population fitness. How the migration rate and migrating allele frequency affect the type and
location of attractors in a natural population is currently unknown.

To study this process in the simplest setting we consider the one-island model discussed by
Roberds and Selgrade, see Refs [11,15], for a diploid population with two alleles, A and a, at a
single locus. In each generation a population of constant allele frequency migrates into the island
from an external source and reproduces with the island population. This model is a discrete-time
system of two nonlinear difference equations which track the A allele frequency p and island
population density or size x over generations. For this study, we assume that density-dependent
selection and immigration are the primary factors affecting the demographic and genetic
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evolution of the island population. Because of periodic environmental factors such as
seasons, climate and food supply, we permit periodic variations in the immigration.

Such a model might represent the migration into a natural population of a population with
a genetically engineered gene, a transgene. Other discrete models have been proposed to
investigaie the mixing of transgenic and natural populations. For instance. Li [8,9] studied
three-dimensional models which track population numbers of the three genotypes for the
interaction between transgenic mosquitoes resistant to malaria and the wild type nonresistant
mosquitoes. Li [9] discovered tristable equilibrium behavior and chaotic behavior in
genotype numbers. His models have neither an immigration term nor pertodicity.

In this paper, Section 2 discusses model background and development. In Section 3, we
introduce two classical types of fitness relationships (complete dominance (CD) and no
dominance (ND)). Section 4 proves the existence of global attractors for models with these
fitness restrictions and calculates attractor approach rates. If ¢ denotes the constant A allele
frequency in the immigrating population then the global attractor is contained within either
the region where p < g or the region where p > ¢, depending on which homozygote fitness
dominates. Section 5 provides examples of cyclic attractors and chaotic attractors. Section 6
considers immigration of a transgene A by assuming that the island population is devoid of
the A allele, i.e. the initial condition for p is zero, and by allowing immigration with a large A
allele frequency ¢. Because a transgene may confer a fitness advantage, we assume CD of the
AA-genotype. Then the results of Section 4 are used to estimate the rate of evolution of the
system toward the attractor in the region where p > ¢. In fact, numerical simulations of an
example where immigration is constant and the attractor is an equilibrium indicate that the
evolution is much more rapid than the crude estimates of Section 4. Hence, for this model an
immigrating transgene exhibiting CD will ultimately maintain itself in the natural population
with at least the frequency that it enters the population.

2. Model background

For the one island model, the island population density or size x consists of individuals with
one of three genotypes, AA, Aa or aa. Let p denote the frequency of the A allele in the island
population, where 0 = p = 1, and hence 1 — p is the frequency of the a allele. The effects of
density-dependent natural selection determine an average per capita replacement rate or
fimess f;(x) for the ij-genotype, where i.j = A,a, which measures fertility and viability of
that genotype. Allele fitnesses f, and f, are linear combinations of genotype fitnesses
weighted by allele frequency and are defined by fi =pfas + (1 —p)fsa and
fs = bfaa + (1 = p)fa.. The population mean fitness fis given by f = pf\ + (1 = p)f..

Following selection in each generation, assume gametes are contributed to the island
population by immigration from a population with constant allele frequency g where
0 = ¢ = . Random mating occurs following migration so that the number of additional
zygotes in the next generation produced as a consequence of immigration is denoted by y.
The following system of difference equations describes changes in allele frequency and
population size between generations n and n + 1, see Refs [11.15]:
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When y = 0, this system is identical 10 the system previously studied for density-dependent
setection. e.g. see Ref. [13].

Because periodic variations may affect ecosystem behavior. Costantino er af. [ 1], King and
Schaffer [10], Henson [7], Selgrade and Roberds [14] and others have investigated the effects
of periodic fluctuations in ecosystem parameters. Here we allow for periodic immigration.
For a positive integer & and 0 = « < 1. to study immigration of period k., we multiply the
constant immigration y by the tactor 1 + ag;(n) where =1 = gon) = | and geln + k) =
gty forn =0.1.2. ... This provides immigration of period & varying between (1 + o)

and (1 — «). Hence ayv is the maximum variation in migration from the amount y. If
k-l
Len=i
period & is y. For g2ty = (—1)", the immigration has period 2. The system of difference
equations corresponding to equation (1) that represents immigration of period k may be
written as:

Loty = 0. e.g. when getn) = sin(27m k). then the average immigration over the time

_ Patnfa gl + agilng

Prs1 T .
" G f v+ ag(n) (2)

Xyt = Xy f V(] + ageln)).

It is convenient both mathematically and biologically to introduce a per capita migration
rate for x > (0 given by
) v
h(v) ==,
X
which measures a constant per capita migration per generation relative to the island
population size x. Since y is constant, A(x) is a decreasing function of population size, i.e.
Hix)= —y/xz < 0. After replacing ¥ by xh(x) in equation (2), the transition equations
become

_ prxf.—\{pn“rn) + qh(-(n)( l + agk(”’)
P FUPu. %) + Bl + agi(n) (3)
Xnet = Xn(f (P X)) + R + age(n)).

In equation (3). f + (1 + agi(n)) denotes the per capita transition function for the island
population. Repeated iteration of equation (3) yields an orbit {(p,.x,) :n=0.1.2. ...} for
this two-dimensional. time-dependent dynamical system which is equivalent to equation (2)
for x > 0. Henceforth, we study the behavior of equation (3).

3. Assumptions for dominance in fitness

When a = 0 the phase space for system (3) is the slot in the (p.x)-plane designated by
S={(px:0=p=1.0<ux}

When y = 0 (i.e. 1 = 0), the boundary lines of S. {p =0} and {p = 1}, represent allele
fixation and. therefore, are invariant. If v >0 and 0 < g < |. points on these vertical
boundaries of S are mapped into the interior of S. Because the dvnamical system (3) is time-
dependent, different orbits may intersect when plotted in S. Including time as an additional
phase variable will remedy this situation. Franke and Seterade [3] discuss a useful framework
for studving this time-periodic dvnamical system by considering the corresponding
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autonomous dynamical system on the cylinder space defined as the Cartesian product X of S
and the discrete space [0. 1, ... k — 1| representing time with the usual product topology, i.e.

X=1{0.1.....k— I} XS

X consists of k copies of S referred to as fibers and orbits of equation (3) move from fiber to
fiber in a k-periodic fashion because the time coordinate is taken modulo & (figure 1).

An equilibrium E is an allele frequency p, 0 < p = [, and a population density ¥ >0
which remain constant across generations, i.e. p, = p and x, = ¥ for all #. Such an £ is smud
to be polymorphic if 0 < p < 1. From equation (3}, an equilibrium £ = (p. %) must satisfy
the following system for all n:

P = pfalp. ) + qgh(X(1 + agw(n))

(4)
I =f(p.0) + AN + ag.(n).

Clearly, the second equation in equation (4) will not be satisfied for all n since g, depends
on n. Hence, equation (3) will have equilibria only if @ = 0. Although equation (3) with time-
~ dependent immigration will not have equilibria, this dynamical system may have attracting
cycles or more general attractors.

The level or degree of dominance with regard to genetic control of fitness has been shown
to influence profoundly the properties of equilibria resulting from the joint effects of
migration and selection, e.g. see Hedrick [6]. Here we study stable dynamical behavior for
two levels of dominance when selection is density-dependent. First, we consider the case
where genotypic fitnesses exhibit complete dominance (CD). We assume that the presence of
the allele A confers maximal fitness on a genotype. Thus, for all x > 0 or all x within an
invariant set, we take

Faalx) = faulx) > fualx). (CD)
With CD allele and mean fitnesses become
Sa=7Faa

fa:pf'f\A+(l _p)f.m (5)
F=p2=plfar+ (1 —pfu.

For the second case, we assume that the heterozygote fitness is the average of the
homozygote fitnesses, i.e. for all x > 0

f;\;x(x) = (fAA(-t) '“fm(f”)z (ND)

In this case the fitnesses are said to be additive or to exhibit no dominance (ND). See
Falconer and Mackay [4] or Roughgarden [12] for application of this classical concept to
selection theory in population genetics. Allele and mean fitnesses become

fA = P"f;\.x - f_m)/: -+ (fA.»\ 'f'fau) 2
fo= U= pifu = faa)/ 2+ (fan = fu)2 (6}
f=pfan+(1 = pifa.

In the next section. we show that these dominance properties restrict the positions of
attractors for equation (3).
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Figure I. Phase space X and region K~ for period-2 immigration.

4. Attracting regions

Because of these dominance assumptions, the evolutionary behavior of the system is
determined by the relative fitnesses of the homozygotes and the frequency of the immigrating
allele. We show that if foa = f,, then all attractors are contained within the region where
p = qand if fo, = fa, then all attractors are contained within the region where p < g¢.

Biological considerations indicate that if the fitness of the homozygote AA dominates that
of the homozygote aa (i.e. fox = f,,) and that if in each generation the A allele enters the
island population at a frequency ¢ then the frequency of A in the island population should
never fall below g if it starts above ¢ and the frequency of A should increase if it starts below g.
An analogous statement applies when the fitness of the homozygote aa dominates that of the
homozygote AA. These assertions are detailed in the following two results. First, the plane
{p = q} divides the region Y'into two subregions (figure 1):

H ={npx):0sn=<k-lg=p=10<x} and
H ={npx:0=n=k-1.0sp=q0<x}
For any set A the topological interior and closure of A are denoted Int A and Cl A.

respectively. A set A is invariant if for each (py.xo) € \ then (p,.x,) € A forall n = 0.
Equilibria, cycles and attractors are examples of invariant sets.

LemMa 4.1, Assume CD or ND for all x > Q and that 0 < ¢ < 1. If fax(x) = fou) for all
x> Othen IntH™ and H™ are invariant regions. If f.,(x) = f () forall x > 0 then Int H™
and H™ are invariant regions.
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Proof. For the assertion about the Int H¥, we show that if p, > ¢ then p,. > g forn = 0.
Since

_Pafa +qh(l +agiln)  [p./q)f & + A1+ ageln)

- — : . — — (N
[+ Al + agi(n) L f Al +agdn)

Pnsi
we need to show that the bracketed term in equation (7) is greater than 1. This is equivalent to
L (8)
q
Since p, > g and faa(x,) = f.u(x,), we have
Pn . .
—fa—f>fa—f
q
Then equation (8) holds because

[ anto) = fale)l(1 = p)* =0 if (CD)holds
fa—f= . . S ‘ %)
[f:\;\(-xn) —f(za(xu)](I - pn)2 =0 lf(.\D) holds

Also, if p, < I then clearly p,.; < 1. Thus Int H ™ is invariant. If we assume that p, = ¢ then
the preceding strict inequalities are weakened, which gives that p,., = ¢, i.e. that H™ is
invariant.

To prove the assertions about H~ we reverse the preceding inequalities using the

assumptions that p, < g and f,(x) = faa(x). 4

Notice that x, = (1 — a) for n = | because of the immigration. Hence, after the first
iterate, the inequalities on fitnesses need hold only for x = y(1 — @) to obtain inequalities on
frequency iterates as summarized in the following corollary.

COROLLARY 4.2, Assume CD or ND for all x > 0 and that 0 < q < 1. If faa(x) = fulx)
forallx = y(1 —a)yand g < p, < | then ¢ < powy forall n = 1. If fo(x) = fan(x) for all
x= Wl —a)and 0 < p, < qthen ppo) < qforalln=1.

Also, with similar assumptions on fitness, a solution orbit in the complement of H™ or H~
iterates monotonically in p, toward H™ or H ™ as follows:

Lemya 4.3, Assume CD or ND forall x > 0 and that 0 < g < L. If faalx) = faalx) for all
x2 ¥l —a)and p, < g forn =1 then p, < poey. If fu(X) = fanlX) forall x =2 (1 — a)
and p, > g forn = 1 then p, > p,.|.

Proof. For the first assertion we need to establish the inequality

AT LA+ agdn))
a7 - } Pn (10

Past = Prr"
L E

f+h(l = ag.(n)
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which is equivalent to showing

fa+{q/pR(l + agyin) -
[+ Al + ag(n)

(b

Clear the denominator, move all terms to the right and substitute genotype fitnesses into
equation (11) to get
. () = Faafx)el -p,,)z if(CD)
i ) (pn ({) [jkm( ) f%;\ d )
0> hle, (1 + age(n)) ——— + ) _ A e (12)
e ) T (n)) Pn [j\m((n) _f:\,»\(xu)l(l - p’!).’f: if (ND)

But equation (12) is true when fia(x,) = fu.(x,) and p, < ¢. Reversing the inequalities m
equations (10)—(12) proves the second assertion. -

Because of environmental limitations, it is biologically reasonable to assume that the
population size x is bounded for all generations. An assumption about genotype fitnesses

which will guarantee this is:
There exists B > 0 so that xfar(x) < B and xfu(x)<B for all x> 0. (AD)

From (A1), it follows that the genotype fitnesses are bounded and approach zero as x — . In
many applications, it is assumed that the fitnesses are decreasing functions of x but that
assumption is not needed here. Also (A1) implies that x, f(p,. x,) = B+ ¥(1 + a) forall n
and hence all solutions to equation (2) are bounded. In fact, if the interval J =
[¥(1 — a),¥(1 + @)+ B] then we have:

Lemya 4.4, If equation (3) satisfies (A1) and either CD or ND for all x > 0 then each
solution (p,.x,) is contained in the rectangle R = [0, 1| X J for all n = 1.

Since solutions to equation (3) are contained in a compact set R, the next Lemma
estimates the rate of increase or decrease of p, as indicated in Lemma 4.3.

Lemya 4.5, Assume (A1) and either CD or ND for all x > 0 and 0 < g < L. If faalx) >
faalx) for all x € J then there is r > 0 so that p, =< q where n =1 implies that
Prst Z Pall + 1) If foalx) > fan(x) for all x € T then there is s > 0 so that p, = q where
n = implies that | — p,.; = (1 = p, X1 + 5). Also, r and s are independent of p,.

Proof. First assume that fas(x) > fu.(x) for all x € 7. From equation (3) it follows that

[ A= S+ W e = D+ agi(n) (13)
DPa+t lnf ; f+ Al + aginn -

For the fractional expression in equation (13) we wish to minimize the numerator and
maximize the denominator. Let min| denote min,c 7(f 1A (X) — faa(x)). Since (p,. x,) € R for
in =1 and p, = g. when CD holds we have that

(1= grming < (1 = p) (fanlin) = fulde)) = AL+ @glm)g = pu)/ P

=fa—fFhx)l + agnig — p.)ip, (14




282 J. F. Selgrade and 1. H. Roberds

or when ND holds we have that
(r - q)mim /2=(1 - pn)(f;\f\(xn) - fu(xn)): + h(x M + agmiyg — Pn)/ Pn
=fa = f+he)X + agmXg = pa)ipa- (13)

To bound the denominator note that x, = (I — a) s0

. . l+a l+a i ! .
f( Pnp‘fu.) + h(-‘u)(l + agk(”),) Sj,—\,\(-r/r) + 1 = 1 o - m_u;l( f.—\,\('t)' (x())
-« - &

When CD holds then r > 0 is defined by

= ‘ (1 ~f;)3min| . (17)
(1 + a)/(1 — a)) + maxe 7f aalx)
or when ND holds then r > 0 is defined by
— 1 /“?
— (1 q)mml‘,b N (18)
=2 + max.e 7f aa(v)
Thus from the preceding inequalities it follows that
P+t zpﬂ(l +r) (19)
Now assume that fu,(x) > faalx) for all x € 7. Define v, = | — p, and note that
o = v fa + (1 — @Rl + age(n))
et f+ h(l + age(n)) '
We have the following expression for z,-; similar to equation (13) for p,-
r — —aV/ ) — + o
ot =1, P _i.fu [+ = g)/vn) = Dh(l + agiln) (20)

[+ h(l + agu(n)

Since p, = gthen v, = | — g. If min, denotes min.e 7(faa(x) — faalx)) then when ND holds
we have that '

qminz;'";’ =(l - vn)(f;m(xn) —fr\r\(xn))/l?- + h(-\'n)(l + agk('”)(l -q- ‘vn)/sv‘vn
= fo = f+ ko)1 + ag(m)(1 = g = va)/ h

and

I + | +a .
fpuxa) + RO+ age(n) = faalx,) + %< + max f(x). (22)
l—a |l—-a <x€J

If s > 0 is defined by

iﬂ" 2 ..
=1 4T - 23)
=5 T MaXee 7f alX)
then from equations (20) to (22) we have
I = pust = (1= po)(L +35) ‘ (24

This completes the argument. L
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The bounds rand s in Lemma 4.5 are rather crude for estimating the number of generations
required to approach an attractor (see the example in Section 6). In part, this is because max’s
and min’s are taken over all 7. However. these exponential rates allow us to prove the
existence of global attractors.

THEOREM 4.6 Assume (Al) and either CD or ND for all x > 0 and that 0 < g < L. If
fanl) > falx) forall x € T then equation (3) has a global attractor in Int ™. On the other
hand, if f..(x) > fanlx) for all x € T then equation (3) has u global attractor in Int H™.

Proof. For a solution to equation (3), Lemma 4.4 asserts that (p,. x,) € R foralln = 1. By
Lemma 4.3, if faa(x) > f(x) and p, = g for all n then p, grows exponentially. This
contradicts the fact that p, is bounded by |. Hence there is N so that py > ¢. By Corollary
4.2, p, > ¢ for all n = N. Hence, the open set U = (g. Iy x(¥(! — a), (Il + @)+ B) is a
trapping region and the intersection of all forward iterates of Cl U is the global attractor.
On the other hand, if f,(x) > faa(x) and p, = ¢ for all n then p, will decrease
exponentially by Lemma 4.5, which is not possible. Hence there is N so that p, < ¢ for all
n = N. Thus the open set V = (0, ¢) X (v(I — a). y(1 + a) + B) is a trapping region and the

—

intersection of all forward iterates of Cl V is the global attractor. —

5. Examples of no dominance (ND)

If ND is assumed, a variety of attractors may occur and variations in allele frequency on the
attractor depends on the relationship between the homozygote genotype fitnesses in
accordance with Theorem 4.6. Here we discuss several examples where k-periodic
immigration is obtained by taking g (n) = cos(27m/k) forn =0.1,2. ....

If faalx) > fuu(x) for all x > O then the global attractor is a subset of It H™, i.e. p, > gon
the attractor. Let y = |, ¢ = 0.2 and take ’

f:\_—\(x) = ¢ 1.8-0.5x and f;m(x) =¢ l.(]"().s,l" (25)

If the immigration is constant (a = 0) then for fitnesses (235) the global attractor is the
equilibrium at (p,x) = (0.448,3.54), see figure 2(a). If a increases from zero and
immigration is 2-periodic then a bifurcation occurs resulting in a stable 2-cycle. Such
bifurcations are expected and discussed in Selgrade and Roberds [14] and in Franke and
Selgrade [5]. Figure 2(b) depicts this 2-cvcle when a = 0.5, If the immigration is period-5
then the atractor is a 5-cycle as seen in figure 2(c), (d). Note that in figure 2(c), g = 0.2
$0 p, > 0.2 on the 3-cycle but in figure 2(d), ¢ = 0.8 50 p, > 0.8.

A chaotic attractor may occur if the larger fitness considered as the per capita transition
function for a single population gives a chaotic one-hump map. For instance, take

faal=e'™ and  fulx) =70 (26)

Note that f.(x) > f14(x) for all x > 0 and that map xf . (x} is a chaotic one-hump map. For
our selection-migration model, if y = 0.1, ¢ = 0.92 and immigration is constant then the
global attractor is chaotic, see figure 3¢a). When o = 0.5 and k = 2. the attractor for the
resulting 2-periodic immigration consists of two subsets (figure 3(b)) which iterate to each
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Figure 2. Global attractors for fitnesses (23). + denotes an attracting equilibrium. X denotes a point on an
attracting 2- or 3-cycle.

(@) q=092 a=0 (b) q=092 k=2 a=05

0 0.1 0.2 0.3
p p

Figure 3. Giobal. chaotic attractors for fitnesses (26).
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other and each is similar to the chaotic attractor in figure 3(a). In more restrictive settings,
Franke and Selgrade [5] have shown that each subset of the attractor for the time-dependent.
system is homeomorphic to the attractor for the time-independent system.

6. Examples of complete dominance (CD) and transgenic immigration

Suppose the transgene A confers a fitness advantage to the genotype which possesses it.

Hence. to use this one-island selection-migration model to study the migration of a transgene

into a natural population, we assume CD in fitness, i.e. fin = faa > fa. Then the aa-

genotype represents the natural population. Hence, system (2) may model transgene

immigration if a population with large A allele frequency g enters a population consisting

only of the aa genotype, i.e. py = 0. It follows that
qy

P = - =

SN SN L A—— 27
Xofualxo) £y ¥+ maxzoxfu(x)

Here we assume that immigration is constant (a = 0), not periodic in time. Let y =1,
g = 0.9 and take

far(vy=¢'""" and fulx)=e¢ 135 (28)

In this case, since max,zq xf,(x) = 0.34 then equation (27) implies that p; > 0.67. Using
equation (17) of Lemma 4.5, we compute r = (0.002. Hence, an orbit starting with p = 0.67
would require 147 iterates before p,, is larger than ¢ = 0.9. However, numerical simulations
indicate that an orbit with initial frequency py = 0 reaches frequency 0.9 within five iterates.
Figure 4 depicts three representative orbits approaching the attracting equilibrium at
(p. %) = (0.906, 1.80).

Thus, after several generations, a transgene exhibiting CD will maintain itself in the
natural population with at least the frequency that it enters the population. This will also
occur if ND holds but the transgene homozygote fitness, fy 4, is always larger than the fitness

2.54%

s »

Figure 4 For fitnesses (28} five iteraies of thres orbits with pn = 0 approaching the equilibrium
(p.3)=(0.906. 1 80). x4y = 0.3 for(e} xo = | for ¢ X ) and v, = 2.5 for i=).
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for the other homozygote, f,,. The example in the next section shows that the location of the
attractor is more subtle if homozygote fitness superiority does not hold for all x.

7. Conclusion and future directions

With the homozygote superiority assumed here, we establish the existence of global
attractors in regions bounded by the immigrating allele frequency ¢ and we calculate
attractor approach rates. However, if the homozygote fitness curves intersect and cross then
the hypotheses of Theorem 4.6 are not satisfied. Are there conditions on such fitnesses which
will predict the positions of attractors? Consider a ND model with y = 0.1, ¢ = 0.5, and

Fanlo) =0 and falx) = 370, (29)
With these fitnesses and constant immigration (a = 0), the population size x remains in the
interval [0, 25]. From their graphs (figure 3), it is clear that f,,(x) is much larger than f 14 (x)
for most of the range 0 < x < 10 and, after crossing at x = 10, f,(x) and f 41 (x) are almost
equal for 10 < x < 25. Because of apparent fitness superiority of the aa-genotype, one
would intuitively suspect that the aa-genotype would dominate the AA-genotype and the
global attractor would be located where p < ¢ = 0.5. However, numerical simulations
indicate that the global attractor is the 2-cvcle {(py.xy) = (0.5347,14.85).(p1. x1) =
(0.6173.5.5478)} where p > 0.5. Thus, the size of the area between the homozygote fitness
curves determines neither genotype dominance nor attractor location. Investigating the
position of attractors when the homozygote fitness curves cross will be the topic of future
studies.

Also, in order to consider more general heterozygote behavior. i.e. not assume that CD or
ND holds, it would be useful to consider three-dimensional models which track genotype
population numbers like Li [9]. In these models, migration terms may be included, different
mating schemes proposed and post- or pre-selection migration investigated.
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Figure 3. Crossing fitnesses (29)
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