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ABSTRACT. This study presents a discrete-time model for
the effects of selection and immigration on the demographic and
genetic compositions of a population. Under biologically rea-
sonable conditions, it is shown that the model always has an
equilibrium. Although equilibria for similar models without mi-
gration must have real eigenvalues, for this selection-migration
model we illustrate a Hopf bifurcation which produces long-
term stable oscillations in allele frequency and population den-
sity. The interplay between the selection parameters in the
fitness functions and the migration parameters is displayed by
using migration parameters to reverse destabilizing bifurcations
that occur as intrinsic density parameters are varied. Also, the
rich dynamics for this selection-migration model are illustrated
by a period-doubling cascade resulting in a pulsating strange
attractor.

1 Introduction Natural selection and migration can act jointly to
shape the demographic and genetic compositions of a population. A
number of models have been proposed to study allele frequency dynam-
ics associated with the combined action produced by natural selection
and migration. The simplest of these is the one-island or continent-
island model in which a single population is the recipient of immigrants
from a large nearby population. Effects of selection together with mi-
gration in an island model of this type were first reported by Haldane [8]
and Wright [28, 29]. Both obtained equilibrium solutions for allele fre-
quencies in discrete-time models. Their studies did not consider effects
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on population size, but were entirely focused on allele frequency behav-
ior under constant selection. In this setting, they demonstrated that
equilibrium allele frequencies are primarily influenced by the strength of
migration compared to selection plus the degree of dominance for geno-
type fitnesses (Hedrick [11]). Similar results were obtained by Nagylaki
[16] for weak selection in a continuous-time model of comparable form.

The value of concurrently studying the effect of natural selection on
genetic composition and on population size for obtaining a better under-
standing of evolutionary behavior has been pointed out by Roughgarden
[19] and Ginzburg [7]. A key feature of methods used to investigate such
joint behavior is that population size is treated both as a variable of pri-
mary interest and as a factor that affects individual fitness. Because of
its effect on fitness, population size influences genotype frequencies in
populations and thus allele frequencies. In this paper (also see Roberds
and Selgrade [18]), we take an additional step toward understanding
complex evolutionary dynamics by introducing migration effects into the
study of density-dependent selection. We analyze allele frequency and
population size dynamics resulting from the combined effects of migra-
tion and density-dependent selection in a discrete, one-island migration
model.

Section 2 presents the model and discusses historical background.
Analysis of equilibria is carried out in Section 3. In particular, it is shown
that the model always has a polymorphic equilibrium under biologically
reasonable assumptions. Equilibria for the model without migration
must have real eigenvalues [22]. However, with migration, eigenvalues
may be complex and we illustrate Hopf bifurcation in Section 4, which
produces long-term stable oscillations in allele frequency and population
density. In Section 5, we exhibit the rich dynamics for this selection-
migration model by discussing a period-doubling cascade which results
in a pulsating strange attractor. Finally, we show that destabilizing bi-
furcations that occur as intrinsic density parameters are varied may be
reversed by varying migration parameters. This emphasizes the inter-
play between the selection parameters in the fitness functions and the
migration parameters.

2 Model ackground A simple setting for studying allele frequency
variation consists of a diploid population with two alleles, A and a, at
a single autosomal locus. Hence, the population consists of individuals
with one of three genotypes, AA, Aa, or aa. Let p denote the frequency
of the A allele, where 0 < p < 1, and hence 1 — p is the frequency of the
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a allele. Evolutionary pressures due to natural selection determine an
average per capita replacement rate or fitness f;; for the ij-genotype,
where i, j = A, a, which measures fertility and viability of that genotype.
Allele fitnesses f4 and f, are linear combinations of genotype fitnesses
weighted by allele frequency and are defined by fa = pfaa+ (1 —p)faa
and f, = pfaa+(1—p)faa. Accordingly, the population mean fitness f is
given by f = pfa+ (1—p)fa. In the original theory developed by Fisher
[4], Haldane [9] and Wright [28], migration was ignored and genotype
fitnesses were constants. Assuming random mating, the following dif-
ference equation describes a discrete-time model where changes in allele
frequency p take place from one generation to the next:

’ pfA(p)
o [

Here p’ denotes allele frequency in the next generation. Repeated itera-
tion of (1) produces an orbit denoted by {p, : n = 0,1,2,...} that repre-
sents the evolution of allele frequency over time. For this case, Fisher’s
fundamental theorem asserts that mean fitness f increases along orbits,
i.e., the population evolves to increase mean fitness. For a more detailed
discussion see Roughgarden [19].

More recent developments involve dynamics produced by demographic
effects acting under the influence of genetic factors. In models con-
structed to investigate these dynamics, genotype fitness is assumed to
vary as a function of population size and two-dimensional systems of
equations have been used to track concurrent changes in allele frequency
p and population size x. The following system of difference equations
describes the appropriate discrete-time model:

’_ pfA(p,CE)
(2) f(p,l‘)
¥ =uxf(px).

Here p’ and z’ represent allele frequency and population size in the next
generation and system (2) is said to model density-dependent selection.
Properties of equilibria have been investigated in both this discrete-time
model and the analogous continuous-time differential equation model.
Analyses of the system of difference equations (2) revealed that a stable
equilibrium maximizes population size along the curve defined by mean
fitness equals one and occurs only in the presence of heterozygote supe-
riority in fitness at equilibrium (see Asmussen and Feldman [3], Rough-
garden [19], Asmussen [2], or Selgrade and Namkoong [22]). Similar
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behavior was found for the analogous system of differential equations,
except that in this system, a stable equilibrium maximizes population
size along the zero mean fitness curve (e.g., see Levin and Udovic [14],
Ginzburg [6, 7] or Selgrade and Namkoong [22, 20]). Although the
system of differential equations admits no periodic solutions (Selgrade
and Namkoong [22]), cyclic behavior including period-doubling cascades
that lead to chaos have been observed for the difference equation ana-
logue (see Asmussen [1] or van Coller and Namkoong [27]).

Adding migration to the discrete-time model produces even more di-
verse stable nonequilibrium behavior. The one-island model that we
study here has an immigration component in which the number of immi-
grants is proportional to the size of the island population in each genera-
tion and allele frequency in the immigrating population is constant. An
immigration rate proportional to population size may occur in a natural
biological setting if the migrants are attracted by pheromones released
by the island population. Activities in the island population may also
result in a sequence of events which causes immigration to increase with
population size (the simplest increasing function being a proportional-
ity). For example, Tonkyn [26] discusses a population of phloem-feeding
aphids where insect feeding stimulates the plant’s production of phloem
which, in turn, attracts more aphids (immigrants). Density proportion-
ate immigration allows us to obtain bounds for polymorphic equilibria
in terms of immigration rate and to investigate Hopf bifurcation. The
development in Roberds and Selgrade [18] includes a more general immi-
gration term but the generality complicates the mathematical analysis
without providing additional conceptual insight.

For the one-island migration model, let x denote the size of the island
population and p represent the frequency of the A allele in this island
population. In each generation following selection, assume a number of
individuals directly proportional to the island population immigrate to
the island from a nearby continental population or collection of popu-
lations. Then the number of migrants per generation is given by mx
where m, 0 < m < 1, is the constant per capita immigration rate. Fol-
lowing immigration, random mating is assumed to take place yielding
Hardy-Weinberg proportions in the population of zygotes that form the
next generation. In the population of migrants, let the allele frequency
for A be represented by the constant ¢ where 0 < ¢ < 1. Then counting
alleles and numbers of individuals, we obtain the following system of
difference equations [18] which describes the changes in allele frequency
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and population size that take place between generations:

o = PIap @) +qm
(3) fp,x) +m

o' = (f(p,x) +m).

Notice that when m = 0, this system reduces to the system (2) for
density-dependent selection.

3 Analysis of equilibria The phase space for system (3) is the
slot in the (p, z)-plane given by

H={(p,x):0<p<1,0<z}.

When m = 0, the boundary lines of H, {p = 0} and {p = 1}, represent
allele fixation and are invariant. However, if m > 0 then this is not
necessarily true. In fact, for 0 < ¢ < 1, points on the boundary of H
iterate into the interior of H. A polymorphic equilibrium F = (p,T) is
an allele frequency P, 0 < p < 1, and population density T # 0 which do
not change from generation to generation. Hence, the coordinates of E
satisfy the system:

p=pfalp,z)+qm

(4)

L= f(p,x) +m.
In order to determine the stability of E we need the derivative matrix,
D(E), of the right side of (3) evaluated at E:

fa—=p(fa— fa) i
o o |P0-P( o) PP -8

—of —of

E is asymptotically stable if both eigenvalues, A1 and \g, of (5) are
inside the unit circle.

Because of the detrimental effects of population crowding, we assume
that each genotype fitness f;; where i, j = A, a, is a decreasing function
of the population density z, i.e., f;;/0x < 0. Using the terminology
of ecology, we refer to such a function f;; as a pioneer fitness function
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(see Selgrade and Namkoong [21]). For instance, exponential (see Moran
[15] and Ricker [17]), rational or Beverton-Holt (see Hassell and Comins
[10]), and linear (see Selgrade and Roberds [23, 24]) functions are used
in the modeling literature as pioneer fitnesses. Henceforth, we assume
that each genotype fitness is pioneer for all (p,z) € H, although this
may be unrealistic for small z. It follows that for all (p,2) € H we have
Ofa/0x <0 and 9f /0x < 0. Thus, the curves determined by (4)

Ca={(p,x) : plfalp,x) =1 +qm =0} and
C={(p,z): f(p,x) +m =1}
may be considered as the graphs of x as functions of p, which will be
denoted by Z4(p) and Z(p), respectively. Clearly, at a point (p,z) € C

we have f(p,z) < 1, and at a point (p,z) € Ca we have fa(p,z) < 1.
When gm > 0, along C4 we have —1 < fy —1 <0 so

(6)

qm >
p= Zqm
1—fa
and, hence, the function Z4(p) is defined only for p > gm. From the
implicit function theorem it follows that

dia 1— fa—p(0fa/Op) dz _ —0f/op
O T T p@fajon) and T o jor

The polymorphic equilibria of (3) are the points of intersection of C 4
and C. When m = 0, it is reasonable to assume that for each fixed
p there is a population density such that the population equilibrates,
i.e., for each p there is an > 0 so that f(p,x) = 1 or, equivalently,
f(p,0) > 1 since 9f/0z < 0. Hence, for m > 0 we have f(p,0) +m > 1
for all p, which implies that C lies above the p-axis and separates H into
a lower and an upper region. Orbits that remain below C asymptotically
approach C from below. Similarly, orbits remaining above C approach
C from above. However, orbits can jump from above C to below C and
vice versa.

If the genotype fitnesses depend on both frequency and density then
the dynamical behavior of (3) even when m = 0 is quite general, e.g.,
see Roughgarden [19]. The mean fitness f may not increase on orbits as
is the case for constant genotype fitnesses (see Kingman [13]). Also, the
point of maximum density along the curve where mean fitness equals
one, i.e. C, may not be a stable equilibrium as is the case for density-
dependent genotype fitnesses (see Roughgarden [19]). In fact, Selgrade
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and Namkoong [20] present an example of frequency-dependent fitnesses
with a globally, asymptotically stable interior equilibrium which is not
the maximum along C.

In order to obtain some general results on equilibrium existence and
stability, we make the following four assumptions on each genotype fit-
ness f;; wherei,j = A, a:

(H1) 0fij/0x <0, i.e., crowding.

(H2) For each p there is an > 0 which depends on p so that f(p,z) = 1.
(H3) fi; is independent of the allele frequency p.

(H4) fij(z) approaches 0 if and only if z — .

(H1

H1) and (H2) have been introduced earlier and (H4) enhances the
crowding effect.
By differentiating the expression

f(pax) :p2 fAA + 2p(1 _p) an + (1 _p)2 faa
we see that

(®) g—;j —9(fa— ).

From (8), it follows that the critical points along C are precisely the
points where the allele fitnesses are equal. Also, since f is quadratic in
p, we observe that for each = there are at most two values of p where the
horizontal line determined by x meets C. Hence C has at most one local
maximum and one local minimum for 0 < p < 1. The following result
regarding the occurrence of equilibria as critical points along C is some-
what similar to the case of no migration where interior equilibria always
occur at critical points of C, e.g., see Roughgarden [19] or Selgrade and
Namkoong [22].

Theorem 1. Assume that m > 0 and 0 < ¢ < 1 and that (H1)-(H4)
hold for each genotype fitness f;; where i,7 = A,a. The point Q =
(q,%(q)) is an equilibrium of (3) if and only if Q is a critical point of C,
the curve where mean fitness equals 1 — m. At such an equilibrium @,
the genotype fitnesses:

(i)  exhibit heterozygote superiority (faa > faa, faa) and Q is a local
mazximum of C,

(ii) exhibit heterozygote inferiority (faa < faa, faa) and Q is a local
minimum of C, or
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(iil) exhibit neutrality (faqa = fas = faa)-

If =2 < &(q) (0f /0x) then Q is locally asymptotically stable in cases (i)
and (iii). In addition, for case (i), if faa + faa — 2faa < m/(q — ¢?)
then Q is locally asymptotically stable.

Proof. With m > 0 and 0 < ¢ < 1, for an equilibrium E = (P, T), we
obtain

(9 0=055(1-7) 2L 4 mg-7),

p
using both equations in (4) and equation (8). Eq. (9) implies that F is
a critical point along C if and only if p = ¢. Also, the fitnesses f, fa,
and f, all have the value 1 — m at the equilibrium @ = (¢, 7). Hence,
the genotype fitnesses have three possible orderings at x = T:

(i)  faa >1—m > faa, faa (heterozygote superiority);
(il) faa <1—=—m < faa, faa (heterozygote inferiority); or
(iii) faa = faa = faa =1 —m (neutrality).

Since df/0p = 0 at @, the derivative D(Q) given by (5) is upper
triangular with eigenvalues
_of
(10) My =1—-m+q(1 —9q)[faa~+ faa —2faa) and Ay = 1+$%.
For case (iii), clearly 0 < A; < 1. For cases (i) and (ii), to obtain
information about A; we solve the equations for the allele fitnesses equal
to 1 —m to represent ¢ in terms of the genotype fitnesses at x = T giving

_ 1_m_an_ 1_m_faa

fAA_an an_faa

(11)
From (11) compute that

_ . f%a_fAAfaa
(12) ! m_Zan_fAA_faa

which lies between 0 and 1 since 0 < m < 1. If the heterozygote is
superior (i), we multiply both sides of (12) by 2 and observe that at
r=7T

(2f3a — 2faafaa)

2(1 _m) B (2.]‘%(1 - anfAA - anfaa

)an>an-
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Hence
(13) 0<2an_fAA_faa<4(1_m)_fAA—faa<4(1—m).

When the heterozygote is superior, the fact that ¢(1 — ¢) < 1/4 and
(13) imply that 0 < A; < 1. When the heterozygote is inferior and
faa + faa — 2faa < m/(q — ¢*) then clearly 0 < A\; < 1. In both
cases, with A\; in the stable range, @ = (¢,T) has a stable manifold
with a horizontal tangent line at (). With the additional assumption
that —2 < T (9f/0x), the eigenvalue Ag is also in the stable range and,
therefore, @ = (¢, T) is locally stable. In addition, the concavity of C at
Q@ = (¢,7) may be found by differentiating (7) which gives

@ o 2[2an - fAA - faa]
a2 af oz

Hence, heterozygote superiority implies that @ is a local maximum along
C and heterozygote inferiority implies that @) is a local minimum. O

If the heterozygote is inferior (i) and there is no migration (m = 0),
then

M =14+D(1 —D)[faa + faa — 2faa) > 1

so the equilibrium is unstable. However, if m > 0, then from (10) A\; < 1
if

1 _m

q(1-q)

In fact, here we present an example of an asymptotically stable equilib-
rium where the heterozygote is inferior. Take m = 0.4, ¢ = 0.75 and
genotype fitnesses given by:

fAA+faa _2an <

3— 2.4—0.88956 1.6—-0.5
fAA:e 17 an:e ¥ and faa:e *

The equilibrium @ = (¢,T) &~ (0.75,3.4607) satisfies (ii) and has eigen-
values A1 ~ 0.6926 and A\ ~ —0.9087. Numerical studies indicate that
Q is globally stable.

In general, an equilibrium E = (P, T) may occur along C where p # ¢
and, hence, at a point which is not a critical point of C. Here we show
that there is at least one equilibrium in the interior of H. This result is
stronger than a similar result in Roberds and Selgrade [18].
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Theorem 2. Assume that m > 0 and 0 < ¢ < 1 and that (H1)-(H4)
hold for each genotype fitness fi; wherei,j = A,a. Then (3) has at least
one equilibrium E = (p,T) where qm <p < qgm+1—m. Ifp=gq
then E is a critical point of C. If p # q then E will only occur along an
increasing segment of C with ¢ <P < gm+1—m or along a decreasing
segment of C with qgm < p < q.

Proof. Note that C4 is defined for gm < p < 1 and has a vertical
asymptote at p = gm. This second property is true because as p ap-
proaches g m from the defining equation for C4 we see that f4(p, ) must
approach 0 and, hence, x — oo as a consequence of (H4). Also, C4 meets
the line {p = 1} at a value for x such that

faalz)=1—gm>1—m.

But since faa(z) is decreasing, this value for x is less than the value for
2 where C meets the line {p = 1}, i.e., where faa = 1 — m. Hence, C4
and C cross at some p, where gm < p < 1 as in Figure 1.

By subtracting the two equations in (4), for E = (p,T) we obtain

m (1 —_q)

<1.
1-p

fa =1-
Hence, it follows that

m (1l —q)

s—1_mUu=4q
p 1—f,

<l-m(l—-¢=gm+1-—m.

Theorem 1 asserts that if p = ¢ then F will occur at a critical point
along C. Hence we assume that P # ¢. Then from (8), since f4 # f, at
E = (p,T), either fa>1—m > f, or fa <1—m < f,. In the former
case, E occurs where C 4 crosses C along an increasing segment of C since
df/0p > 0. Also in this case, the determining equation for C4 gives

p=bfa+tqm>p(l—m)+qgm=p+m(q—Dp),

which implies that p > ¢. In the case where f4 < 1 —m < f,, a
similar argument indicates that E occurs along a decreasing segment
of C where p < q. Thus the positions of the local extrema of C and ¢
determine intervals along C where equilibria may occur. |
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FIGURE 1: Curves Ca and C for fitnesses in (15).

4 Attracting invariant curve In the case of no migration, inte-
rior equilibria always occur at critical points of C, e.g., see Roughgarden
[19] or Selgrade and Namkoong [22]. Hence, 0f/0p = 0 and the ma-
trix D(E) in (5) is upper triangular, so Hopf bifurcation cannot occur
because the eigenvalues of D(F) are always real. This no longer holds
with immigration.

In order for the eigenvalues of E to be complex, the characteristic
equation must have a negative discriminant, i.e.,

[tr D(E)]?> — 4 det D(E) < 0,

where tr and det denote the trace and determinant of a matrix, re-
spectively. For the discriminant to be negative, it is necessary that the
off-diagonal terms of D(E) have opposite sign. From (5) and (7), we see
that the sign of the lower left entry of D(F) is determined by the slope
of C and the sign of the upper right entry is the sign of

6fA 6fa _ — — — — —
(1) A @)+ (1-28) fau@) — (- D) Jaa (@)
By choosing the fitness for the homozygote aa larger at x = 0 and
decreasing more slowly than the fitness for the homozygote AA and
by choosing an intermediate heterozygote fitness, it is possible to have
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C decreasing and (14) positive. In this case Theorem 2 guarantees an
equilibrium with ¢gm < p < g. Specifically, we use exponential fitnesses
of the form:

(15) fAA — 617:E , an — 61»9*0»91 and faa _ 63_1—0,31

We fix m = 0.7 and we allow our parameter ¢ to vary from 0.85 to
0.99. The curves C4 and C intersect as in Figure 1. Numerically, we
observe a Hopf bifurcation for ¢ between 0.9 and 0.92. Using the software
Maple, for ¢ = 0.9 we find that E ~ (0.632,7.721) and its eigenvalues
are Ay =~ 0.654 + 0.7544, so |[Ax| = 0.998. For ¢ = 0.92, we have
that E ~ (0.647,7.463) and its eigenvalues are Ay ~ 0.696 + 0.7554
giving |Ay| &~ 1.027. The invariant curve is an attractor, enlarges as ¢
increases (see Figure 2), and coalesces with a homoclinic loop when ¢ ~
0.9996. The equilibrium B = (p,T) ~ (0.9985,2.3452) determining this
homoclinic loop appears at the point forming at the lower right corners
of the invariant curves as ¢ increases toward 0.9996 (see Figure 2). The
homoclinic loop is the weak “unstable” manifold for B because B has an
eigenvalue of 1 in the direction of this manifold. However, as an invariant
set this homoclinic loop is attracting. As g increases through ¢ &~ 0.9996,
the degenerate equilibrium B splits into a saddle point equilibrium and
a stable equilibrium via a saddle-node bifurcation. The loop attractor is
preserved and is a heteroclinic loop consisting of the unstable manifold
of the saddle and both equilibria for 0.9996 < ¢ < 1. When ¢ = 1, the
stable node reaches the invariant line {p = 1} and becomes the attractor
as the loop is broken.

5 Pulsating strange attractor Another significant difference be-
tween the situations where m > 0 and where m = 0 for an equilibrium
E = (p,7) may be illustrated by the case of fitness neutrality, i.e.,
faa(T) = faa(T) = foa(T) . Assume neutrality and m = 0. Since
each genotype fitness must be 1 at equilibrium, both equations in (4)
are satisfied for all p, 0 < p < 1. Hence, the horizontal line {z = T} is
a set of degenerate equilibria where A\; = 1. If m > 0 then each fitness
fij=1—m, Ay =1 —m < 1, and the line {x = T} is still invariant.
In fact, from (3) it is clear that p = ¢ so a neutral equilibrium must
occur at E = (¢,T). The line {x = T} is part of the stable manifold
of E because orbits of points (p,Z) limit on F, since for p < g we have
that p < p’ < ¢ and for p > q we have ¢ < p’ < p. The stability of F is
determined by As.
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=0.985

FIGURE 2: Attracting invariant curves for fitnesses (15) with m = 0.7.

Consider linear genotype fitnesses given by:
(16) fan=4-322/4, faa=2-122/4 and fu,=3-22z/4.

Notice that each f;;(4) = 0.8. So, if m = 0.2, for each ¢ the point
E, = (q,4) is a neutral equilibrium. For small ¢ this equilibrium is
stable but loses stability via a period-doubling bifurcation as ¢ increases
through (5 + v/10)/15 =~ 0.5441, where Ay = —1. As ¢ continues to
increase, a period-doubling cascade occurs which results in the strange
attractor at ¢ = 0.95 depicted in Figure 3.

This is an example of a pulsating attractor also observed by Franke
and Yakubu [5] in a 4-dimensional model for the competition between
two populations, each with two size classes. The attractor in Figure 3
contains an unstable 5-cycle whose unstable manifold determines the
five primary appendages which extend away from the main body of the
attractor. When an orbit within the attractor passes close to the 5-
cycle, the orbit must track the unstable manifold of the cycle. Since an
arbitrary orbit within the attractor only occasionally passes close to the
5-cycle, the orbit exhibits a pulsing behavior to an observer over time.
The main body of the attractor lies between p = 0.77 and p = 0.95 and
the bottom appendage extends to p = 0.1. Hence, there is considerable
variation in allele frequency within this attractor.
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FIGURE 3: A pulsating attractor for fitnesses (16) with ¢ = 0.95 and
m = 0.2 is pictured in the (p, z)-plane. The attractor extends along the
horizontal p-axis from p ~ 0.1 to p &~ 0.95 and along the vertical x-axis
from z ~ 0.1 to x =~ 5.4.

6 Migration to reverse destabilizing bifurcations Varying se-
lection parameters such as growth rates of genotype fitnessses may cause
and an attracting equilibrium to become unstable. If the resulting at-
tractor has the allele frequency variable p assuming values on the new
attractor less than the allele frequency of the original stable equilibrium,
then one may surmise that immigration which introduces more of the A
allele into the island population may restabilize the equilirium.

Here we discuss an example where migration of the A allele into our
island population restabilizes population equilibrium. Consider the fol-
lowing fitnesses where the homozygote AA is larger at x = 0 and de-
creases more rapidly than the other two genotype fitnesses:

(17) fAA _ 62.1—1 ’ an _ el.9—0.904w and faa _ el.l—bz

For (3) without migration (m = 0), Selgrade and Roberds [24] prove
that increasing the parameter b through the value b ~ 0.526 results in
loss of equilibrium stability via a period-doubling bifurcation. From nu-
merical simulations, it is clear that for b > 0.526 the stable equilibrium
is replaced by a stable 2-cycle with frequencies for the A allele smaller
than the equilibrium frequency. For example, if b = 0.53 then there
is an unstable equilibrium at (p,T) = (0.899,2.10) and a stable 2-cycle
varying between (p1,71) = (0.840,1.71) and (p2,x2) =~ (0.847,2.487).
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To compensate for this decrease in A allele frequency we increase the
migration parameter m from zero and observe a reversal of the period-
doubling bifurcation. For example, if b = 0.53 and we allow migration
into the island with a small rate m = 0.05 and large allele frequency
q = 0.9 then the stable 2-cycle is replaced by a stable equilibrium at
(p,T) ~ (0.888,2.153). Hence, migration can be used to restabilize
population equilibrium. The period-doubling bifurcation curve in the
(b, m)-plane may be obtained by using Maple to solve the equilibrium
equations (4) with the following eigenvalue equation

(18) tr D(E) + det D(E) = —1.

Figure 4 depicts this bifurcation curve for 0.4 < b < 0.75 and 0 < m <
0.07.

0061  STABLE EQUILIBRIUM

0,05

0.04 /

003 STABLE 2CYCLE

0.02 1

0.01] \

FIGURE 4: Period-doubling bifurcation curve in the parameter space,
i.e., the (b, m)-plane, for fitnesses (17) with ¢ = 0.9.

The nonmonotone nature of this bifurcation curve indicates that for
certain fixed values of b near b = 0.52, as m increases from zero the
attractor changes from an equilibrium to a 2-cycle and then back to an
equilibrium. Such “bubbling” behavior was noticed by L. Stone [25] in
1-dimensional ecological models. We fix b = 0.524 and increase m from
zero to 0.06 to observe a bubble in the bifurcation diagram where z is
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graphed against m, see Figure 5. Hence, for a small range of the param-
eter b from b ~ 0.51 to b ~ 0.526, increasing the migration parameter m
actually destabilizes and then restabilizes the equilibrium.

0 0.01 0.02 0.03 0.04 0.05 0.06

FIGURE 5: Bifurcation curve in the (m,z)-plane showing fixed point
and 2-cycle attractors (a bubble) for fitnesses (17) with ¢ = 0.9 and
b =0.524.
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