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This study considers a general class of 2-dimensional, discrete population models where each per
capita transition function (fitness) depends on a linear combination of the densities of the interacting
populations. The fitness functions are either monotone decreasing functions (pioneer fitnesses) or
one-humped functions (climax fitnesses). Four sets of necessary inequality conditions are derived
which guarantee generically that an equilibrium loses stability through a period-doubling bifurcation
with respect to the pioneer self-crowding parameter. A stocking or harvesting term which is propor-
tional to the pioneer density is introduced into the system. Conditions are determined under which
this stocking or harvesting will reverse the bifurcation and restabilize the equilibrium. A numerical
example illustrates how pioneer stocking can be used to reverse a period-doubling cascade and to
maintain the system at any attracting cycle along the cascade.

Keywords: Discrete models; period-doubling bifurcations and reversals; pioneer and climax popula-
t i o n s .

Classification Categories: 39A10,39A12,92D25

1. INTRODUCTION

Nonlinear difference equations and ordinary differential equations are used to
model  the effects  of  the populat ion densi t ies  of  animals  or  plants  on ecosystems.
These models of population interactions possess complex dynamical behavior;
even a single,  discretely reproducing populat ion with a quadratic transi t ion func-
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tion exhibits a cascade of period-doubling bifurcations culminating in chaotic
oscillations as illustrated by R. M. May [l].  Typically a period-doubling bifurca-
tion occurs when varying a parameter of the system causes an eigenvalue of an
equilibrium of the transition map (in the case of difference equations) or of the
return map for a periodic solution (in the case of differential equations) to pass
through -1. For the difference equations, the equilibrium often loses stability and
a stable cycle of period 2 appears; for the differential equations, the stable peri-
odic solution becomes unstable and a stable solution of roughly twice its period
appears. Continued parameter changes may result in a cascade of period-dou-
bling bifurcations and the onset of chaos. Franke and Yakubu [2,3]  observe cas-
cades of period-doubling bifurcations in discrete models for competitive
interactions of pioneer and climax populations. For differential equation models
of population interactions, Gardini et al. [4]  illustrate a period-doubling transi-
tion to a chaotic attractor for 3-dimensional Lotka-Volterra systems, and Bucha-
nan and Selgrade [5]  discuss similar behavior for a 3-dimensional model of the
interaction among pioneer and climax populations.

Usually chaotic behavior is undesirable in an ecological system. Here we study
how systems which undergo destabilizing period-doubling bifurcations due to
variations in intrinsic parameters may be restabilized by extrinsic stocking or
harvesting strategies. Buchanan and Selgrade [5]  observe numerically that vary-
ing a crowding parameter in a 3-dimensional interaction model with a periodic
solution produces a period-doubling cascade to a strange attractor. They show
that harvesting reverses this cascade and illustrate numerically that an appropri-
ate level of harvesting may be chosen to maintain the system at any periodic
attractor along the cascade. Thus the asymptotic behavior of this population
interaction model may be controlled by harvesting. Unfortunately, obtaining an
analytical representation for the return map is not possible so a rigorous exami-
nation of the bifurcations cannot be carried out in this example. This is a com-
mon difficulty in the case of differential equations because it is not possible to
obtain a simple surface transverse to the periodic solution where the return map
may be analyzed. However, in the case of difference equations a rigorous mathe-
matical analysis may be carried out. Here we restrict our attention to 2-dimen-
sional difference equations which are analogues of the 3-dimensional ordinary
differential equations studied by Buchanan and Selgrade [5].  Period-doubling for
higher dimensional discrete systems may be reduced to two dimensions, where
one dimension is the bifurcation direction and the other dimension includes all
the remaining hyperbolic directions.

We consider a general class of Kolmogorov models where each per capita tran-
sition map (called the fitness) is a function of a linear combination of the densi-
ties of the interacting populations. Previous studies of such systems include
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Comins and Hassell [6],  Hassell and Comins [7],  Hofbauer, Hutson,  and
Jansen [8],  Cushing [9,10], Selgrade and Namkoong [11,12],  Franke and Yakubu
[2,3,13,14,15],  Yakubu [16], Buchanan and Selgrade [5,17], and Selgrade and
Roberds [18,19].  One fitness function in our model will be a monotone decreas-
ing function (pioneer fitness) and the other, a one-humped function (climax fit-
ness). The interaction of a pioneer population and a climax population permits
competition and predation in different regions of the same phase space. Yakubu
[16] shows that stocking or harvesting may be used to obtain stable coexistence
in a system of two competing pioneer populations where there is exclusionary
dynamics without stocking or harvesting. Stone [20] discusses reversing
period-doubling bifurcations in a model for a single pioneer population with a
constant immigration (stocking) term. Stone’s bifurcation parameter is the intrin-
sic growth rate and the period-doubling reversals appear as “bubbles” in the
bifurcation diagram where the population density is plotted against the growth
rate. Our intention is to determine when period-doubling bifurcations can be
reversed by varying the stocking or harvesting parameter which is extrinsic to the
population interaction. Bubbling in our setting will occur when the 2-parameter
bifurcation curve has a critical point, and we will consider this possibility in
future studies.

Section 2 discusses some specific properties of the model equations and bio-
logical rationale for these properties. In section 3 we derive four sets of neces-
sary inequality conditions which also guarantee generically that an equilibrium
loses stability through a period-doubling bifurcation with respect to an intrinsic
pioneer self-crowding parameter. Section 4 introduces into the system a stocking
or harvesting term which is proportional to the pioneer density. We determine
conditions under which this stocking or harvesting will reverse the bifurcation
and restabilize the equilibrium. In section 5 we show that if the pioneer fitness
function has nonnegative concavity, which is the case for all familiar examples in
the modeling literature, then an equilibrium of prey-predator type may be restabi-
lized if and only if stocking is done. Section 6 studies the case of the equilibrium
of competitive type. We discuss an example where the size of the concavity of
the pioneer fitness function determines whether stocking or harvesting will resta-
bilize the equilibrium. Small positive concavity requires harvesting and large
positive concavity requires stocking. Finally, we illustrate numerically how pio-
neer stocking can be used to reverse a period-doubling cascade and to maintain
the system at any attracting cycle along the cascade. Since these results are local,
they may be applied to any Kolmogorov system of difference equations where
each per capita growth rate is a function of a linear combination of the population
densities and where the bifurcating equilibrium is either of prey-predator type or
of competitive type.
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2. BACKGROUND AND MODEL EQUATIONS

In order to study period-doubling bifurcations we consider systems of 2-dimen-
sional, nonlinear difference equation which model the interactions of discretely
reproducing populations. Let x1 and x2 denote the densities of two populations.
Let y,  for i = 1,2,  denote the weighted total density variable for xi, i.e.,

Yi = cilxl+ ci92

where Cy  2 0 is called the interaction coefficient and reflects the effect of the j-th
population on the i-th population. The 2 x 2 matrix C = (cd)  is called the interuc-
tion matrix. The per capita growth rate, the fitness fi, of the i-th population is a
smooth function of yi. Our model equations are

x; = x& (yi) i= 1,2 (2.1)

where xi denotes the density of the i-th population at the next generation.
Because (2.1) is of Kolmogorov-type, if the values of fi are always nonnegative
then the nonnegative quadrant is invariant for solutions to (2.1). However, we
will not assume that this is always the case.

Introducing the weighted density variable, y, has the advantage of separating
the i-th population’s response to density, A, from the competitive or cooperative
effect of each population. Typically this response may be characterized by
monotonicity properties of the fitness f;: as a function of the weighted density yi.
Because of the detrimental effects of crowding, h may be a decreasing function
of yi. Iffy  is monotonically decreasing for all values Of y,  (see Figure l), then xi is
referred to as a pioneer population. A variety of pioneer fitness functions appears
in the modeling literature. For instance, exponential (see Moran [21] and Ricker
[22]), rational (see Hassell and Comins [7]),  and linear (see Selgrade and Rob-
erds [18,19])  functions are used. On the other hand, Allee [23] discusses many
examples of the beneficial effects of increasing density on both reproduction and
survival rates, especially at low density levels. In forest ecosystems, certain tree
populations such as oak and maple benefit from the presence of additional trees
which provide protection and improved soil conditions. However, as total density
increases, ultimately the adverse effects of crowding reduce individual fitness. If
fi monotonically increases up to a unique maximum value and then monotoni-
cally decreases as a function of weighted total density, (see Figure l), then xi is
called a climax population. Examples of climax fitnesses are exponential and
quadratic functions, see Cushing [9,10] and Selgrade and Namkoong [12].
Henceforth, we assume the x1  is a pioneer population and x2 is a climax popula-
tion.
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FIGURE 1 Pioneer and climax fitnesses

An equilibrium in the interior of the nonnegative quadrant occurs where all fit-
nesses  assume the value 1. Since fr is a pioneer fitness then we assume that there
is exactly one value y*1 > 0 so that fi (y? ) = 1. Hence the h-isocline  is the line

Y*1 = cr+r  + ~~9~.  Also we assume this value y? is nondegenerate, i.e.,
f;( yr ) z 0. We take the climax fitness f2 to have exactly two positive values
where i t  assumes the value 1,  which also are nondegenerate.  Thus the isoclines of
the climax population are two parallel lines. An equilibrium in the positive quad-
rant occurs precisely where the pioneer isocline intersects one of the climax iso-
clines.  If y*  = (yT,YS) is a vector such that h(yT  ) = 1, for each i, then an
interior equilibrium E = (e,, e.J is a solution to the system of linear equations

Hence we find

CE=y+. (2.2)

e, = YT  c22 - J?  Cl2 ec11  -y:c21
detC ’

e2 =
detC ’ (2.3)

For E to be in the positive quadrant, both numerators in (2.3) must have the
same sign as detC. This equilibrium is isolated if detC # 0 , which we always
assume.
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3. PERIOD-DOUBLING WITHOUT STOCKING OR HARVESTING

The stability of an interior equilibrium E may be determined by the Jacobian
matrix of the right side of (2.1). At x = (x1, x2) this matrix is given by:

(3.1)

When (3.1) is evaluated at E, the first matrix in (3.1) becomes the identity. Let
D(E) denote the 2 x 2 diagonal matrix in (3.1) with entries eJ;(yI)  and
e&(yi) . Notice that the eigenvalues of the product D(E)C  are left-translations
by the amount 1 of the eigenvalues of J(E). If the eigenvalues of J(E) are inside
the unit circle in the complex plane, which implies that E is asymptotically sta-
ble, then the eigenvalues of D(E)C are inside the circle of radius 1 centered at - 1
in the complex plane. Hence, the trace of D(E)C is between - 4 and 0 and the
determinant of D(E)C is between 0 and 4, i.e.,

0 <  det[D(E)CJ  =  ele&  (yt)f;(y;)  detC  <  4.

Since fl(y;) is negative, for (3.2) to hold we must have

(3.2)

fh(yl)  detC  < 0. (3.3)

Notice that (3.2) and (3.3) still hold if one eigenvalue of J(E) is -1 and the
other is inside the unit circle. If one eigenvalue of J(E) is -1 then the other eigen-
value of J(E) not equal to 1 is equivalent to det[D(E)Cj  # 0; if one eigenvalue of
J(E) is -1 then the other eigenvalue of J(E) not equal to -1 is equivalent to
det[D(E)C] z 4. Thus, for an equilibrium to lose stability by its smaller eigen-
value passing through -1, it is necessary that (3.2) holds and that the slope of the
climax fitness f;(yi) and detC  have opposite signs. The term detC  measures the
difference between the intraspecific and the interspecific competition. If the
intraspecific competition is less than the interspecific competition (detC  c 0)
then f;(y;) must be positive and, hence, the equilibrium E, must occur where
the pioneer isocline intersects the climax isocline which is closer to the origin. At
such an equilibrium, the pioneer and climax populations interact Eke prey and
predator, respectively. We refer to El as the equilibrium of prey-predator type.
On the other hand, if the intraspecific competition is greater than the interspecific
competition then f;(yG)  must be negative; so the bifurcation equilibrium E, is
the intersection of the pioneer isocline and the climax isocline farther from the
origin, and the populations truly compete with each other at this equilibrium. We
refer to E, as the equilibrium of competitive type.
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Computing the eigenvalues h, of J(E), we obtain

A, = fj (2+erf’r(y;)  cl1 + e2.GW  c22)

2; Kelf’dr;) cl1  - e2f$(A)  c22)2  + 4ele2c12c21f’l(Y;)f;(Y~) Y2. (3.4)

From (3.4) observe that the eigenvalues of the equilibrium of competitive type
are real and distinct. However, the equilibrium of prey-predator type may have
complex eigenvalues and, in fact, undergo Hopf bifurcation, see [ 181. But our
bifurcation equation, (3.5) below, will not be valid if the eigenvalues have
nonzero  imaginary parts. For a stable equilibrium to undergo period-doubling,
we need h to pass through -1. Solving (3.4) for h = -1, we obtain

0 = 4 + 2ed’l(r;)  cl1 + 2e2fh(y;)  ~22  + ele2f’l(y;)fL(yl)  detC. (3.5)

The right side of (3.5) may be rewritten as
1 + tr  J(E) + det J(E).

Clearly this sum is positive if the eigenvalues of E have nonzero imaginary
parts. Selgrade and Roberds [18,19] indicate that the intraspecific competition
coefficients cI1 and cZ2  are convenient, intrinsic bifurcation parameters. For sim-
plicity we choose cI1 as our bifurcation parameter and solve (3.5) for cI1 in terms
of parameters which are independent of cm i.e., the other interaction coefficients,
the total density variables yLF  at equilibrium, and the slope of each fitness at the
appropriate yi*  :

n 4qy$l+ 2Y~C,,C,,filYy,*)  +c21Yl*(Yl%-  Y2*c12)fil(Yflh’(Y2*)
c11= I

[2+  Y2*h(Y2)Ii 2%  +f1
I
(Yi”)(YP,,-  Y2*C12)) (3.6)

For the bifurcation to occur, it is necessary that the right side of (3.6) be positive.
To determine the direction of bifurcation we need to find d?~-  ldc,, at cl1 = &I .

From (2.3) we compute

% -c22e1

- = detCac11
(3.7)

.
We differentiate h with respect to cI1  and use (3.5) and (3.7) to evaluate at cI1  = CU.
This is a tedious algebraic computation which begins by differentiating ?L in
(3.4) yielding two terms, one of which has a square root in the denominator. But
when cI1 = &t and h = -1 then (3.4) may be used to replace this square root
term  by 14  + edi &t t ezf;(yl)  cZ2]. Then a common denominator is
obtained and (3.5) and (3.7) are used to simplify the expression giving

dh_- -2elc2J 2 + yEf;(Yl)  1
dc11 - e,detC[4  + e,f/(y;)& + ed2’($)c221  ’

(3.8)
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Using (3.2) and (3.4) we conclude that the term in brackets in the denominator
of (3.8) is positive. Hence the signs of detC  and [2 + y;*f  ‘,(y;)]  determine the
sign of (3.8). If (3.8) is negative then E loses stability as cl1 increases; and if
(3.8)  is  posi t ive then E loses  s tabi l i ty  as  cn decreases.

If the bifurcation occurs at the equilibrium El of prey-predator type, where the
slope of the climax population fh(yl)  is positive, then from (3.3) detC  must be
negative and so is the term y; cZ2  - yl cl2 because of (2.3). Thus each term in
both the numerator and the denominator of (3.6) is positive, and there is always a
positive solution iii to (3.5) given by (3.6). In fact, at the value iii, a computa-
tion shows that detC  < 0; so assuming detC  c 0 is extraneous. Also the numeratorn
of the second coordinate of El must be negative at cl1  . Substituting (3.6) into
(2.3) and simplifying gives this numerator as

-24 2 +Y;f’1(Y;)l(YTc22-YIc12)
y&1-yTc21  = [2  +ygf;(y;)]{2c,,  t.f;  (y;)(y;c22-y;4}’ (3.9)

Since the denominator in (3.9) is positive, we require that 2 t ylf’,  (y;)  c 0 so
that the fraction is negative. Hence, for a period-doubling bifurcation with
respect to the parameter cl1 at the equilibrium El, we must assume that

case (i): yrc,, -y;c,,  < 0 a n d 2 +Y;f’l(Y;)  <o. (3.10)

The inequalities in (3.10) guarantee that the numerators of the coordinates of
El are negative and, hence, E, is in the positive quadrant when cl1 = iii . In addi-
tion, the second inequality in (3.10) and the fact that detC  c 0 imply that (3.8) is
negative. Thus E, loses stability as cl1 increases through iii. Figure 2 indicates
the positions of the pioneer and climax isoclines in this case. The fact that the
numerators of the coordinates of El are negative results in the x,-intercept,
y; /cri, of the pioneer isocline being to the right of the climax isocline and the
x,-intercept of the pioneer isocline being below the climax isocline. As cl1
increases, the x,-intercept of the pioneer isocline moves to the left which causes
E, to slide down the climax isocline as E, loses stability. This agrees with the
signs of the derivatives in (3.7). Hence as the pioneer self-crowding parameter,
cm increases, the equilibrium of prey-predator type moves down and to the right
in phase space and loses s tabi l i ty .

If the bifurcation occurs at the equilibrium E, of competitive type, where the
slope of the climax population $(yi)  is negative, then from (3.3) detC  must be
positive and so are the numerators in (2.3). Thus the pioneer and the climax iso-
clines  interchange positions in Figure 2, i.e., see Figure 7. This implies that
period-doubling bifurcations with respect  to the parameter cn  may not  occur in the
same system at  both El and E2.  Since &(y;)  < 0,  the numerator and the denomina-
tor of (3.6) for iti may not agree in sign and, in fact ,  the denominator may be zero;
and so the feasibil i ty of a period-doubling bifurcation with respect  to the parameter
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x2

FIGURE 2 Pioneer (p) and climax (c) isoclines and El

cn  at  E, requires addit ional  assumptions.  We consider cases depending on the signs

of P + YZ(YG)I  and P + YX(Y;)I. If both  P + YG.G(YG)I  ad P + YX(YT)I
are positive then (3.9) is negative which precludes E2  from being in the positive
quadrant .

If both  [2 + YX(YG)I and P +YX(Y~I are negative then the numerator in
(3.9) is positive and we need

2C**+f;(Y;)(Y;c22-Y;c12)  <,o (3.11)

for the denominator in (3.9) to be positive. Also 211  > 0 follows from (3.11).
Hence the following assumptions permit a bifurcation at E,,

case (ii): Y;c,,-Y;c,2 ’ 0, 2 + Yx(Y;)  < 0, 2 +Y;f;(Y;)  < 0,

and  2~22+f;(~;)CY1*~22-~;~12)  CO. (3.12)

Given (3.12),  dh-  ldc,,  > 0 so E2 loses stability as cl1 decreases.
If [2 + y2;(y;)]  c 0 and [2 + y;f;(y;)]  > 0 then the inequality in (3.11) is

reversed, and so (3.9) is positive. But to get El1  > 0 we need to assume

4%  + Y;~(Y~){2c22+f;(Y;)Cy;c,,-Y;cl,)  > <a (3.13)

Thus the following conditions permit a bifurcation at E2,

case (iii): Y;c,,-Y;c,,  ’ 0, 2 + YSXY;)  < 0, 2 + Y;f;(Y;)  ’ 09

and  4~12 + Y;~(Y~){~c,~+~;(Y;)~,;c~~-Y;*c~,)  > CO. (3.14)

In this case dLMc,,  < 0, so E2 loses stability as cl1 increases.
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If [2 + y;fi(y;)]  > 0 and [2 t y;f;(yi)  ] < 0 then we need to assume that the
inequality in (3.11) is reversed so that (3.9) is positive and to assume that the ine-
quality in (3.13) is reversed so that 211 > 0. Hence bifurcation occurs at E2  if,

case (iv): Y;c,,-Y;cl,  ’ 0, 2 + YmY;)  ’ 0, 2 + Y;f;(Y;) < 0,

4% + Y;uY;)Gc*2+f;(Y;)  (Y~c,,-Y;d  1 ’ 0,

and%+fi(~;)  (Y;c~~-Y~) ‘0. (3.15)

Here dh-/dcll  > 0, so E, loses stability as cl1 decreases. For cases (ii), (iii), and
(iv) computations show that detC  > 0 at &t , which is required for E2  to be in the
positive quadrant.

The inequality conditions in cases (i) through (iv) guarantee that E loses stabil-
ity as cl1 passes through 211 because the smaller eigenvalue passes through -1,
which generically is a period-doubling bifurcation. However, it is much more
difficult to determine the shape of the curve of period-2 points. Conditions suffi-
cient to prove that this curve is “parabolic” in shape are derived in [19] and
involve combinations of the first three derivatives of the fitness functions.

The preceding discussion in section 3 establishes the following result:

PROPOSITION 3.1. Suppose that E is an equilibrium of (2.1) in the positive
quadrant. Assume that

0 < wfiM)f b<y;>  &Cc4
and that one of the sets of inequalities (i), (ii), (iii), or (iv) holds. Then E loses
stability as cl1 either increases or decreases through &I given by (3.6),  because
its smaller eigenvalue passes through -1. Its larger eigenvalue remains inside the
unit circle.

4. DENSITY-DEPENDENT STOCKING AND HARVESTING

Since varying the pioneer self-crowding parameter cl1 destabilizes the equilib-
rium, one would suspect that stocking or harvesting the pioneer population may
restabilize the equilibrium. We investigate this possibility by adding a den-
sity-dependent stocking (a > 0) or harvesting (a c 0) term to the pioneer differ-
ence equation in (2.1) to get:

(SW

The amount of stocking or harvesting is directly proportional to the current pio-
neer density with proportionality constant “a”. Mathematically, this is the sim-
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.

p lest  way to include stocking or harvest ing because (SH) retains the Kolmogorov
form and the isoclines are still lines. However, from a practical point of view, a
manager of an ecosystem would have to know the pioneer density to stock or
harvest at a proportional rate. We consider (SH) as a system in the two parame-
ters a and err.

An equilibrium E = (er,  e2)  in the positive quadrant is a solution of the simulta-
neous equat ions:

.
(4.1)

1 =fAc21e1 + cz24.
The climax isoclines are the two parallel lines determined by the values of the

weighted density variable y, where fi(v2)  = 1 as in the case when a = 0. The two
values for y; such that f2(yG) = 1 are independent of err  and a. The pioneer iso-
cline is determined by the value of y, where f&J = 1 - a which we denote yI (a),
see Figure 3.

01 YiW 3

FIGURE 3 Pioneer fitness fi with stocking (a > 0)

Since f&Q is decreasing, it is clear that y; (a) is an increasing function of a. In
fact, dy; /da = -l/f ;(y;)  > 0. Notice that yr (a) is independent of cll. The coordi-
nates of E are still given by (2.3) except that y; is a function of a. From (2.3) we
compute

de1 -422 de2
-=
au f;(y;(a))detC and % = f;(yX$)defC. (4.2)
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FIGURE 4 Pioneer (p) and climax (c) isoclines near E, for a 2 0

The pioneer isocline is given by the linear equation

CllXl +  Clzx2 =  Y; (4. I (4.3)
Since y; (a) is increasing as a increases, the x,-intercept and x,-intercept of this

isocline move away from the origin as a increases but its slope is always -c,,/c,,.
In the case of the equilibrium El of prey-predator type, increasing a moves E, up
and left along the climax isocline but increasing err  moves E, down and right, see
Figure 4. The opposite behavior occurs at E2  because the positions of the iso-
clines  interchange, see Figure 7.

The derivative of the right side of (SH) evaluated at an equilibrium E is:

(4.4)

This matrix is analogous to (3.1) except that er, e2, and yI depend on the
parameters err  and a. A period-doubling occurs when the smaller eigenvalue h-
in (3.4) passes through -1. Hence we need a solution (a,crr) to equation (3.5). We
define the bifurcation function G(u,crJ  to be the right side of (3.5) and repeat
that equation here:

0=4+2ed;(y;(a))  c,,+%.fd(yl) c22+edf;(y;(a))  &‘(Y;)  detC=Wd(4.5)

Each of the four inequality conditions (i), (ii), (iii), or (iv) guarantees that the
equation G(a, err)  = 0 has a solution (a,~,~)  = (0, &t  ) where &r is given by
(3.6). Thus, near (0, &r ), the bifurcation curve BC is a nonempty  set of points:
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BC = {(a, cll)  : G(a,  cll)  = 0).

.

If a = 0 and if the equilibrium E loses stability because of a variation in cir then
we would like to determine if stocking or harvesting (a z 0) will restabilize E.
Understanding the nature of the curve BC near (0, &i ) will answer this question.

We appeal to the implicit function theorem to show that curve BC may be con-
sidered the graph of cri as a function of a near (0, iit) . The appropriate suffi-
cient condition is

From (4.5) we compute dG/acll  where Y*1 = Y?(O) :

dG = 2&l  f;( yr > 2 + 2elfX rT 1 + 2kUY%  ) ae2

%l dc+ 11

ae’e2fi(Yi:  )fi(Y%.)detC
ac11

+ el$  f;( YT IfiCy* 1 detc + wle2  fi(rT )fl(~9 ). (4.6)

Inserting (3.7) into (4.6) and rearranging terms gives

aG
- = SC [-2c12f;  ( YT > e2  + 2 c22.G  (Y*2)
ac11

e2  +

ele2  JY(YT )NY*~ ) detcl.

From (4.5) we obtain

~c~~.f~( yyi )e2 + qe2  fi(yt )f;(~*2) detc  = -4-2kfX~T  ) el

and substitute into (4.7) to get

aG
-=-532+Y:f;(yf)l.
ac11

(4.7)

(4.8)

Using (2.3) for ei and e2 in (4.8) leads to the alternate form

aG [2+Y*2f;(Y*2)1{2c,,+f;(YT)(YTc,-Ylc,,)}-=
%I detC (4.9)

The advantage of (4.9) is that the right side is easily computed from the inter-
action coefficients and the weighted density variables. The sign of aG/acii,  is

determined by the signs of detC  and [2 ty? f;(  yT ) 1,  the latter is given in con-
ditions (i) through (iv). For cases (i) and (iii), aG/acn  is negative; for cases (ii)
and (iv), aG/ac,,  is positive. Hence we have established the following result:
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PROPOSITION 4.1. Suppose that one of the sets of inequalities (i), (ii), (iii), or
(iv)  holds.  Then the bi furcat ion curve BC in the (a,@space  ofparameters  is  the
graph of cl1  as a function of a near thepoint  (0,211).

The slope of this graph at (0, &r ) is the negative of dGlaa divided by aG/ac,,.
Computing aGlaa  from (4.5) and evaluating at (0, &r ),  we obtain

aYT~=Gf;(yf  1% +2&elf’;(yT  )a de2
+ 2%zG(Y*,  I=  +

2 e&‘(  y1*  If2’(y2*  1 detC

+ elzae2  fi(yT  )f~(y*2)detC+elezf;(yT  )zf;(y*Z)  detC. (4.10)

Inserting (4.2) into (4.10) and rearranging terms gives
dG 1

aa  =f  ;(  y?  ) detC
Kc&(  YT  ) + eJ  ‘;(  YT  ) detC){-2&  -

+%f;.(Y*2)  w22+f;(YT)  (YT  C22-Y%C12)11. (4.11)
Using (3.6) to substitute for &t and (3.9) to substitute for y% &r - yr c2r, we

iset

-2&l  -fi(Y?)  (Y*2C11-YTC21)=2C
-4c12c21

2 2
+f;(yT)(y~c22-Y*2C12)’

and inserting this into (4.11) we obtain

aG-= czlf;(Y?  I{  2c22  +f i(Y*l )(Y*l c22-Yyi  c12))
aa fi  ( Y:  WC

%2c2Jc22fi(  YT 1  + elf  ‘i( YT ) de4

-fXyT  WC{  2c2,  + f  3~7  NY?  c~~-Y?  c12)b

For each of our four cases, the sign of aG/aa  may not be determined in general.
However, reasonable biological assumptions will permit us to establish the sign
of (4.12) and to conclude appropriate stocking or harvesting strategies to restabi-
lizing the equilibrium.

5. RESTABILIZING THE EQUILIBRIUM OF PREY-PREDATOR TYPE

The equilibrium El of prey-predator type loses stability as err  increases through
&r when the inequalities in (i) are satisfied. Since f;(  y3 ) > 0 and detC  c 0 at



REVERSE PERIOD-DOUBLING BIFURCATION 1 7 7

El, it is clear that the first term in (4.12) is positive. For the second term in (4.12)
to be positive we need that the term in brackets in the numerator is negative. This
term depends on the concavity of the pioneer fitness. For the pioneer fitnesses in
the modeling literature, ft” 2 0. For instance, the exponential and rational fit-
nesses are concave up and the linear fitness has zero concavity. Hence, it is rea-
sonable to assume that

f’;(YT  ) 20 (5.1)
From (5.1) it follows that (4.12) is positive. Since dG/dcrr c 0 in case (i), the

graph of the bifurcation curve BC has positive slope at (0,&r  ),  see Figure 5.
At a point in parameter space (O,cr,)  where err  > &r, El is unstable. To restabi-

lize E, by varying a only, we must reach a point in parameter space below and to
the right of the bifurcation curve, i.e., stocking the pioneer restabilizes the equi-
librium. Biologically this is somewhat counterintuitive. Since increasing pioneer
self-crowding destabilizes E,, one might suspect that reducing the self-crowding
by harvesting would restabilize El. However, from Figure 5, it is clear that above
(0, Err  ) but near (0, &r ) harvesting will keep E, unstable. In fact, harvesting the
pioneer in this system-increases pioneer density and decreases climax density at
equilibrium. Thus the predatory effect of the climax population on the pioneer
,population  is reduced by harvesting; apparently, this predation is crucial to main-
taining equilibrium stability. The geometry of Figure 4 may help in understanding
this phenomenon. With a = 0 as cl1 increases through &r, the pioneer isocline

01 a

FIGURE 5 Bifurcation curve near (0,211)



178 JAMES F. SELGRADE

swings to the left and the equilibrium Et loses stability as it moves down the climax
isocline. As Et moves down the climax isocline, the pioneer density is increasing
and the climax density is decreasing. Stocking or harvesting displaces the pioneer
isocline parallel to itself (see Figure 4) - upward for stocking and downward for
harvesting. Hence, harvesting would move El farther down the climax isocline.
Stocking moves E, up the climax isocline to a larger climax density and a smaller
pioneer density and restabilizes E,. The restabilization depends on factors more
subtle than the position of E,. It depends on a balance between the predatory effect
of the climax on the pioneer and the pioneer self-crowding. This is reflected in the
eigenvalues of the matrix J(E,)  which vary with both a and cu, see (4.4). Thus, for
all biologically reasonable fitness functions, the loss of stability of the equilibrium
of prey-predator type via a period-doubling bifurcation with respect to cl1 may be
reversed only by stocking. Specifically, we have obtained:

PROPOSITION 5.1. Assume that (i) holds and that f ;( y? ) 2 0. Then the equilib-
rium E, of prey-predator type is restabilized if and only if stocking is done (i.e.,
a > 0).

6. RESTABILIZING THE EQUILIBRIUM OF COMPETITIVE TYPE

For the equilibrium E, of competitive type to lose stability at ill, one of the con-
ditions (ii), (iii), or (iv) must be satisfied. Since ~G/$r  # 0, the bifurcation curve
BC is still the graph of cl1 as a function a near (0, &t ); but its slope is more diffi-
cult to determine. Here we illustrate that in some situations this slope is positive
and in other situations it is negative. Recall that at E, we have f b( y3 ) c 0 and
detC  > 0. The fact that detC > 0 is pivotal to determining the sign of aG/&z.  The
sign of the second term in (4.12) depends on the sign of the term in brackets in
the numerator. The first addend is negative but the second addend is nonnegative
because typically f ‘;(  yt ) 2 0. We present two examples of how the concavity
of the pioneer fitness affects the slope of the bifurcation curve.

Consider the inequality conditions in (iv). First assume that the pioneer fitness
is linear so f ‘; = 0. By finding a common denominator, we combine the two
terms in (4.12) to get the numerator:

--2clzczlczzf;(Yf  112 + Y*2fh(YYi  )I -C12C21Yqf;(Y*2)

[f;(Yt  )12(Y;hCz2-  Y?d  * (6.1)

i

,
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Each term in (6.1) is positive so the numerator of dG/da  is positive, and the
denominator

KC YT 1 detCI2 C22+J?(YTNYTC22- Y&2)1) (6.2)

is negative. Hence, aG/aa < 0. From (4.8) or (4.9), we see that aG/dcr,  > 0. Thus
the slope of the bifurcation curve is positive. Since (3.8) is positive, E2 loses sta-
bility as err  decreases through &r . In this case harvesting is needed to restabilize
E2, see Figure 5 except that the region of stability is above the curve and the
region of instability is below.

However, if we take a pioneer fitness with positive concavity, we can produce
an example where stocking is required to restabilize E2. When f! (y;) > 0, we
see from (4.12) that we add the following negative term to (6.1) to obtain the
numerator of aGlaa:

-4C12c2J;I (YT)(YTC22-Y;C12). (6.3)
Consider exponential fitnesses for both the pioneer and the climax populations

of the forms:

fi64 = exp(r  - rvJ and hcv2) = Ysw - 2Y2h (6.4)
Here r > 0 is the pioneer decay rate and measures the decrease in pioneer per cap-
ita growth with respect to an increase in weighted total density at equilibrium.

For these fitness functions, y; = y; = 1 and we find that f;(y;)  = -r,

f;’  (Y;>  = r2,  and MYI  )
5= -1. We assume that cl2  = c2r = 1 and c22 = 5 . As r

increases, the term in (6.3) becomes more dominant in the numerator of aG/&z.
9For instance, if r = 3 then the period-doubling bifurcation occurs at &r = ?

whereE = z ’2
( )

17, 17 . Adding (6.1) and (6.3) and dividing by (6.2) we obtain

dG -47- = -*
aa 51

Thus for this pioneer fitness the slope of the bifurcation curve is positive, and
harvesting is needed to restabilize E2 as with the linear pioneer above. Hywegver,
if r = 6 the period doubling-bifurcation occurs at err = 3 where E2 = ( >ii'E *
We compute

aG l4 and aG - 4
aa=z %l i i ’

Thus the slope of this bifurcation curve is -7/6. Hence E, loses stability as err

decreases through 211 = 3 and stability is restored by increasing a enough so that
the system corresponds to a point in parameter space above and to the right of the
bifurcation curve (see Figure 6). Numerical experiments show that the destabiliz-
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ing effect of decreasing err  below 3 by increments of 0.01 may be compensated
for by increasing a by increments of 0.01, which is consistent with our calcula-

tion of - 716 as the slope of the bifurcation curve.
If we study the position of the isoclines near the equilibrium E,  (see Figure 7)

we see that increasing err  swings the pioneer isocline to the left and moves E2  up
the climax isocline and decreasing cl1 swings the pioneer isocline to the right and
moves E, down the climax isocline. In case (iv) decreasing cl1 moves E2  down
and destabilizes it. Our arguments show that stocking or harvesting may be
required to restabilize E2 depending on the concavity of the pioneer fitness. If the
concavity is large then stocking is needed, which causes E, to move farther down
the climax isocline and to attain a higher pioneer density. If the concavity is small
then harvesting is needed, which causes E, to move back up the climax isocline
and to reduce pioneer density. However, E, may require stocking to restabilize
even with zero concavity as shown by our next example which satisfies (iii).
For our last example, we take the interaction between a pioneer and a climax
population which occurs when the pioneer fitness is linear and the climax fitness
is quadratic:

.UY~=~-Y~  and .MYJ=~Yz-Y~  -2. (6.5)
With these fitnesses y; = 1, yi = 3, f;(y;)  = -1, and f;(yl) = -2. We assume
that cl2  = c2r = 1 and cz2 = 3.6. The inequality conditions in (iii) hold3rrd5the
period-doubling bifurcation occurs at &t = g = 0.34848 where E,  =

( 1
-,-  .

Selgrade and Roberds [19] prove that a period-doubling bifurcation occ:; i’c,,
increases through &r giving rise to a stable 2-cycle. In fact, as err  continues to
increase, a cascade of period-doubling bifurcation occurs and culminates in a
strange attractor with two connected components when cl1 = 0.391. Here we con-
sider system (SH) as a two parameter bifurcation problem in a and err.  Using
(4.9) and (4.12),  we find that the slope of the bifurcation curve is approximately
0.41736 at (a, &r)  = (0, $) . Hence stocking is needed to reverse the first
period-doubling and to restabilize the equilibrium. In fact, numerical studies
indicate that each bifurcation in the cascade may be reversed by an appropriate
level of stocking. If cl1 is fixed at 0.391 and a increases from 0 to 0.11 then the
strange attractor is transformed back to a stable equilibrium. Figure 8 depicts
period-halving which occurs as a increases from a = 0.0026 to a = 0.006 - an
attracting 16-cycle bifurcates to an g-cycle  and then to a 4-cycle.
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FIGURE 6 Bifurcation curve near (0, ztt  ) for exponential pioneer (6.4) with r = 6, which shows
that stocking restabilizes E,
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FIGURE 7 Pioneer (p) and climax (c) isoclines near E2 for a a 0
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FIGURE 8 Period-halving for cI1 = 0.391 and 0.0026 s a L 0.006 and fitnesses (6.5)

7. SUMMARY

Here we derive four sets of inequality conditions (see (3.10),  (3.12),  (3.14),  and
(3.15)) which guarantee that an equilibrium loses stability through a period-dou-
bling bifurcation with respect to the intrinsic pioneer crowding parameter cu. We
introduce into the system a stocking or harvesting term which is proportional to
the pioneer density. The constant of proportionality is the parameter a. The char-
acter of the bifurcation curve in the (a&-parameter space near the point
(0, &I), where the equilibrium loses stability, determines whether stocking or
harvesting restabilizes the equilibrium. In the case of the equilibrium E, of
prey-predator type, if the pioneer fitness has nonnegative concavity then E, is
restabilized if and only if stocking is done. For the equilibrium E, of competitive
type, we exhibit examples which show that the size of the concavity of the pio-
neer fitness function determines whether stocking or harvesting is needed to
restabilize E,. Finally we discuss an example where a period-doubling cascade
may be reversed and maintained at any attracting cycle along the cascade by
appropriate levels of pioneer stocking.

1

.
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