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INTRODUCTION

In a typical sawmill, logs enter the mill and go through a de-barking process.  Following
this operation they go to the headrig where a sawyer moves the log repeatedly past a saw to
remove boards one at a time.  As more of the log interior is exposed with each board
removed, the sawyer may re-orient the log periodically to cut from the best side.  Sawn
boards go through subsequent operations of edging and trimming, where defects near the
edges and/or ends of the boards are removed to increase each board’s grade, and therefore its
value.  The cant (the cubical center section of the log) remaining from initial breakdown
enters a resawing operation where additional boards are cut.  These are also edged and
trimmed.

Knowledge of internal log defects, obtained by scanning, is a critical component of
efficiency improvements for future mills [1].  Nevertheless, before computed tomography
(CT) scanning or any other type of internal log scanning can be applied in industrial
operations, there are several hurdles that must be overcome.  First, there needs to be some
way to automatically interpret scan information so that it can provide the saw operator with
the information needed to make proper sawing decisions.  A sequence of x-ray tomographs
cannot be readily synthesized into a three-dimensional (3D) mental model by human
operators [2].  For the purposes of sawing the log cylinder into high-value boards, this
means accurately locating, sizing, and labeling internal defects.  Second, this defect
recognition procedure must operate at real time speeds, so that scanning, image
reconstruction, and image interpretation and display can be integrated into mill processing.
Third, a 3D display of a log and its defects for the sawyer is only the first step toward real
efficiency.  Eventually, the sawyer must be guided by computer-analyzed suggestions for the
best log breakdown sequence, or have the sawing completely controlled by computer
processing [3].

The work described here addresses the first and second of these processing needs.  The
next section discusses previous work in these areas.  This is followed by a detailed
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description of the neural-net based classification technique that we have developed.
Following a description of our experimental methods, performance results are given,
including a qualitative comparison with previous approaches.  The final section contains
conclusions that we have drawn from this work, and some directions for further research.

PREVIOUS WORK

Because most defects of interest are internal, a nondestructive sensing technique is
needed which can provide a 3D view of a log's interior.  Several different sensing methods
have been tried, including nuclear magnetic resonance [4], ultrasound [5], and x-ray.  Due to
its efficiency, resolution, and widespread application in medicine, x-ray computed
tomography has received extensive testing for roundwood applications [6-11].  As noted
above, however, CT images require computer analysis before they can be useful in an
industrial setting.

Previous work on automatically labeling internal log defects has established the
feasibility of utilizing CT images.  These researchers have employed a variety of methods to
segment different regions of a CT image and then to interpret, or label, those segmented
regions.  Often, image segmentation methods are based on threshold values derived from
image histograms [8, 9, 12].  Texture-based techniques have been applied to defect labeling
only [11, 13], not segmentation.  Knowledge-based classification [14, 15], shape
examination [8, 11], and morphological operations [8] have been used to label defects, also.
Hagman and Grundberg [6] used normalized pixel values in a scaled, 8×16 window to label
knot types on veneer slices using either a partial least squares classifier or an artificial neural
network (ANN).  While this approach is interesting, the methods employed were contrived in
the sense that objects to be labeled were pre-selected and centered in the analysis window.

While previous efforts have demonstrated feasibility, they have some serious limitations.
First, reports of defect labeling accuracy are often either anecdotal, based on success in a
training set, or based on a single test set.  No statistically valid estimates of labeling accuracy
can be found in the literature.  Second, there has been no effort to assess or to achieve real-
time operability of the developed algorithms.  Third, texture information is critical for human
differentiation of regions in CT images (i.e. image segmentation), and automated recognition
algorithms should exploit this fact for computer-based processing.

This paper presents an alternative to the above approaches that has been developed with
these limitations in mind.  In contrast to the previous global approaches that separate the tasks
of segmentation and region labeling, our approach operates using local pixel neighborhoods
primarily, and combines segmentation and labeling into a single classification step.  A feed-
forward artificial neural network has been trained to accept CT values from a small 3D
neighborhood about the target pixel, and then classifies each voxel as knot, split, bark, decay
or clear wood.  In order to accommodate different types of hardwoods, a histogram-based
preprocessing step normalizes the CT density values prior to ANN classification.
Morphological postprocessing is used to refine the shapes of detected image regions.  These
steps are described in the next section.

METHODS

The CT image interpretation system that has been developed here consists of three parts:
(1) a preprocessing module, (2) a neural-net based classifier, and (3) a post-processing
module.  The preprocessing step separates wood from background and internal voids, and
normalizes density values.  The classifier labels each non-background pixel of a CT slice
using histogram-normalized values from a 3×3×3 window about the classified pixel.
Morphological operations are performed during post-processing to remove spurious
misclassifications.

Preprocessing - Background Thresholding

The first objective of preprocessing is to identify background regions, so that these
regions can be ignored by the classifier.  Our initial approach was to extract histograms for
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individual CT slices and apply Otsu’s thresholding method [16].  This method assumes
bimodal histograms, and minimizes within-group variance.  In our application, it
automatically determines a correct threshold for many CT log images (Figure 1), because the
histograms are typically bimodal.  The two peaks can be found at very low gray-level values
(background) and at relatively high CT values, corresponding to clear wood and high-density
areas, such as knots and bark.  Figure 2 illustrates this with a histogram of densities for the
CT slice shown in Figure 1.  In Figure 2, the rightmost histogram peak represents clear
wood and bark.  Knots are denser than clear wood, and tend to cluster at the right side of this
peak when present.  A large peak representing background is partially shown at the left.

Unfortunately, one of the defect types–decay–has density values which are roughly the
average of background (air) and clear wood density values.  This appears as a small peak in
Figure 2, near the midpoint of the two larger peaks.  If Otsu's method is applied directly to
this histogram, the threshold indicated by t

1
 is detected.  Unfortunately, this causes decay

regions to be treated as background.  We address this problem by weighting the histogram
values, using the function

w( t) = 1 − e
− (

t − t1

b
)2

                                                    ( 1 )

where t
1
 is the threshold determined by applying Otsu's method initially, and b = 2000.  This

value for b was chosen experimentally.  The effect of weighting the histogram is essentially
to remove the decay peak and reduce the size of the clear wood peak.  When Otsu's method
is applied to the resulting histogram, the threshold t

2
 is found, which successfully

distinguishes decay from background.  This method has been tested using a large number of
CT samples.  The weighting function modifies histogram values only for the purpose of
determining a threshold value for background pixels.  The original pixel CT values are not
modified in this step.

Preprocessing - Density Normalization

The second objective of preprocessing is to normalize CT values, so that the classification
step can work with different types of wood.  Normalization is especially important because
neighborhood pixel values are used as features by the classifier.  If pixel values are not
normalized there will be no consistent relationships among similar regions across CT images,
and the ANN classifier will be unable to learn any patterns.

Figure 1.  Different densities are depicted by different gray-level values in this computer-
generated x-ray tomograph of a red oak log.  Regions of clear wood, decay, bark, and splits
are visible.  The slice shown here contains 256 × 256 elements, each corresponding to a
volume of 2.5 × 2.5 × 2.5 mm3.

Clearwood

Decay

Split
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Figure 2.  Histogram of a log section.  Background pixels produce a very large peak, part of
which is omitted from the figure to improve clarity.  The t

1
 threshold is obtained using Otsu's

method directly; t
2
 is obtained after introducing a weighting function to the histogram.

All hardwood CT histograms that we have examined have the characteristics of the
histogram in Figure 2.  That is, there is a large peak of background pixel values at the far left,
a large peak of clear wood, bark, and knot pixel values at the far right, and decay pixel values
(if present) located at approximately the midpoint of the clear wood values.

To ensure consistency of defect region values across images, we want to be able to do
several things with any histogram of CT density values.  First, we want to shift the rightmost
peak–containing clear wood, bark, and knot values–so that these regions always have the
same values and so that the shape of this peak does not change.  Second, we want the lower
CT values, representing background, to remain about the same following the transformation,
so that zero values stay near zero.  Third, we want the CT values between the leftmost and
rightmost peaks for each original histogram to have the same relative position in a
transformed histogram.  This type of transformation will give the important regions of any
CT image the same density values, and allow us to apply our pixel-value dependent classifier
to those normalized values.

The method used here applies a transformation to each CT value in the image.  The
transformation includes two components: (1) a variable translation component and (2)
normalization by an arbitrary parameter.  The transformation function is given in Eq. 2:

x t =
x o + f (xo ; xcw )(xa − x cw)

x a

                                                      (2)

                                     

where

xt transformed CT value

xo original CT value

xcw original CT value of clear wood peak

xa arbitrary translation anchor value, greater

than the CT value of the clear wood peak

f translation multiplier.

The translation anchor x
a
 is an arbitrary parameter selected to be greater than the CT value

of the clear wood peak.  The rightmost histogram peak (including clear wood, knot, and bark
values) will be shifted to the right by the amount x

a
-x

cw
, so that the clear wood peak is now at

x
a
.  The resulting values are normalized by x

a
 so that the clear wood peak of a normalized

histogram is always located at 1.  In order for the translation of the rightmost peak to be
consistent for all histograms it is necessary for the translation anchor value to be the same for
all histograms.  Otherwise, the shape of the rightmost peak will change with respect to the
range of transformed density values.
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The translation multiplier f is an asymptotic function of the original CT value x
o
 and is

parameterized by the clear wood peak value x
cw

.  It adjusts the amount of the maximum
translation x

a
-x

cw
 that is added to the original value x

o
 to arrive at x

t
 after normalization by x

a
.

The actual equation for f is as shown below, Eq. 3.

(3)

The range of f is 0≤f≤1, where (1) the slope of f is very steep about the inflection point
x

cw
/2; (2) the value of f quickly approaches 0 at values of x

0
 less than x

cw
/2; and (3) the value

of f quickly approaches 1 at values of x
o
 greater than x

cw
/2.  At x

o
=x

cw
/2, f is exactly 1/2.

The scale factor     adjusts the steepness of the curve about the inflection point, i.e. how
quickly f rises from 0 to 1 as x

o
 increases.  Larger values of     increase the steepness.

Initially we have chosen 10/x
cw

 as a reasonable value for   .

If we treat all CT values x
o
 as a proportion     of the clear wood peak value x

cw
, i.e.

x
o
=  x

cw
 for some   , then Eq. 3 can be rewritten as in Eq. 4, assuming    =10/x

cw
.

(4)

From equations (2-4), we can observe that the following transformations will hold
regardless of the original histogram:

A Neighborhood-Based Neural-Net Classifier

A multilayer feed-forward neural network is used to perform the primary classification
step.  There were two initial goals in this research: (1) to determine if the tasks of
segmentation and region labeling could be combined into a single step and (2) to determine
whether an ANN classifier could perform well using only simple features obtained from local
neighborhoods.  Aside from the initial background thresholding, both segmentation and
defect labeling are performed simultaneously by the classifier.  We have found that such a
classifier works quite well, although performance is improved if information concerning
distance from the center of the log slice is also included.  This distance measure provides
contextual information that aids in classification, because some entities (such as splits) tend to
lie near log centers and others (such as bark) lie near the outside edge of the log.

Each histogram-normalized value in a 3×3×3 neighborhood about the target pixel serves
as an input to the ANN.  One additional input is the &radius of the element under
consideration, which is the distance of the target pixel from the centroid of the foreground
region of the CT slice.  There are 5 output nodes of the ANN, one for each of the classes to
be detected: knot, split, bark, decay or clear wood.  The class associated with the output node
that has the largest value for a given input is selected as the classification.

The network was trained using the conventional back-propagation method [17].  Because
network topology has a large impact on classification accuracy and on convergence time
during training, several topologies were compared.  Networks using one, two, and three
hidden layers were generated, with the total number of weights for each network topology
kept constant [18, 19].

At this date, the image interpretation system has been trained using only two hardwood
species, northern red oak (Quercus rubra, L.) and water oak (Quercus nigra, L.).  Although
these two species are from the same family of oaks, they are from different geographic
regions and growing conditions.  Training/testing samples were selected from multiple CT
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slices.  The entire training/testing set consists of 1973 samples.  Ten-fold cross-validation
was used to estimate the true accuracy rate of the ANN classifier [20].

Postprocessing

Because local neighborhoods are the primary source of classification features that are
used by the ANN, spurious misclassifications tend to occur at isolated points.  A post-
processing procedure is used to remove small regions, thereby improving overall
classification accuracy.  This method is effective since the defects of interest typically have
relatively large sizes in an image.  We chose to use the gray-scale operations of erosion
followed by dilation for this purpose.  A 3×3 structuring element is used for both operations.
An added benefit is that labeled region borders are smoothed somewhat during this process.

RESULTS

A sample histogram is presented in Figure 3 to illustrate the effect of our density
transformation procedure.  Histogram appearance is invariant under this transformation, but
values of critical regions are automatically adjusted to be consistent across different CT
images.

Four different ANN topologies were trained/tested using ten-fold cross-validation.  The
results are shown in Table 1.  The ANN with two hidden layers exhibited the best
performance with an accuracy of just over 90% for pixel classification.  The next best
classifier, with a single hidden layer of 12 nodes, exhibited practically the same classification
accuracy.  Because the latter network requires much less processing time, it was chosen as
the optimal classifier among those evaluated.  It is interesting to note that classification
performance decreased slightly as the number of hidden layers increased.

The chosen classifier has been applied to two CT images for illustration (Figure 4).  As
anticipated, the ANN produces some isolated pixel misclassifications, as shown in the middle
column of the figure.  The classification regions are improved with post-processing,
however, as shown at the right.  In the second example of Figure 6, for example, the ANN
classified partial regions of several growth rings as split defects; these were removed by
subsequent postprocessing.  In the first example in that figure, incorrect labels near the
outside border of the CT slices are removed by postprocessing steps.

The image interpretation system is currently implemented on a Macintosh1 Quadra 650
containing an MC68040/33MHz processor.  Analysis of a single 256×256 CT slice requires
about 25 seconds.  This is considerably faster than the previous approach (Zhu 1993) which
requires 9 minutes of processing time on a VAX 11/785.  Because the algorithms are
implemented in C, however, they can be transported easily to any other computer hardware.

In comparison to previous hardwood log inspection systems, our system has a simple
implementation, but high classification speed and accuracy.  Other systems are reported to be
able to successfully identify or locate some internal defects, but few statistical results are
available.  Most previous work is limited to 2D image analysis, which does not make full use
of the 3D nature of CT images.  Finally, most research has dealt with a single type of wood,
whereas our approach successfully deals with two different wood species.

Table 1.  Network topologies and classification performance

Network
topology

Number of
weights

Number of
training iterations

Classification
accuracy

28-12-5 396 6699 0.898275
28-10-8-5 400 8299 0.902442
28-7-16-5 388 10499 0.869596
28-8-8-8-5 392 60499 0.852903

                                               
1 Tradenames are used for informational purposes only.  No endorsement by the U.S. Department of Agriculture is
implied.
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Figure 3.  These CT image histograms illustrate the effect of transforming density values.
The original CT image histogram appears on the left and the transformed histogram appears
on the right. Visually, the histograms do not change, while values for critical regions become
approximately the same.

Figure 4.  Two log CT images demonstrate defect recognition results.  Original CT images
appear at the left, middle images are ANN classified images, and the rightmost images depict
the classification results following postprocessing.

CONCLUSIONS

In general, the ANN classifier, operating primarily with local, pixel values, is able to
classify regions of CT images with high accuracy.  The resulting classification performance
is 90% accuracy at the pixel level.  Postprocessing improves this value considerably, but we
do not have an exact numerical estimate for this improvement.  Most regions are detected and
correctly labeled; however, in some cases the classifier fails to correctly size defects.  It is
possible that by the addition of further postprocessing, e.g., high-level, rule-based analysis
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of defect regions, we may be able to size defects more accurately and to remove any
remaining misclassified regions.

As noted above, the entire classification operation requires only about 25 seconds on the
current hardware.  By using newer RISC-based hardware, this defect recognition time can be
reduced drastically, by a factor of 8-10.  This places defect recognition speed on a par with
scanning and image reconstruction times.  Because each of these 3 operations takes 2-3
seconds, they can be performed in parallel on successive slices.  Therefore, this defect
recognition technique can easily be implemented in real time as logs are scanned and images
reconstructed.

Because of the success of the trained ANN classifier on oak samples, we feel confident
that we can develop species-dependent classifiers that are very accurate.  It is not clear,
however, whether we will be able to create a classifier that is entirely independent of species.
Should a generalized classifier prove to be infeasible, species-dependent classifiers can still
be useful in actual mill operations because typically a single species is sawn over an extended
period.  Additional samples of CT images for other species need to be collected.  This will
enable us to verify the efficacy of our density normalization technique and the ability of our
classifier (or a newly trained classifier) to correctly label and size internal features of logs.
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