Abstract. Qualitative mod-
elling can help us understand
and project effects of multiple
stresses on trees. It is not
practical to collect and cor-
relate empirical data for all
combinations of plant/envi-
ronments and human/climate
stresses, especially for mature
trees in natural settings.
Therefore, a mechanistic
model was developed to de-
scribe ecophysiological pro-
cesses. This modd is qualita-
tive and incorporates symbolic
descriptions of important
variables and their relation-
ships. Fuzzy values, such as
“zero,” “low,” “moderate”
etc,, are used to express
guantity and change in the
model. A current application
of this fuzzy variable model
examines the interaction of
drought and ozone stresses on
a mature ponderosa pine tree.
As new empirical results be-
come available, the model can
be modified to include realis-
tic baseline values and specific
mathematical relationships.
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C hanges in the global environment, such as increasesin air pollut-
ants, could profoundly affect the distribution and composition of
forests. Anticipated changes include increased levels of air pollutants.
Early prediction of forest ecosystem responses to air pollutants is
needed to provide lead time for planning (Pathak et al. 1986). If
exposure-response relationships are sufficiently understood, major
biological, social, and economic impacts (Crocker and Forster 1986)
may be avoided by controlling establishment of new pollution sources
(e.g., Fox et a. 1989) or by reducing current sources to acceptable
levels. The interactions among factors that influence forest health are
complex, however, and it will be difficult to predict accurately the
combined effects of different stresses without understanding the under-
lying physical, chemical, and biological processes that operate
throughout the atmosphere, plant, and soil.

Ultimately, scientists and managers need to know the regional
impacts of climate change and air pollutant impacts on vegetation.
Before extrapolating to this level, however, it is necessary to understand
how various stresses affect individual plants at specific locations
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(Fosberg 1990). We must understand how individual
plants respond to environmenta influences before
we can deal with the aggregations in communities
and landscapes.

Numerous authors have recommended modelling
in conjunction with laboratory experiments and field
studies of forest responses (e.g., Bockheim 1983,
Kulp 1987, McClenahen 1983, McLaughlin and
Bréker 1985, Reich 1987). There is a continuum of
mathematical models ranging from empirical to
mechanistic (Isebrands et a. 1990, Olson et al.
1985). The former require large amounts of experi-
mental data and are applicable only to calibration
data sets (Dae et a. 1985). Mechanistic models, on
the other hand, use descriptive relationships of bio-
logical function. Krupa and Kickert (1987) summarize
a number of the attempts at mechanistically model-
ling air pollution effects. Isebrands et al. (1990)
comprehensively review mechanistic growth mod-
els and describe a process-based model of juvenile
Populus growth. In our work with ponderosa pine
(Pinus ponderosa Dougl. ex Laws), | chose a pro-
cess approach because of its great flexibility in
explaining a variety of tree response phenomena
(Dahlman 1985).

This paper discusses several topics related to
simulation of physiological processes. First, recent
efforts to model tree response to stresses are reviewed
briefly. Qualitative models are proposed as a way to
handle complexity and gaps in knowledge. Second,
our modelling approach uses an influence model of
environmental factors and physiological processes.
Third, as a critical aspect of this ecophysiological
influence model, fuzzy numbers represent quantity
and change values for each parameter of the model.
The mathematics of combining influences and up-
dating parameter values over time is described. Fi-
naly, | indicate how this modelling approach is
being applied to an individual tree model of ponderosa
pine response to stresses.

Physiological Processes

Process-level models for study of environmental
impacts on tree growth generally have focused on
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one of five broad topics (Dixon 1990): 1) vegetative
and reproductive growth; 2) photosynthesis, respira-
tion, and carbon alocation; 3) minera metabolism;
4) growth regulation; or 5) transport of metabolizes.
Except for Isebrands et al. (1990) and Chen and
Gomez (1 1990), few have attempted to model most of
these five aspects simultaneously. Because each
aspect is important for understanding and projecting
atree’s combined response to its environment, future
modelling efforts should attempt to consolidate
these separate components.

Numerous difficulties are associated with creat-
ing a large mathematical model of complex physi-
ological processes (Dixon 1990). Experimental re-
sults from studies of juveniles must be extrapolated
to the function of mature individuals, many as-
sumptions and simplifications must be incorporated
to accommodate mathematical specification, and
biological accuracy can be lost in complex process
models. More pragmatically, al important relation-
ships in an ecosystem model of atmosphere-plant
soil (A-P-S) interactions may never be quantified;
but there is an urgency to understand and act upon
our best intuition now (Bormann 1985). Because the
level of detail included in a model is linked to its end
use (Wisiol and Hesketh 1987), we may be able to
produce greatly simplified yet useful models if we
can moderate our expectations for them.

Mathematical model simulations often yield nu-
merical values that have questionable precision with
respect to the magnitudes they represent. Often the
purpose of these models is to indicate patterns or
relationships for interpretation by a scientist or
manager. If pattern discovery represents the end use
of mathematical simulations, it is reasonable to
simulate at a coarse resolution. Our current under-
standing of mechanistic processes can allow us to
develop a less quantitative ecophysiological model
with predictive and explanatory capability. Such an
approach sacrifices precision for gains in generality
and realism (Puccia and Levins 1985).

Qualitative models have properties that are
analogous to their quantitative counterparts. Both
types propagate values of state variables by way of
interrel ationships among model variables. The cur-
rent value of a variable and/or its relationships to
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other variables determines the variable's value at the
next time point during a simulation. Rather than
propagating numerical values, however, qualitative
models provide more general descriptions of state
variables. Therefore, values such as “low,” “mod-
crate,” “increasing,” “steady,” etc., or -, 0, + often
reflect current scientific knowledge better than un-
realistic numerical values and poorly understood
correlative relationships.

In amodel of the regulation of the human genes
responsible for synthesizing the amino acid trypto-
phan, Karp and Friedland (1987) organized state
variables according to their influences upon each
other. Variables assume values such as 0, minimal,
maximal, normal, equilibrium, or a vaue relative to
some previous value in the simulation. This model
permits several types of influences at varying degrees
of resolution. Results of their simulations were
consistent with molecular genetic theory (Round
1989).

An Influence Model

An A-P-S model of amature ponderosa pine tree
applies and extends the approach of Karp and
Friedland (1987). | cdl it an “influence model.”
Others refer to a similar model paradigm asa “sys-
tems model” or a “system dynamics model.” Quasi-
numerical values and relationships propagate values
of A-P-S components over time. In addition, spe-
cialized relationships are applied to situations in
which component responses are not well defined or
are dependent on other component processes.
Therefore, a range of relationships between A-P-S
components can be incorporated.

Both processes and descriptive conditions are
considered in this model of plant functioning. For
example, photosynthesis is a process and the ratio of
new to old needle biomass is a descriptive condition.
Processes operate at particular intensity levels in
response to certain necessary conditions. Also,
processes partially determine the levels of various
conditions. For example, photosynthesis contributes
to the level of carbohydrate accumulated in plant
tissues, and open stomata are necessary for photo-
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synthesis to occur. However, it would be inaccurate
to characterize either of those interactions as causa-
tion. Therefore, the term “influence” is used because
it connotes less direct interactions. Each system
component is represented as a parameter in our
model and can be described by a current value, or
“quantity” and a current rate of “change.” | refer to
system components as parameters because the val-
ues of those components completely determine the
state of the A-P-S system at any time point. Regard-
less of the parameter type (process or descriptive
condition), one or more additional model parameter(s)
may influence the quantity and change of that param-
eter. In models with a mathematical structure, math-
ematical functions would represent influences.
However, a coarser and less restrictive representa-
tion of influences is adopted here. Taken in this
sense, our influence model is a generalized form of
traditional quantitative mechanistic models.

The partia influence diagram in Figure 1 displays
some A-P-S parameters and some influences between
parameters. A survey of the available literature on
ponderosa pine physiology and consultation with a
research scientist produced the model parameters. A
preliminary list of parameters and their interactions
has been created; a subsequent paper will describe
the ponderosa model in greater detail. The primary
concern here is with the modelling approach rather
than with results.

A parameter description contains three attributes
(Fig. 2): 1) a“quantity,” which is the current value of
the parameter in the simulation; 2) a measure of
“change,” which tells whether a parameter’s value is
increasing, decreasing, or steady; and 3) a list of
“dependencies’ that may have an influence on the
parameter. Each dependency includes an indication
of the direction (-, +) and strength (e.g., low, high)
of an influencing parameter. Time of day influences
anumber of important parameters of interest (such as
ozone concentration); that is, these parameters vary
in circadian cycles. For example, the ozone con-
centration varies according to the amount of ultra-
violet radiation, which, of course, varies over the
course of aday.
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Figure 1. A subset of a model's parameter set is shown along with arrows indicating influences between
parameters. Parameters with an underlined typeface change at hourly intervals.

Fuzzy Numbers

The attributes “quantity” and “change” of the
translocation parameter take on linguistic valuesin
Figure 2, low and dlightly-increasing. These lin-
guistic values can be used as fuzzy numbers for the
variable attributes “quantity” and “change,” and
these attributes are then referred to as fuzzy vari-
ables. Fuzzy numbers are taken from Zadeh's
theory of possibility (an extension of probability
theory) and his idea of fuzzy sets (Zadeh 1965).

Suppose we have a set of diameter measurements
from a population of ponderosa pine trees. We might
describe a particular measurement as “large” and
another one as “small.” However, these are vague
terms. There is no clear, non-arbitrary boundary
between “large” and “small.” Obviously, some
measurements are going to be much greater than
most others and we could say that these are “large.”
However, other measurements maybe both somewhat
“small” and somewhat “large.” To account for this
vagueness, Zadeh's theory of possibility uses a
membership function, arge, to assign a probability
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to each measurement reflecting its degree of mem-
bership in the fuzzy subset “large.” This combina-
tion of membership function and measurement val-
ues is referred to as a possibility distribution.

Similarly, a membership function psmail could be
defined for “small.” For example, Table 1 contains
adescription of “large” and “small” diameters. Be-
cause each fuzzy subset is an independent categori-
zation (such as large diameters or small diameters) of
the measurement values, the membership degrees

Transl ocation

LOW
SLI GHTLY- | NCREASI NG

Quantity:
Change:

Dependenci es: nmacronutrient-
deficiency - LOW

respiration + H GH

Figure 2. Each parameter contains certain minimal
information that describes the state of the parameter
and how it relates to other parameters.
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need not sum to unity as in traditional probability
theory. A fuzzy representation alows us to talk
about vague and uncertain quantities in an intuitive
way and does not require that we know specific
valuesin order to do so.

All fuzzy numbers for a fuzzy variable must be
defined over some common base of numbers. If no
natural basis exists, an arbitrary integer base can be
used. For example, the fuzzy variable, “quantity,” in
Figure 2 could be defined over the integers O, . ...9.
Then each fuzzy number that “quantity” might as-
sume, e.g., low, is represented as a possibility distri-
bution over those integers, as in the definition of low
in Table 2. Figure 3 illustrates these ideas graphi-

Table 1. Possihility distributions for the fuzzy sets “ large
diameters’ and “ small diameters’ consist of diameter
measurements and their associated membership values
Op1l.

diameter

p— large p— small

5cm 0.0 1.0
10 cm 0.2 0.8
15cm 0.4 0.5
25 cm 0.7 0.1
35¢cm 0.9 0.0
45 cm 1.0 0.0

Table 2. The fuzzy numbers*“ low” and “ dlightly-in-
creasing” are defined over the base of integers 0, ...,9
and-5,.... +5, respectively. For both fuzzy numbers,
values greater than 3 and less than 0 have membership
0.0, and therefore are not listed.

baS S Val ue ulow ungmly-mcreasng
0 0.6 0.6
| 10 1.0
2 0.6 04
3 0.2 0.0
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tally; al fuzzy values used in the ponderosa pine
model are portrayed. It is important to understand
that fuzzy numbers are not exact values, but are
descriptions of some vague entity, e.g., low, that we
define using a measurement basis and a membership
function.

The fuzzy numbers zero (a special fuzzy number
to represent a negligible quantity of something), low,
moderate, moderately-high, high, and very-high are
defined as the range of “quantity” values that pa-
rameters may assume in this qualitative model.

Zadeh also included an extension principle that
allows the calculation of mathematical functions of
fuzzy numbers. In particular, the traditional arithmetic
operations. +, -, *, /, and exponentiation are impor-
tant. This extension principle becomes important
when we combine influences and when we resolve
the effect of influences to update parameter Quanti-
ties (Figure 2). As fuzzy numbers combine to produce
changes in parameter “quantity” values overtime, it
will be necessary to alow “quantity” values to both
decrease and increase based on “change” values.
Because the fuzzy variable, “change,” can be either
increasing or decreasing, it will be necessary to use
integers with some negative values in the basis.
Therefore, the fuzzy variable, “change,” is defined
over thebasis-5, . ... +5. So, dlightly-increasing
might be defined something like in Table 2. Nine
linguistic values for “change’ have been defined:
strongly-decreasing, decreasing, moderately-de-
creasing, slightly-decreasing, steady, slightly-in-
creasing, moderately-increasing, increasing, and
strongly-increasing.

Calculations with Fuzzy Numbers

For describing arithmetic calculations with fuzzy
numbers, | adopt the notation of Schmucker ( 1984).
Thus, the fuzzy number low in Table 2 is equivaent
to the set {0.6/0, 1.0/1,0.6/2,0.2/3}. More generally,
we can define any fuzzy number A as:

A={a(i)fij0 £i £9} 1)

where a(i) is a membership value and i is a basis
value. Using this notation, we can define addition,
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h -

Figure 3. Each fuzzy number, for both “ quantity and
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change” variables, appears as a relationship between basis
values, either 0, ...,.9 or -5, ..., +5, and degrees of membership L.
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subtraction, multiplication, division, and exponen-
tiation as:

A +B = {min(a(i), b())[i +i] |0 £i] £9}

A - B = {min(a(i), bQ))/li - j] | 0 £i] £9}

A * B = {min(a(i), b())[i * j] | 0 £i £9) )
A 1B = {min(ai), )i /] |0 £i £9)

exp(A) = {a(i)/exp(i) | 0 £i £9}

For each of the binary operators f, the min operation
in the above definitions computes one of the degrees
of membership for k=1(i, j) inthe set f (A, B). Be-
cause this set is the union of all degrees of member-
ship for all k, we can take the maximum membership
value for each k (Schmucker 1984). These arith-
metic operations produce fuzzy numbers that are
defined over bases containing values not in the
original basis. For example, A + B, where A and B
are “quantity” values, is defined over the set of
integers (0, . ... 18}. Also, g, a non-fuzzy number, is
equivalent to the set {1.0/a}. Therefore, when either
A or B isanon-fuzzy number, the calculations still
work properly to produce a fuzzy number. The max
operation dissolves, however, because there is only
one argument in each case.

Each of the last two fuzzy arithmetic operations in
(2) produces basis values that are real numbers,
rather than integers. In practice, integer approxima-
tions are often used to keep cal culations manageable.
However, this approximation can cause serious
calculation errors, especialy when a fuzzy number
with basis values between 0 and 1 is used as a
percentage for another fuzzy number. This is the
case in our parameter update equations (7) and (8),
below. Despite the additional computation required,
it is essential for our application to maintain real
number basis values during intermediate calculations.

Clements (1977) and others suggest that convexity
and normalization operations be performed after
fuzzy arithmetic calculations. Convexity ensures
that there is only one basis value with greatest
membership degree. In Figure 3, convexity corre-
sponds to a graph with only a single maximum or
peak. Normalization produces a fuzzy number where
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at least one basis value has a membership degree of
1.0; each of the graphs in Figure 3 is normal as well
as convex. Schmucker (1984) presents arisk analy-
sis application of fuzzy sets in which convexity and
normalization are performed after each intermediate
calculation. Our implementation of fuzzy numbers
and arithmetic only performs those operations when
trandating a fuzzy number back to a linguistic term,
e.g., low, moderate, etc. Applying convexity and
normalization operations after each arithmetic cal-
culation rather than after final calculations does not
seem to alter the resultsin equation (8). It is therefore
done only after the final calculations.

Fuzzy numbers, as presented in ( 1), do not convey
much meaning to users of a qualitative model. Mean-
ing is provided for users by transating calculated
fuzzy numbers back into the set of linguistic terms
defined initially. A three-step process is used to
interpret any fuzzy number A. First, we truncate the
set describing Ato exclude any basis values outside
the range specified for that type of fuzzy number. For
the “quantity” value of a parameter, we would remove
all values less than O or greater than 9. We round non-
integer basis values to the nearest integer. Next, we
apply the convexity and normalization operations to
produce a fuzzy number A‘; this step permits us to
compare A’ to each fuzzy number, Z, in our range,
i.e., zero, low, moderate, etc., which are also convex
and normal. Finally, we use a procedure (Schmucker
1984) to map A’ to our range of fuzzy numbers using
Euclidean distance measure as in (3). Then, the
linguistic term, Z, with the smallest Euclidean dis-
tance to A', is our fuzzy number interpretation for A’.

9 12
distance(Z, A)=| Y (z(i) - a'(i))2] &)
i=0

Combining Influences

Most parameters are influenced by more than one
parameter. Consequently, our fuzzy variable model
must contain some mechanism to aggregate those
influences into the combined effect on a parameter of
interest. The combined influences determine the
“quantity” and “change” values of the parameter for
the next time interval. The level of influence as-
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signed to each influencing parameter, as in Figure 2
(low, high'), alows the model to recognize multiple
influences acting differentially on a single parameter.
Each influence that is active for a particular param-
eter at a particular time point operates on that pa-
rameter independently. Precondition specifications
for each influence may accommodate any need for
dependencies between influences.

For simplicity, let us assume that there is only one
influence on a particular parameter, P (e.g., respi-
ration in Fig. 1). The influencing parameter, | (in this
case carbohydrate accumulation), has a particular
value for “change,” from the preceding time in-
terval. Our description of respiration contains a
strength value, s, which indicates how strongly car-
bohydrate accumulation “change,” affects res-
piration “change,” P. The strength value may be
one of the fuzzy numbers: low, moderate, moder-
ately-high, high, very-high. Whens is very-high,
then the “change” value of respiration should be
identical to that of carbohydrate accumulation, i.e.,
they vary coincidentally. For values ofs less than
very-high, P should be some fraction of The
following expression describes this relationship:

DP = (s/very-high ) DI =w DI (4)

The weight, w, for any influence on a parameter is
represented by the strength value,s, divided by the
value very-high (the maximum strength value).

To determine a parameter’ s new “change”’ value
when severa influences are acting upon it, we cal-
culate the fuzzy average of all active influences.
This calculation can be expressed as:

AP= (Y, wiAlj) /] (5)
j

The weights, wj, incorporate differential influences
by parameters. In effect, we are averaging weighted
influences. Each strength value modifies its corre-
sponding influence rather than specifying the rela-
tive contribution of each influence to the total. This
mechanism for combining influences has three obvi-
ous conseguences. 1) positive (increasing “change’)
and negative (decreasing “change’) influences tend
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to “cancel” each other out, 2) asmall (near steady)
“change” value for any particular parameter moder-
ates the influence of other parameters, and 3) both
the magnitude of “change” for an influencing pa-
rameter and the strength value for that influence
affect the fina “quantity” value of an influenced
parameter. Specialized accumulator functions for
any parameter or preconditions that determine
whether particular influences are active can accom-
modate exceptions to this method (5) for combining
influences.

Updating Parameter Quantities

Once we have calculated the net influence P)
arising from all active influences, we must apply P
to calculate a new vaue for the parameter “quantity,”
P. A nonlinear, sigmoid activation function, such as
(6), is often used in situations where asymptotic
change is desirable. Figure 4 illustrates this asymp-
totic property (Wasserman 1990) of equation (6).
The “quantity” value changes very gradualy at large
negative and large positive values of net influence—
where P is near strongly-decreasing or strongly-
increasing. Also, net influence values near, but not
equal to, steady result in an abrupt change away
from moderate “quantity” values, F P), because the
slope of the function in this neighborhood is rela-

tively steep.
F(AP) = 1/(1 + ¢-4P) (6)

To calculate a new “quantity” value Q,,,of a
parameter from a previous “quantity” value, Q,,, it
becomes necessary to create F’, a function of both
DPand Q,,. There are severa criteria for F' P,
Q,.)- First, the effect of a steady influence should
be no change in a parameter’s “quantity,” i.e., Q.
= Q,. Second, Q. should be equa to Q,,plus
a portion of the maximum possible value that Q,,
can change. And third, the effect of the net influence,
P, combined with Q,,should be asymptotic. In
viewing Figure 5, the reader should note that Q,,is
variable, and therefore moves along the F P) axis.
The shape of the curve changes, but it remains
asymptotic about the inflection point (steady, Q,,).
We treat P <steady and P 3 steady as separate
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strongly-decreasing

steady strongly-increasing

DP

Figure 4. The asymptotic nature of the logistic function (6) produces high sensitivity to influences near steady
and reduced sensitivity near extreme influence values.

very-high

F (D P) Qoid

zero

strongly-decreasing

steady strongly-increasing

DP

Figure 5. The relationship between net influence P and the new “ quantity” value F P) for the parameter should
include the previous “ quantity” value of the parameter, Qold. However, Qoidis not a fixed quantity, and therefore

we must consider F' P, Qold).

cases, because the maximum possible value that
Qold can change is different for each. Using D max as
the maximum possible value for change and using
(1-€")or(1-e”") as the percentage modifiers
(fuzzy numbers between O and 1), we can calculate
Qrew as in (7).

AP 2 steady
AP < steady

Qold + Amax(1 - e"4%)

Qold + Amax(1 - €AP) M

Qnew = {

Vol. 5, No. 4, 1991

When the net influence on a parameter is greater
than steady, i.e., increasing, the maximum change,
D max for an influenced parameter would be the
difference between its previous value Qold and the
maximum possible value very-high, i.e., D max =
(very-high - Qold ). When the net influence on a
parameter is less than steady, i.e., decreasing, the
maximum change, D max, for an influenced param-
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eter would be -Qold. Inserting the appropriate values
of Dmaxinto (7) and including a scale factor, a, into
the exponent, P, we obtain the formula.

AP 2 steady

O = {Qold+(very-high -Qold)1-¢"%AP)
ewW =
AP < steady

Qold AP ®
The scale factor, a (0 < a < 1), flattens out the sigmoid
curve to dampen the effect of P values. Without a
scale factor, even small values of P (near steady )
produce large differences between the old and new
values of a parameter “quantity.” Strength values,s,
assigned to each influence, merge the differential
influences of several parameters on a particular
parameter. The combining function (5) incorporates
these strength values. The scale factor, a, only serves
to modify our combining function (8). A scale factor
of 0.27 in (8) seems to produce intuitively acceptable
values for updating parameter “quantity” values.

There are severa things to notice about (8) and the
values it produces:

1. When P equals steady, Qnew= Qold.

2. When Qoidis near zero, P > steady has a greater influence
than a corresponding value of P < steady.

3. Similarly, when Qoldis near very-high, a “change” value
that is decreasing P < steady ) has a greater influence than
a corresponding P > steady.

Because (8) functions asin 2 and 3, above, “quan-
tity” values tend toward “normal” or moderate values
and away from extreme values (zero, very-high).
Consequently, deviations from “normal” that result
from parameter influences can be offset rather quickly
by subsequent parameter influences. When Qold
equals 1/2 of very-high, the function F’ P, Qold) is
symmetric about the value P = steady. This func-
tion also meets the two following criteria: (1) as
influence becomes very positive, Qnew approaches
very-high and (2) as influence becomes very nega-
tive, Qnew approaches zero.

To provide the reader with afeel for the result of
using fuzzy numbers and the mathematics presented
above, Table 3 contains an application of these ideas.
The fuzzy number definitions from Figure 3 are used
in (8) to arrive at a fuzzy number describing the new
“quantity” value resulting from a net influence (row)
applied to an old “quantity” value (column). The
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Euclidean distance method of equation (3) produces
a linguistic term that most closely approximates the
fuzzy number calculated in (8). Each linguistic term
so calculated appears as an entry in the table. The
reader should bear in mind that the entries of Table
3 are only approximations of the actual fuzzy num-
bers calculated. Some information is lost in this
simplification. Actual fuzzy numbers, rather than
linguistic approximations, are maintained during
simulation calculations.

Model Simulation

| have not presented a model of ponderosa pine in
this paper; that effort is currently ongoing. Such a
model has been developed, but it has not been
completely implemented at this writing. In this re-
port, an attempt has been made, however, to describe
and to justify a new modeling methodology that we
are applying to the problem of individual tree response
to stresses. In this section | provide a glimpse into
how we plan to use this methodology to answer
environmental and physiological questions.

At each simulated clock tick (hourly), each
parameter’s “quantity” and “change’ values receive
new values. We have selected an hourly time frame
to enable us to investigate differential plant responses
for certain conditions that vary in an hourly fashion,
e.g., peak versus chronic ozone exposure, radiation,
temperature. Parameters that change over a different
time frame (e.g., daily) change at appropriate mul-
tiples of hourly time. Throughout any given simula-
tion day, light, soil moisture, and temperature operate
as forcing functions (controlling parameters) and
implicitly affect certain model parameters: ozone
level, transpiration, stomatal aperture, photosyn-
thetic rate, water flow, etc. These secondary param-
eters, in turn, affect the remaining parameters of the
model.

Currently we are calibrating this model of pon-
derosa pine physiology to obtain “reasonable”
simulations over the course of an “average’ day.
That is, without any damaging stresses active, a
ponderosa pine tree should exhibit “normal” pat-
terns of growth and senescence. Model parameter
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Table 3. Total fuzzy influence, P, (row) applied to the current “ quantity,” Qold, (column) produces a new current fuzzy
“quantity,” Qnew, (entries). These entries are the best linguistic fit between the actual calculated value and the vocabulary
of possible linguistic terms, and therefore are only approximate. Influence “ change” terms are defined over the set of integers
[-5..., +5]. “quantity” terms are defined over the set of integers [0, . . .. 9].

Current Fuzzy Quantity Q,,

Total Fuzzy Moderately
Influence P Zero Low Moderate High High Very High
Strongly Zero Zero Low Low Low Low
Decreasing
Decreasing Zero Zero Low Low Moderate Moderate
Moderately Zero Low Low Moderate Moderate Moderately
Decreasing High
Slightly Zero Low Moderate Moderately Moderately High
Decreasing High High
Steady Zero Low Moderate Moderately High Very High
High
Slightly Low Moderate Moderate Moderately High Very High
Increasing High
Moderately Moderate Moderate Moderately High High Very High
Increasing High
Increasing Moderately Moderately High High Very High Very High
High High
Strongly Moderately Moderately High High Very High Very High
Increasing High High

values are considered “normal” when they are nei-
ther unusually elevated, such as very-high or high
in the case of senescent characteristics (e.g., chlo-
rosis), nor unusually depressed, such as zero or low
in the case of growth characteristics (e.g., respiration).
When this has been accomplished, we can then
proceed to daily, weekly, monthly and seasonal
simulations under similarly “normal” conditions.
The results should be consistent with intuitive ex-
pectations of unstressed plant growth. Once “normal”
conditions can be modeled with reasonable qualitative
accuracy, then divergent diurnal scenarios can be
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investigated. These will include different background
ozone levels, different peak ozone levels, variations
in moisture stress, and various combinations of ozone
exposure and moisture stress.

Stresses can exert influence over many different
time frames. Plant responses to various diurnal
schemes alone do not provide answers to exposure-
response questions. Responses of greatest interest
are those that occur as a result of physiological
changes/adaptions over a growing season. These are
the result of cumulative and continuous changes in
plant processes in response to environmental stresses.
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Parameters that change over longer time frames,
e.g., total needle biomass, reproductive growth, veg-
etative growth, etc., should possess “quantity” and
“change” values that reflect those long-term phe-
nomena.

In addition to the scientific questions mentioned
above, models at the stand and landscape levels may
benefit from the results of this model. However,
because the outputs of this model are not quantita-
tive, its link to other models will be different. A
gualitative model might distinguish differences in
growth patterns associated with age or site or spe-
cies; these different growth patterns might “suggest”
adjustments to existing mathematical growth mod-
els. In turn, these mathematical models could simu-
late the growth of different age/site/species combi-
nations. Analysis of long-term growth under these
different scenarios may allow scientists to project
competitiveness and distributional changes overlarge
geographical areas. McBride et a. (1985) performed
a similar exercise by comparing Douglas-fir and
ponderosa pine in mixed stands. A qualitative model
adapted to investigate genetic variations could be
part of a similar analysis to project regional effects.
While our model is designed to investigate scientific
questions about individual tree responses, the modi-
fication of existing mathematical growth models
(using the results of our qualitative simulations) and
then the application of those growth models may
provide results that forecast or permit the investigation
of effects on a geographic scale.

Discussion

The modelling approach described above is an
attempt to organize and explore many of the prevailing
ideas that have surfaced in research on ozone effects
on ponderosa pine. These ideas, or hypotheses, have
resulted from basic research. Each experiment,
however, can only investigate a small portion of the
larger question of air pollution effects, effects that
are often complicated by other environmental fac-
tors, such as moisture stress. A qualitative modelling
approach synthesizes widely scattered knowledge
about the mechanisms of air pollutant impacts to
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suggest how diverse interactions, both compound-
ing and antagonistic, might alter tree responses to its
environment. Developing an analogous, purely
quantitative model would likely be impossible given
our current state of knowledge in this area.

The parameter update scheme described in (8) is
the default mechanism. In our work to date, however,
| have noticed situations in which new parameter
values may be calculated more redlistically by ap-
plying heuristic rules rather than this fuzzy math-
ematics. Because our program implementation is
object oriented, these special cases are easily accom-
modated. Fuzzy if-then rules can be stored at the
appropriate location in an object hierarchy to
implement exceptions to our standard update scheme.

Fuzzy numbers may cause some interpretation
problems between scientists. Although fuzzy num-
bers are explicitly defined, as in Figure 3, there is no
guarantee that most knowledgeable specialists will
agree on those definitions. Every atmospheric
deposition scientist understands 60 ppb (7 hr grow-
ing season mean) ozone exposure. On the other hand,
if you ask each to provide a possibility distribution
for low ozone exposure, there will likely be some
discrepancies in their descriptions. Most, however,
should be similar. Because the numbers used in our
modelling methodology are defined by an individual
scientist, or by a group of scientists, and not univer-
sally accepted as are real numbers, such a model
tends toward a “personal” simulation model. This
personal model incorporates the objects to be mod-
eled, their interaction mechanisms, and a particular
measurement scale.

While mathematical models propagate point values
(numbers), our qualitative model propagates distri-
butions. These distributions are labeled with linguistic
terms. Output from a qualitative model is a range of
values (the possibility y distribution of some linguistic
term) and contains some explicit measure of uncer-
tainty. Mathematical models produce a single nu-
merical value without any sense for its precision.

Our use of arbitrary base scales, 0-9 and -5- +5,
eliminates the need to devise accurate value ranges
for the parameter attributes, “quantity” and “change.”
In many cases, these values would be difficult to
produce for mature plants because they must be
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extrapolated from studies of juveniles. Instead, fuzzy
values represent relative ranges of “quantity” and
“change” for the plant/site being modelled. These
values are the subjective assessments of a competent
scientific specialist. Incorporation of those assess-
ments into a computer-based model, however, alows
the scientist to reason at a familiar level of resolution,
but beyond the normal, human limits of complexity.
By giving the scientist a wide-angle lens with which
to view things, perhaps the traditional myopic vision
of scientific investigation can be broadened to create
alarger, i.e.,, more inclusive but less detailed, picture
of the world.

Model validation will necessarily be very difficult.
Quantitative models of mature tree response to
stresses are similar in this regard, however, because
studies on mature trees are difficult. Our model
could be validated with respect to moisture stress
through existing databases that contain growth and
environmental variables. Also, an influence model
that represents juvenile trees could be compared to
juvenile-studies data on ozone and moisture stress.
Then known differences between juvenile and ma-
ture tree physiology might trandate into the creation
of a mature tree version of the validated juvenile
model. Findly, the nature of the influence model and
its implementation will allow us to record and ex-
plain how various parameters are changing over time
in response to other parameters. For this purpose, our
model is more transparent than traditional math-
ematical models. Also, model validation might
proceed in an intuitive manner by closely examining
intermediate steps of a simulation.

Nothing in this modelling methodology restricts
its use to ponderosa pine or to ozone/drought ques-
tions only. The conceptua structure can be adapted
to other scientific inquiries by defining anew model,
i.e., adding new parameters and redefining parameter
interactions. Therefore, the methodology adapts to
any species and any locality, and addresses any sci-
entific questions for which it has the appropriate
knowledge structure.

As noted above, use of a qualitative approach
attempts to include aspects of both generality and
realism. Generality alows the model to be applied to
many different plant/site/genotype situations with
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only minor modifications. Realism means that it can
be used to make real world policy decisions because
it addresses interacting stresses at a level of resolu-
tion adequate for managers. Prior experiences with
managers needs for decision guidelines (Fox et al.
1989, Schmoldt and Peterson 199 1) indicate that
scientists are hesitant to provide arbitrary threshold
values for decision making. A qualitative model can
help eliminate scientists' reluctance to extrapolate
beyond what they can confidently demonstrate with
empirical relationships, and can provide managers
with what they need to cope with a changing environ-

ment.
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