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INTRODUCTION

Knowledge of internal defects within hardwood logs can be useful even prior to a log's
entry into the sawmill.  It is in the log yard where the first important decisions are made about
processing.  First, based upon perceived quality, logs may be sorted as veneer logs or as
high-quality sawlogs and sold to domestic veneer mills or for export .  Second, roundwood
may be bucked into smaller logs to isolate defect areas and to obtain sawlogs with longer
sections of clear wood.  And third, logs containing metal objects can be identified, thereby
preventing headrig saw damage and costly mill down-time.

Inside of the mill, log breakdown can also benefit from internal defect information.
Headrig operators require substantial training to become proficient at cutting logs into boards.
Experienced saw operators can obtain very good volume recovery from many logs by
examining external indicators of internal defects and by compensating for external log
geometry.  As the number of log defects increases, however, it becomes much more difficult
to make the best sawing decisions.  This is especially true with respect to value recovery.
Value recovery is much more difficult to accomplish because the quality of final sawn boards
must also be considered.  By generating 3-dimensional transparent images of logs, we can
give the saw operator valuable information that can greatly improve the total value of boards
cut from logs.  We are engaged in other research that aims to make actual sawing decisions
based on log defect information.  In this case, rather than just display an internal picture of a
log to the saw operator, we can tell the operator exactly how to cut the log, or even control
the positioning and sawing of the log automatically.

Nondestructive evaluation techniques attempt to examine some object of interest by
scanning in a manner that does not disrupt the physical or structural integrity of the material.
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Most scanning methods bombard a specimen with energy, either in the form of sound waves
or electromagnetic waves.  Detectors measure the energy emitted by the specimen, and from
this information various characteristic of the object material can be inferred.  Computerized
tomography (CT) measures the attenuation of x-ray energy as it passes through a plane of the
object specimen.  By taking successive 2-d images, or tomographs, it is possible to
determine the internal appearance of the object.  This technique was first applied in medical
applications [1].

Chemical similarities between human specimens and wood led researchers to consider
CT scanning of wood objects.  A number of investigations have examined the quality of CT
images and their use for wood density and moisture content estimates and for the
identification of internal structures [2, 3, 4, 6, 7, 11, 13, 15, 18].  These investigators have
found that CT images provide a large amount of information about the internal characteristics
of wood.  Even for large objects, such as logs, internal structures are readily visible to
someone examining a tomograph.

It is unrealistic, however, to expect anyone to gain much insight into the 3-d appearance
of an entire log interior by viewing a sequence of 2-d CT images.  Rather, these cross-
sectional images must be combined to form a solid geometry view of the log and its internal
features.  Consequently, researchers have begun to develop automated methods for
interpreting CT images of logs [8, 10, 12, 23, 24].  Once different internal log features can
be automatically detected then it becomes a relatively straightforward task to integrate those
views into a 3-d rendering of the log.

Because we are continuing to develop the machine vision software to automatically
interpret CT images, a large and comprehensive data base of CT images is critical.  These
data collection procedures are outlined in the next section.  Following this, a brief description
of our machine vision system is presented.  Some preliminary defect recognition results
indicate the feasibility of this approach and suggest possible modifications to our present
methods.

CT IMAGE DATA BASE

Theoretically, x-ray attenuation is affected by the density of the material through which
the rays pass.  Empirical evidence demonstrates that this relationship is very linear in woody
materials [7, 18].  Each pixel (a small area in the CT image that actually represents a small
volume, or voxel) of a CT image has an associated CT number which describes that
volume's attenuation of transmitted x-rays, relative to the attenuation of a similar volume of
water.  Because knots, bark, rot, sapwood, heartwood, voids, etc. have different densities or
density patterns, CT numbers can be used to distinguish these log defects.

Data Collection

At the beginning of our research on automated interpretation of CT images there was
only one database of CT images of hardwood logs available.  The database was the one
created to perform the research reported in [21].  While this database contains a large number
of CT slices, those slices only represent a few defects examples.  To address this paucity of
data, a new CT image database was created for use in our image interpretation research.

First, collecting CT imagery of logs, or for that matter anything else, is very expensive.
Hence, it is very important that each slice provide as much useful information as possible.
For the purposes of developing a computer vision system the "important" information
contained in each slice of CT imagery is the way different defects manifest themselves in
relation to one another and to clear wood.  Hence, low grade logs were individually selected
for use in creating the database and only defected sections of these logs were used to create
our data base.

To provide some information about the variations caused by interspecific differences in
hardwoods, two species were selected for consideration, red oak, a high value ring-porous
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species, and yellow poplar, a low value diffuse-porous species.  The CT scanner used was a
Siemens Somaton DR2 system present at a local hospital.  Slice spatial resolution was 2.5 X
2.5 millimeters within a slice plane and 8 millimeters in thickness.  Each slice represented a
256X256 image with 12 bits of CT number information.

After the sections were scanned they were returned to cold storage.  Within a very few
days each section was removed from cold storage and was cutup into very thin slices using a
Woodmizer saw.  Each of these wood slices corresponded as closely as was possible to the
CT image slices taken by the Siemens scanner.  Each thin slice was labeled, cleaned, bagged
with the other thin slices cut from the same section, and returned to cold storage.  The goal
was to perform all this additional processing without drying out the thin wood slices.

The last step involved in creating the CT image database was to take a color photograph
of each thin wood slice.  Appearing in each photograph is information that allows one to
determine the CT slice number for which this thin wood slice corresponds, the log section
from which the thin slice was cut, the log from which this log section was cut, and the
species of this log.  The film negative and a 5 X 7 color print of each thin wood slice have all
been saved for archival purposes.  A total of 490 CT image slices, color photographs, and
film negatives comprise this image database.

AUTOMATED INTERPRETATION

To provide defect information based on CT images, however, requires that we have
vision software to interpret those individual images.  A machine vision system must
distinguish defects from clear wood, must label the different defect areas, and must integrate
2-d CT slices to create 3-d defect objects.  Typical mill operations also require that such a
vision system deal with a variety of species and with logs of varying condition.  To
accommodate these requirements, the defect recognition system must incorporate robust
methods that have been developed using extensive data sets of different hardwood species and
log conditions.

Image Analysis

The original 12-bit CT images of hardwood logs contain several types of pixels, such
as air (background), clear wood, knots, splits, bark, and so on.  In addition, there is a
textural structure on each of the CT images that represents the annual ring structure of tree
growth.  These fine rings are visible both in the sapwood and heartwood, and they tend to
grow in the same textural pattern or directionality. To effectively distinguish defects from
clear wood and air, we found it necessary to eliminate these annual rings before segmenting
an image into a number of uniform regions.

A modification of Unser's 2-d adaptive filter [27], called 3-d adaptive filtering [25],
was applied to each of the tomographs to eliminate annual ring structures.  This filter locally
optimizes a least squares error criterion and provides estimates of the coefficients ai,j,k and bi,j,k

in the following expression:

zi,j,k = ai,j,kxi,j,k + bi,j,kyi,j,k                                                    (1)

where zi,j,k is the true image signal at point (i, j, k), xi,j,k is the original noisy signal, and yi,j,k is
a filtered version of the noisy signal.  Filtering is performed using a small volume around
each pixel that includes neighboring pixels on adjacent CT images.  The least squares
procedure adjusts the weights ai,j,k and bi,j,k according to the amount of image degradation
filtering produces.  As filtering increases the regression error beyond the background error,
the weight ai,j,k increases and bi,j,k decreases in order to retain the original signal and to down
weight the filtered one.

Images that have been filtered using the 3-d adaptive filter are thresholded on an image-
by-image basis using a multiple threshold scheme [23].  First, a histogram is computed from
the filtered image and smoothed using a Gaussian function.  Because bark and knots have
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similar CT values, they are temporarily treated like a single type of defect.  Accordingly,
three thresholds {T1, T2, T3} are determined from the smoothed histogram.  These thresholds
segment each CT image into a number of uniform regions.  Thresholds are determined as
follows:

T1: the location of the first zero crossing of the histogram's slope after T0,

T2: the location of the maximum change in the slope of the histogram,

T3: the location of the penultimate zero crossing of the histogram's slope.

The specification of T0 truncates the histogram by removing background (air) pixels.  A
typical histogram with threshold points appears in Figure 1.

Image gray-level thresholds produce a number of regions that represent potential
defects.  It also creates, however, a small number of spurious defect regions.  To make
subsequent defect recognition methods more effective, spurious regions need to be removed.
Consequently, morphological operations, such as erosion and dilation, are applied to the
segmented image.  In our vision system, an image erosion operation is first performed on the
segmented image to remove the small spurious areas.  Then image dilation is performed to
restore those pixels of the real defect regions that have been eliminated by the erosion
operation.  These operations eliminate spurious regions and smooth defects.

 The processes of filtering, segmentation, and smoothing produce a number of uniform
regions on each image which, when grouped together in 3-d, represent different internal log
structures.  In 3-d, a knot would appear like a paraboloid, bark like a generalized cylinder, a
hole like a cylinder, and a split like a ribbon, etc.  To identify the proper 3-d volumes of
potential defects, pixels with similar CT attributes on a number of segmented images are
grouped into connected volumes, according to 6-or 18-neighborhood connectiveness in 3-d
[24].

Scene Analysis

The purpose of the scene analysis module is to extract distinguishing features from
processed CT tomographs and use them to categorize various defects.  Given the
characteristics of wood defects, statistical or analytical classification procedures alone are
difficult to implement successfully.   Less exacting methods seem better suited to this type of
problem.  A heuristic, rule-based recognition system was used by [26] to identify defects in
sawn lumber.  A similar method has been applied in this study.

For each of the 3-d volumes detected by the above volume growing process, statistical,
geometric, and topological features are readily computed from the 3-d image data.  Currently,
5 basic descriptors have been derived to enhance the separability of internal log features.
Additional descriptors can be added to the system as additional defects need to be recognized
or as current defects need to be distinguished more accurately.  The following are brief
explanations of the descriptors that may be computed from a sequence of images:

(1) The mean value (MEAN) - This feature is obtained by finding the mean CT values
for all pixels contained in a volume.  Because knots are denser than clear wood, knots
attenuate x-rays more and therefore have a higher CT value.  This is an important
feature to identify dense defects.

(2) The variance value (VAR) - Sample variance of a volume is calculated from all
pixel values in the volume.  This is a useful feature to distinguish bark from knots
because they have different variance values.

(3) The minimum distance (DIST) - This is taken as the distance from the centroid of a
volume to the Z-axis.  Bark (except for included bark pockets) is a great distance from
the center of the log, therefore, it has a large DIST value.
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Figure 1.  A typical gray-level histogram of a CT image contains several landmark features
{T1, T2, T3}that can be used to separate pixels into likely defect (knots, bark, voids) and non
defect (clear wood) categories.

(4) The predicate (TOUCH) - This is a binary predicate with value 1 or 0.  A value of
1(O) indicates a volume touching (not touching) the background (air).  Since knots
usually do not touch air, this is a good feature to differentiate knots from other objects.

(5) The Volume (VOLM) - This is the 3-d volume occupied by an object.  Clear wood
has a much larger volume than any other object in a log, while splits and holes have a
much smaller volume than other defects.

From the population distribution of a given feature, we can derive threshold values that
separate the population of values into discrete classes.  Threshold values are determined
visually from the peaks and valleys of the histogram that is derived from a training set of CT
images.  Linguistic qualifiers, such as "high" and "low", label these feature value classes.
An evidence function, expressed as a discrete or continuous step function, is used to relate
linguistic qualifiers and levels of evidence for various defects.  Figure 2 illustrates three
examples of such evidence functions f(v) for feature v = VAR applied to defects bark, knots,
and clear wood.

These evidence functions are implemented as a set of rules (or critic) for each feature.
Each critic votes for the classification of each internal log structure.  A production system
was built to consider each feature-linguistic qualifier pair separately.  The action of a rule is
to contribute positive evidence (1.0) to classes in which the feature is usually present,
negative evidence (-1.0) to those in which it is usually absent, and no evidence (0.0) to the
rest.  To accommodate situations where a feature is present occasionally and absent at other
times, partial evidence (0.5, -0.5) assignment is permitted.  The defect class that receives the
highest total vote over all critics becomes the classification for that log structure.  The
functions in Figure 2 could be represented by the following three rules:

if VAR = L then conf(bark, -1.0)
conf(knot, 0.5)
conf(wood, 1.0).

if VAR = M then conf(bark, 0.5)
conf(knot, 1.0)
conf(wood, 0.5).

if VAR = H then conf(bark, 1.0)
conf(knot, 0.5)
conf(wood, -1.0).

This is in fact a voting process where a more influential vote is given to strong evidence and
less influence to weak evidence.  Some image interpretation results based on these image and
scene analysis methods are presented in the next section.



Figure 2.  An evidence function f(v) relates discrete values (L, M, H) for feature v = VAR
with evidence values for the defect bark (a).  Knots (b) and clear wood (c) have different
evidence functions.  The threshold values, T1 and T2, are unrelated to the multiple threshold
values used in segmentation and were established from the distribution of VAR values in a
training set.

RESULTS

Experiments were conducted using the above described approaches to process CT
images and to recognize wood defects from several red oak and yellow poplar logs.  A small set
of CT slices were selected from a sequence of the log images as the training data.  Feature
distributions computed from this training set defined a set of threshold values that were used to
determine linguistic qualifiers for each feature.  Rules were then applied to individual object
volumes to assign confidence values to different defect class hypotheses.  Adding up the
confidence values contributed to a volume by all rules, the object was assigned the class that had
the highest total confidence value.  Figure 3 illustrates some results on four consecutive slices of
a yellow poplar log.

Figure 3.  Original CT images and defect recognition results are depicted using four consecutive
slices from a yellow poplar log.
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Figure 3.  Original CT images and defect recognition results are depicted using four
consecutive slices from a yellow poplar log.

CONCLUSIONS AND DISCUSSION

Several questions need to be resolved before we can claim that this image interpretation
software operates successfully.  First, the system must perform better on the slices of red oak
and yellow poplar that we currently have in our database.  We suspect that some of these
problems are related to varying moisture content.  Second, our software must be tested and
validated on other species and on logs of differing condition.  Third, we have not yet
performed any tests of software speed.  Initial image processing steps are computationally
intensive while the later recognition steps are relatively simple and fast.  Fourth, to apply this
internal defect information to subsequent log processing decisions we must be able to
accurately circumscribe defects.  Under- or over-estimating defect size will drastically reduce
the efficacy of subsequent processing decisions.  Fifth, alternative image and scene analysis
methods that utilize texture information may be required for more accurate defect labeling
and sizing.  The ability to answer each of these questions can benefit from an expanded
database of CT images and their ground truth records.

Log moisture content complicates the image processing stage because it confounds
density measures [3, 8].  For example, low-density areas such as rot or bark may, when they
are wet, attenuate x-rays similarly to dry heartwood.  Information about an internal region's
shape, orientation, texture, and size must also be considered to correctly identify a particular
region as defect or clear wood [8, 23].  It is not currently known, however, in what way the
masking effect of moisture content varies across species and defect types and how automated
interpretation methods can best deal with this image noise.

CT scanners are limited in speed by each of their two operations, x-ray scanning and
image reconstruction.  Recent developments, however, have reduced the fastest scan time so
that up to 34 images per second can be captured using an ultra-fast medical scanner [17, 21].
A mobile, industrial scanner is currently available that can perform both scanning and
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reconstruction in an average time of 1 image per second (Scot Land, personal
communication).  While this rate still does not permit intensive scanning of all logs at a mill,
if used wisely (e.g., on high-value logs and only on defect areas of logs), the current
generation of CT scanners can increase sawmill profitability.
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