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Abstract 

Identifying scales of pattern in ecological systems and coupling patterns to processes that create them are ongoing 
challenges. We examined the utility of three techniques (lacunarity, spectral, and wavelet analysis) for detecting scales of pattern 
of ecological data. We compared the information obtained using these methods for four datasets, including: surface temperature 
across space (linear transect). surface temperature across time, understory plant diversity across space (linear transect), and a 
simulated series of known structure. For temperature and plant diversity across the transect, we expected to find dominant scales 
of pattern of approximately 220 m and, for plant diversity scales of pattern of >450 m, corresponding to management activities 
on the study landscapes. For temperature across time, we predicted a dominant scale of 24 h. The simulated data included a sine 
wave with a known period of 9.9 units, an edge at approximately 30 units, and a random component. The different analyses 
provided unique but complementary information. Lacunarity and spectral analyses were most consistent with each other across 
datasets, both indicating a dominant scale of pattern at 400-500 m (coarser than expected) for the transect temperature series, a 
lack of dominant scale in the pattern of understory diversity, and scales of pattern at 1.8-5.1 and 8.5-1 1.1 units (=wavelength) 
for the simulated data series. Spectral analysis best approximated an expected, 24 h period in the temporal temperature series. 
Wavelet variance detected finer scales of pattern (240 m) in transect temperature and suggested patterns in plant diversity at 
scales of 460 and 1100 m. By retaining locational information, only the wavelet transform and associated position variance 
detected the abrupt edge in the simulated data series. Wavelet analysis also emphasized variability, even within cyclic 
phenomena, not identified by spectral or lacunarity analyses, and suggested hierarchical structure in the pattern of understory 
plant diversity. The appropriate technique for assessing scales of pattern depends on the type of data available, the question being 
asked, and the detail of information desired. This comparison highlighted the importance of: (1) using multiple techniques to 
examine scales of pattern in ecological data; (2) interpreting analysis results in concert with examination and ecological 
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knowledge of the original data; and (3) utilizing results to direct subsequent descriptive and experimental examination of 
features or processes inducing scales of pattern. 
0 2004 Elsevier B.V. All rights reserved. 
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1. Introduction 

Ecological systems are characterized by spatial and 
temporal heterogeneity. Much research in landscape 
ecology is based on the assumption that processes at 
specific scales of space and time drive this complexity 
in landscape structure (Delcourt and Delcourt, 1988; 
Holling, 1992). Therefore, a meaningful approach for 
assessing scales of pattern is essential to augment the 
theoretical understanding of these relationships. 
Further, consistent methodology for coupling patterns 
and processes at appropriate scales would increase 
confidence in the predictions of landscape dynamics 
used in management and planning (Bradshaw and 
Fortin, 2000; Wu and Qi, 2000). 

A number of quantitative methods have been 
proposed to describe the spatial heterogeneity of 
landscapes and help provide information about the 
relationships between processes (e.g., landscape 
management or natural disturbance) and spatial 
patterns (e.g., Turner, 1989; Li and Reynolds, 1995; 
McGarigal and Marks. 1995; Wu et al..' 2000: 
Lundquist and Son~mer-feld, 2002). This quantitative 
underpinning is vital when researchers across geo- 
graphic areas and disciplines are comparing spatial 
patterns of data. Indices of landscape structure provide 
a standard language with which both managers and 
researchers can describe structural features, compare 
information about different systems, and monitor 
spatial dynamics over time and space. However, it 
is often difficult to choose the most appropriate 
measures of pattern for the ecological question being 
investigated, and to interpret correctly the information 
that is conveyed (Gustafson, 1998). 

Identifying and quantifying structure across scales 
can add to the complexity of examining pattern- 
process relationships. The components of scale, both 
grain and extent, play a role in changing the 
appearance and description of a landscape (e.g., 
Turner et al., 1939; Hargis et al., 1997; Bradshaw 
and Fortin, 2000; Lundquist and Sommerfeld, 2002). 

To be characterized adequately, pattern-process 
relationships must be assessed at the multiple scales 
(Levin, 1992) relevant to the inherent structure (or 
rate) of the system (or process) being studied 
(Holling, 1992), or the scale of perception of the 
organism of interest (Wiens. 1989). Prior to 
conducting any patch-based characterization or 
analysis of a landscape, it is essential to identify 
the scales of pattern or the distance between centers 
of adjacent gaps and patches (Dale, 2000) relevant to 
the ecological system being studied (Gustafson, 
1998). The scales at which structure exists within a 
dataset can also relate to specific, physical features on 
a landscape, and suggest the processes that determine 
or modify data patterns. Techniques are needed to 
elucidate scales of heterogeneity in a landscape. The 
influences of different quantification techniques and 
data types on the assessment of scales of pattern must 
also be considered (Dale et al., 2002; Perry et al.. 
2002) 

We examined three different quantitative techni- 
ques (spectral, wavelet, and lacunarity analyses) used 
to e-xtract information on scales of pattern for 
continuous or evenly spaced data. These techniques 
have been used to evaluate the inherent structure in 
data and to infer characteristics of the processes that 
imposed those patterns. However, there are differ- 
ences in the forms of data used, the expectations 
regarding the patterns that can be detected, and in the 
information that can be produced about data structure 
(Table 1). Our goal in this analysis was to aid 
researchers in choosing methods for multiscale 
pattern analysis. We undertook to: (1) compare the 
utility of these techniques for describing data 
structure and the scales at which patterns in empirical 
and simulated data are detected; (2) assess the ability 
of the techniques to suggest causal mechanisms for 
the patterns and, thus, subsequent avenues of study; 
and (3) determine how the information obtained 
from these techniques differed aqong variables of 
interest. 
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Table 1 
Comparison of characteristics of lacunarity, spectral and wavelet analysis for examining scales of pattern in ecological data 

Characteristic Lacunarity Spectral Wavelet 

Scale or type of Inconsistent Repeating, cyclical, fine scale Specific to analyzing wavelet 
pattern best detected (imprecise estimates?") 

Type of data Binary or continuous Continuous Continuous 
Data dimensions 1 or 2 (also 3') 1 o r 2  1 or 2 
Missing data OK Yes No No 
Robust to nonstationarity Yes No Yes 
Sensitive to edges No Yes Yes 
Robust to nonnormality Yes No (may not be a concern) Yes 
Global summary Yes Yes Yes (variance) 
Retention of locational info No No Yes (transform, position variance) 
Detection of multiple scales Yes? Yes Yes 
Detec~~on  of hierarchical structure Yes? No Yes 
Hypothesis testing possible yes Yes (use of traditional Yes (use of bootstrapping, 

inference methods, e.g., ANOVA'; Monte Carlo techniques") 
comparison to hypothesized 
distributions") 

" Dale (2000). 
Mclntyre and Wiens (2000). 

' Keitt (2000). 
Turnel ttt al. (1991 1. 

' Keitt (2000), e.g., Tvrrence and Compo (1998). 
Exploration of three-dimensional pattern detection by Chen er al. (2001). 

2. Analysis techniques Fractal lacunarity provides an alternative to fractal 
dimension (D) for characterizing the deviation of 

2.1. Lacunarity objects and patterns from translational invariance, i.e., 
the similarity, at a specific scale, of different portions 

Lacunarity is a "scale-dependent measure of of the data (Gefen et al., 1983: Plotnick et 'al., 1993). 
heterogeneity or texture" (Plotnick et al.. 1993). It Lacunarity can provide a unique descriptor (and thus 
describes the distribution of gaps in the data across more information) in some cases where objects have a 
scales, with higher lacunarity indicating a greater common value of D (Zeng et a]., 1996). However, Dale 
distribution (or heterogeneous arrangement) of gap (2000) noted different lacunarity results for comple- 
sizes (Plotnick et al., 1993). The lacunarity index can mentary patterns and questioned the precision of the 
also suggest scales of analysis at which the data appear technique for determining the distributions of patch 
random, and hierarchical structure within data sizes. 
(Table 1 ; Plotnick et al., 1996; but see Dale, 2000). Lacunarity was originally developed to examine 
Lacunarity has been used to measure scale-dependent binary data but was later extended for use on 
changes in patterns of habitat distribution (Plotnick continuous datasets (see Plotnick et al., 1996). The 
et al., 1993: Henebry and Kux, 1995; Krug and value of the index, A(w), is determined by the ratio of 
Henebry, 1995 using Landsat TM; Heilebry and Kux, the variance of sites occupied by a habitat or feature of 
1997 using Synthetic Aperture Radar over multiple interest to the square of the mean number of occupied 
seasons), seedling distribution (Plotnick et al., 1996; sites, determined within a gliding box of size w 
Larsen and Bliss, 1998), sediment transport rates (Plotnick et al., 1993): 
(Plotnick et al., 1996), and soil pore structure (Zeng 1 + variance(w) 
ei al.. 1996). Mclntyre and Wiens (2000) used A(w) = 

lacunarity to quantify both landscape heterogeneity (rnean(w)12 

and patterns of landscape use by beetles, thus linking The relationship between lacunarity and box size 
structure and function through a common metric. can discriminate among random, clustered, or regular 
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organization, and indicate ranges of scales over which 
a data pattern is self-similar (Plotnick et a]., 1996). 
The use of the gliding box ensures complete sampling 
of the transect or map, and the technique has the 
advantage of being insensitive to map (or transect) 
edges (Plotnick et al., 1993; Dougherty and Henebry, 
2002). 

2.2. Spectral analysis 

Spectral (Fourier) analysis is used to assess the 
periodicity (i.e., scale over which a pattern repeats 
itself) in a temporal or spatial series (Tur-ner et a]., 
1991). In ecology, the technique has also been used to 
assess the periodicity of population dynamics over time 
(e.g., Bigger, 1973; Steven and Glombitza, 1972), to 
assess scales of spatial pattern in marine plankton 
populations (Platt and Denman, 1975) and terrestrial 
vegetation (e.g., Usher, 1975; Ripley. 1978; Greig- 
Smith, 1983; Renshaw and Ford. 1983: Cullinan and 
Thomas. 1992), and to examine predator-prey associa- 
tions over space and time (e.g., Logerwell et al., 1998). 
The periodograrn is sensitive to repeating, cyclic 
patterns in data and to small-scale patterns (O'Neill 
et al., 1991; Turner et al., 1991), and the technique is 
appropriate for use in both exploratory analysis and 
hypothesis testing (Platt and Denman, 1975). However, 
spectral analysis is most robust when data are stationary 
(i.e., have constant mean and variance over space or 
time). The analysis can be relatively insensitive to large- 
scale patterns and other (e.g., noncyclic) types of spatial 
patterns (Legendre and Fortin, I 989: Gardner. 1998). 

Spectral techniques decompose a data series, x,, with 
n observations, into a sum of sine and cosine waves with 
different amplitudes and Fourier frequencies, w: 

where ak and bk are the cosine and sine coefficients 
respectively, wk = 2nk/n, and m = n/2 if n is even or 
m =  (n - 1)/2 if n is odd. 

The periodogram, a form of graphical output, 
represents the simultaneous least squares fit of this 
linear combination of sine and cosine functions of 
different frequencies. The periodogram thus describes 
the distribution of variance in the data series among 
frequencies (Renshaw and Ford, 1983), and an 

estimate of the relative importance of the fitted waves 
of period k. The choice of values of the Fourier 
frequencies ensures orthogonality of the periodogram 
ordinates (Percival, 1993). Periodograms can show 
high fluctuations; spectral density, a periodogram 
smoothed using a weighted moving average, is often 
used to reduce the variance and allow for easier 
interpretation of patterns (Priestley, 1981 ; Dale, 1999). 
Peaks in the periodogram or spectral density can 
indicate the scale(s) at which the data pattern changes, 
or identify the dominant (explaining large portions of 
variation in the data) frequencies (scales) in the data. 
For example, Turner et al. (1991) used spectral 
analysis to identify scales of patchiness in the 
distribution of two species. The similarity in the 
scales at which peaks occurred in the periodograms 
suggested that the same underlying process might be 
responsible for the spatial pattern of both species. 

Although spectral analysis may suggest average 
scales of pattern and multiple scales of heterogeneity 
(Cullinan and Thomas, 1992), this information may not 
always be apparent from a periodogram, and hierarch- 
ical structure is difficult to identify. The interpretation 
of plots can be difficult due to spurious peaks (Cullinan 
and Thomas, 1992; Dale, 1999). For example, the 
determination of scales of pattern in the data based on 
the frequency at which spectral density is maximal can 
be particularly confounded when spectral density tends 
to zero or infinity at the origin (Beran and Ghosh, 2000). 
The latter can occur if the series has not been detrended 
sufficiently and is nonstationary, or can imply a long 
memory process, i.e., a stationary process in which the 
correlations between observations that are far apart 
decay to zero more slowly than expected from 
independent data (Beran, 1994); long memory may 
be reasonably hypothesized to exist for an ecological 
process across time or space. Trend removal to achieve 
stationarity may also affect the bias of the spectral 
density estimate at specific frequencies; for small 
sample sizes this bias is worth approximately correcting 
(e.g., see Priestley, 198 1). 

2.3. Wavelet analysis 

Wavelet analysis is a relatively new technique in 
ecological research, first introduced by Bradshaw and 
Spies (1992) to examine canqpy structure. The 
technique has since been used to explore multiscale, 
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patterns in microclimate along transects (Saunders 
et al., 1998; Redding et al., 2003), soil variability 
(Lark and Webster, 1999), solar activity (Rigozo et al., 
2002), understory plant diversity (Brosofske et al., 
1999; Chen et al.. 1999; Perry et al.. 2002), plant 
productivity (Csillag and Kabos, 2002), and land 
cover (Dale and Mah, 1998), and to examine 
properties of neutral landscapes (Kei tt . 2000). 
Temporal scales of pattern in atmospheric flow 
(Gao and Li, 1993), relationships between precipita- 
tion and hydrologic discharge (Bradshaw and Mcln- 
tosh, 1994), concentrations of chlorophyll at the ocean 
surface (Nezlin and Li, 2003), and the El Nifio 
Southern Oscillation (Torrence and Compo, 1998) 
have also been studied. 

Wavelet analysis mathematically approximates a 
data series by a linear combination of functions 
(wavelets) with specific scales (resolutions) and 
locations (positions along the data series). In discrete 
form, the transform is expressed as: 

where the shape (i.e., dimension of the analysis win- 
dow) of the analyzing wavelet, g ( ~ ) ,  changes with 
scale, a ,  and the analyzing wavelet moves along the 
series of data,f(x), centered at each point, bi, along the 
data series (Bruce and Gao, 1993: Li and Loehle, 
1995). The size of the coefficient by which a wavelet is 
multiplied to produce the final data representation 
indicates the importance of that wavelet function 
for reproducing the data signal (Bruce and Gao, 1994). 

One advantage of wavelet analysis over other 
signal approximation methods, such as spectral 
analysis, is the ability to choose the type of function 
(i.e., wavelet) with which to analyze the data 
(Bradshaw, 1991). Smoothness, width, and symmetry 
vary among classes of wavelets (e.g., see Graps, 1995; 
Torrence and Compo. 1998). For example, one could 
choose a step function, such as the square Haar 
wavelet (e.g., Dale and Mah, 1998), to approximate 
data that are characterized by a series of abrupt, 
discrete changes. Alternatively, a relatively smooth 
wavelet from the Daublet, Symmlet, or Coiflet 
families (see Bruce and Gao, 1994) would be 
appropriate for producing a pattern of continuous 
gradients, as is common for many environmental 
variables, such as soil moisture and nutrients. The 

appropriate wavelet can be chosen based on the type of 
data and the hypothesized pattern. One can also relate 
a strong wavelet coefficient to its position in space or 
time along the data series, suggesting specific features 
that may influence the observed pattern. More 
importantly, wavelet analysis does not is robust to 
nonstationarity in data. The technique allows inter- 
pretation of signals that change over time or space 
(Nezlin and Li, 2003). This confers a distinct 
advantage over the Fourier transform, given that most 
data collected over broad spatial scales reflect 
en\lironmental gradients and are nonstationary. 

The wavelet (scale) variance (Dale and Mah, 
1 998): 

which is the average contribution of wavelet coeffi- 
cients from all positions along the transect for a given 
scale, can be used to examine overall, "global" 
structure (i.e., scales of pattern) within the data (Brad- 
shaw and Spies, 1992). The scale corresponding to a 
peak in wavelet variance is an estimate of the scale of 
dominant structure within the data (Gao and Li, 1993; 
Li and Loehle, 1995). Position variance, 

the average of the squares of the wavelet coefficients 
across scales ( a )  from 1 to m, at any one position (b) in 
time or space, can suggest features that produce high 
variance in the data (e.g., see Dale and Mah. 1998). 

The type and detail of information about data 
structure provided by the wavelet variance can be 
compared to that produced by lacunarity or spectral 
analysis. The wavelet transform can clarify the 
structure of highly variable patterns concurrently 
across multiple scales, while retaining locational 
information in space or time. Thus, the wavelet 
transform provides "local" information which is 
supplementary to the global results produced with 
wavelet variance, or spectral or lacunarity analysis. 
Position variance complements the information 
provided by the wavelet transform, by indicating 
locations within the data that contribute to variance 
averaged across all (not just a single) scale. These 
results of wavelet analyses are relatively insensitive to 
random variation in a series, conferring an advantage 



92 S.C. Saurzders er al./Ecolopical Complexity 2 (2005) 87-105 

over techniques such as spectral analysis. Though the 
heights of peaks in variance may vary, the scales 'I0 

(wavelet variance) or locations (position variance) of 5 
peaks are retained for relatively high levels of random 
error in a regular pattern (e.g., Dale and Mah, 1998). 

! 25.0 

c.. 

3. Data collection and development 

3.1. Field site 

We analyzed the scale of pattern of three variables 
measured on a field transect, and of a simulated dataset 
of equal length. We collected field data along an east- 
west transect through the Chequamegon National 
Forest, northern Wisconsin, USA. The study area is 
managed by the US Forest Service as a mosaic of 
small harvest units of approximately 16 ha, to mimic 
the historical, natural disturbance regime. The 
topography in the area is flat to rolling and soils are 
uniform, loamy, glacial outwash sands (Chequamegon 
National Forest. 1 993). Dominant overstory species 
include planted red pine (Pinus resinosa Ait.) and 
naturally occurring jack pine (P. banksiana Lamb.), 
with patches of hardwoods resulting from succes- 
sional dynamics and silviculture. 

3.2. Datasets 

The first data series, TSPACE (hereafter also called 
transect temperature), is the average morning tem- 
perature ("C) recorded every 5 m along a 3820 m 
transect, resulting in 765 observations (Fig. 1A). We 
used copper-constantan thermocouples, secured at the 
ground surface, and Campbell Scientific CRlO 
dataloggers to measure temperature at each point 
every 20 s, and average these data every 15 min. We 
calculated the morning (05:OO-11:OO h) average for 
each point. Any single point was monitored for 10 days 
to 2 weeks over the study period (Julian Days 163 
through 237,1995) as only 760 m (1 52 points) could be 
measured simultaneously due to equipment limita- 
tions. We thus standardized the temperature averages 
based on surface temperature measured concurrently at 
a reference climate station in the same landscape (see 
Saunders et al. (1 998), for computational details). 

The second data series, SHANND, is understory 
plant diversity (Shannon-Wiener index), calculated 
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Fig. I .  Datasets used in the comparison of lacunarity, spectral. and 
wavelet analysis to detect scales of pattern. n = 765 evenly spaced 
points for all series: (A) TSPACE, average morning (0500-11:OO h) 
surface temperature ("C) along a transect; (B) SHANND, understory 
plant diversity (Shannon-Wiener index) from percent cover in 1 m2 
quadrats along a transect; (C) TTJME, surface temperature ("C) 
across time at a single point; and (D) SIM (gray), a simulated dataset 
consisting of a random series imposed on a regular sine wave (black). 

from percent cover in 1 m2 quadrats centered on the 
same points at which surface temperature, TSPACE, 
was monitored (Fig. 1B, see Brosofske et al., 1999). 
Plant data were also collected in 1995. Dominant 
(occurred in >30% of all quadrats) understory plants 
in the study area included Amelanchier spp., Diervilla 
lonicera, Gaultheria procumbens, Rubus alleghanien- 
sis (shrubs), Carex spp. (graminoids), and Aster 
rnacrophyllus, Maianthemum canadense, Pteridium 



ayuilinum, and Trierztalis borealis (herbs). We 
recorded a total of 68 understory shrubs, graminoids 
and herbaceous species along the transect. 

The third data series, TTIME (Fig. 1 C), is surface 
temperature measured as for TSPACE, and recorded 
15 min at a single point along the transect (1300 m) 
that had constant, reliable coverage over the study 
period. TTIME was restricted to values from Julian 
Day 181, 0:00 h to Julian Day 188, 23:OO h, to give a 
series of the same length as TSPACE and SHANND 
(i.e., n = 765). 

We used a fourth, simulated data series, SIM 
(Fig. ID), to examine the ability of the techniques to 
detect scales of pattern and features, such as abrupt 
changes, that are known to occur in the data. First, we 
produced a sine function: 

where 

a = 1 - e-(x/30)'5 

andx=O, 0.1,0.2,0.3, ..., 76.4, togiven=765. We 
then generated a random number series z , ,  . . ., 2765 

where z was normally distributed with p = 0 and 
2 = 1. The simulated series, SIM, was calculated as: 

SIMi = yi + zi 

for i = 1-765. One hundred iterations of SIM were 
produced using the same base sine wave with the 
addition of a different set of random numbers for each 
iteration.The function 

analysis of SHANND. However, we did not expect 
temperature patterns along the transect to resolve at 
the scale of these large management zones, except at 
very coarse resolutions. Features, such as roads, which 
bisect some management patches, create thermal 
patches within these vegetation zones which tend to 
persist even at resolutions greater than 400 m (see 
Saunders et al., 1998). For the series TTIME, we 
expected to detect a dominant scale of pattern of 24 h, 
reflecting temperature cycles through the course of a 
day. 

Because the field data were collected along a single 
transect. we did not examine information on 
anisotropy that could be detected by the three 
methods. Field data collected at such a broad extent 
and at such fine resolution are, by necessity, limited to 
one or a few transects, and we present this analysis as 
an example of the level of information that can be 
derived from similar, empirical field data (in contrast 
to two-dimensional field data collected over a smaller 
extent (e.g., Csillag and Kabos, 2002), or remotely 
sensed two-dimensional data). 

For the simulated data, SIM, we expected to be able 
to detect a scale of pattern of approximately 9.9 units, 
associated with the periodicity of the sine wave. We 
also hoped to distinguish the abrupt step at x = 30.00 
(unit 300, see Fig. ID). Analyses were conducted on 
all 100 iterations of SIM, to determine the influence of 
the random component of the series on the ability to 
detect the known features within the base series. 

3.4. Data analysis 
f (x) = sin(ax) 

has a period of 2nla and thus, by substitution, our sine All four datasets were analyzed using lacunarity, 
wave should exhibit a period of n2 or -9.9. spectral, and wavelet analysis. We compared the 

information on structure that could be obtained from 
3.3. Expected scales of pattern the different techniques. We expected that analyses 

using these different techniques would provide 
Based on our knowledge of the landscape, we complementary information about the scale of 

expected the datasets collected along a transect, structure within datasets. For example, more global 
TSPACE and SHANND, to show patterns of structure techniques, such as lacunarity or spectral analysis, 
at scales of: (1) approximately 220 m, corresponding might indicate scales at which to examine wavelet 
to the average width of management categories in the transforms of position variance for specific features in 
landscape, or (2) <I00 m, corresponding to the sizes the data that appear to create repeating patterns. 
of the largest group of management patches (6 of 17 Lacunarity and wavelet techniques might provide 
patches were < 100 m; Saunders et a]., 1998). We parallel and complementary information on the 
thought larger scales of pattern, from four manage- hierarchical structure of data, or the multiple 
ment patches >450 m wide, might be detected in resolutions across which patterns are propagated in 
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space or time. Wavelet transforms can be relatively 
difficult to interpret due to the volume of information 
(i.e., coefficients at multiple scales) along a data 
series. However, because they can be linked to 
geographical or temporal distance, wavelet transforms 
(and the averaged position variance) can help 
elucidate fine-scale features or processes that con- 
tribute to overall (broader) scales of pattern in the data, 
indicated by wavelet variance or the other methods 
examined here, and suggest experimental approaches 
to examine these relationships. 

3.4.1. Lacunarity 
Lacunarity analysis was performed on using 

STRATISTICS (for TTIME, TSPACE, and SHANND), 
provided by R.E. Plotnick (personal communication) 
and PASSAGE (Rosenberg, 2001). Dominant scales of 
pattern were inferred to occur at scales (box sizes) 
where there were breakpoints (i.e., abrupt (maximal) 
changes in the slope of the relationship between 
lacunarity and box size (see Plotnick et al., 1996)). To 
highlight locations where changes in slope were subtle, 
we examined the difference in slope at a point as a 
percentage of the average slope of lacunarity plots at 
surrounding points (n = 5). Similarly, subtle difference 
in decay curves of lacunarity can be detected by 
examining the percent deviation in lacunarity from self- 
similarity across scales (a straight line) and the first 
derivative of this value (see Doughel-ty and Henebry, 
2002). 

3.4.2. Spectral analysis 
Spectral analysis was completed using the SPEC- 

TRA procedure of SAS (SAS: 1990). For SIM, we first 
removed the nonlinear trend: 

using the Marquardt iterative method of PROC NLIN 
(SAS. 1 990) and subsequent spectral analysis was 
performed on the residuals. We confirmed that data 
series were still nonrandom using the WHITENOISE 
option (Bartlett's Kolmogorov-Smirnov statistic with 
Bonferroni corrected P < 0.05). Detrending appar- 
ently reduced nine of the 100 iterations of SIM to 
whitenoise, and spectral analysis was limited to the 
remaining 91 iterations. For analysis, we centered data 
about the mean, and specified a three-term moving 
average with equal weights for all terms when smooth- 

ing the periodogram to produce the spectral density 
estimates. We hoped to thus minimize bias introduced 
by the smoothing (e.g., see Priestley (1981), for dis- 
cussion of bias from kernels and weighting) and render 
output from this technique more comparable to the 
wavelet analyses. 

We plotted spectral density estimates against 
frequency to locate peaks that indicated dominant 
scales (wavelength of time or linear distance) in the 
pattern of the data. We recorded the frequency of up to 
four dominant peaks in spectral density for a data 
series. To determine whether the frequencies we 
detected graphically were .creating the dominant 
pattern in the data, we used these candidate 
frequencies to fit the Fourier transform equation and 
estimate sine and cos coefficients (see Section 2.2) to 
our original data using PROC NONLIN in SAS. We 
then retested the residuals to determine if they had 
been reduced to white noise by removal of these 
frequencies of pattern from the data. We calculated the 
Fourier transform first using the frequency that 
displayed the highest spectral density. If the pattern 
was still nonrandom, we removed subsequent candi- 
date frequencies in the order of the magnitudes of their 
spectral densities, until residuals represented a random 
series or until we had removed (up to) the four 
recorded frequencies. 

Period, or scale of pattern, was calculated initially 
in "units" (there are 765 units or sample points in all 
data series analyzed) from the values of frequency at 
which peaks in spectral density occurred (i.e., 
period = (2rrlfrequency)). We then converted values 
of period into the appropriate units for each dataset; 
one unit is 5 m for TSPACE and SHANND, 0.25 h 
(15 min) for TTIME, and 0.1 for SIM. So, for 
example, to determine the period of pattern in hours 
for the series TTIME, we multiplied the period 
calculated in units by 0.25, as there are 0.25 h 
represented by each sample in the series TTIME. 

3.4.3. Wavelet analysis 
We performed wavelet analysis using S-Plus 

Wavelets for PC, Version 1.0 (Bruce and Gao, 
1994). The datasets were imported as regular time 
series signals. We first conducted some exploratory 
wavelet analyses to choose our final, analyzing 
wavelet for the comparison with spectral and 
lacunarity analysis: (1) we produced the discrete 
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wavelet transform of each dataset with the Haar. was assessed by reconstructing the original data from 
Daublet, Symmlet, and Coiflet families of analyzing the transform using: (a) all coefficients, and (b) (up to) 
wavelets; (2) the best fit (i.e., best ability to the top 150 coefficients; (3) we then examined the 
approximate the data) among these wavelet families reconstruction of the original data visually and by 

Distance (m) 

o . o J . . . . . . . . . .  . . . . I  
00:OO 01:OO 02:OO 03:OO 04:OO 05:OO 06:OO 07:OO 
JDI81 JD 182 JD 183 JD 184 ID185 JD186 JD 187 JD 188 

Time (hm, Julim Day) 

0 100 200 300 400 500 600 700 
units 

Fig. 2. Reconstruction of data series from the discrete wavelet 
transforms produced using the Haar wavelet. This wavelet produced 
the smallest relative error between the original and reconstructed 
data for all four data series. The original data (thin gray line) and the 
reconstructed series using the top 16 coefficients of the discrete 
wavelet transform (thicker, black 11ne) are shown for (A) air 
temperature at the ground surface over space (TSPACE); (B) 
Shannon diversity of understory plant species over space 
(SHANND); (C) air temperature at the ground surface over time 
(TTIME); and (D) a simulated data series of same length (SIM, Da), 
reconstructed with 153 coefficients (Db) to account for the same 
percentage of energy compacted by 16 coefficients for the three 
empirical data series. n = 765 evenly spaced points for all series. 

computing the relative error between the original and 
the reconstructed data series (see Bruce and Gao, 
1994); (4) we repeated (1) to (3) for different sets of 
wavelets from the Daublet Symmlet, and Coiflet 
families to choose the level of smoothness and width 
of the final analyzing wavelet. The Haar wavelet 
produced the smallest relative error between original 
and reconstructed data for all four datasets (see Fig. 2). 
Thus, subsequent examinations of wavelet transforms 
were based on using a Haar analyzing wavelet. 

We used plots of the cumulative proportion of 
energy (i.e., the sum of all squared normalized 
coefficients; Bruce and Gao, 1994; Csillag and Kabos. 
2002) accounted for by successive wavelet coeffi- 
cients to determine the scales at which the dominant 
coefficients (those accounting for the majority of the 
energy) occurred. For the three field datasets, the 
wavelet transform compacted approximately 95% of 
the energy of the original data series into 15-20 
coefficients. Twenty wavelet coefficients concentrated 
only 74% of the energy of the simulated dataset, 
TSIM, and 153 coefficients were required to 
incorporate 90% of the energy in this series. Further 
analysis of the scale and location of coefficients was 
restricted to a subset of the top 16 coefficients. 

We calculated wavelet variance and position 
variance for the three sets of field data and 100 
versions of SIM using PASSAGE (Rosenberg, 2001). 
Plots of wavelet variance were used to examine the 
average contribution of the coefficients at each scale to 
data structure, and thus identify scales that dominated 
patterns in the datasets. Position variance was 
examined to find locations within the series of data 
points that had relatively strong influences on the 
overall pattern averaged across scales. 

4. Scales of pattern detected for the datasets 

4. I .  TSPA CE, temperature across linear transect 

Lacunari ty and spectral analysis indicated similar 
scales of structure for the transect temperature series, 
TSPACE. The, lacunarity plot of TSPACE had its 
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Table 2 
Dominant scales suggested by three analysis techniques (wavelet, 
lacunanty, and spectral), for three series of field data collected In the 
Chequamegon National Forest, northern Wisconsin and a simulated 
series of the same length. TSPACE is air temperature at ground 
surface recorded every 5 m for 3820 m along a linear transect. 
SHANND is Shannon-Wiener diversity of understory species cal- 
culated at the same points as TSPACE was recorded. TTIME is air 
temperature at ground surface recorded every 15 min at one point on 
the transect. See text for explanation and equations for simulated 
data, SIM. n = 765 for all datasets. Values in brackets refer to 
log(box size) (lacunarity), scale (wavelet variance) or frequency 
(spectral analysis) indicated by arrows in Fig. 3. Values given for 
SIM are medians from analysis of 100 iterations 

Analysis technique Scale of pattern detected 
(m, h, or unitless") 

TSPACE 
Lacunarity 555 (2.045) 
Spectral analysis 425 (0.074), 1912 (0.016) 
Wavelet variance 240 (48), 1210 (242) 

SHANND 
Lacunarity N/A 
Spectral analysls N/ A 
Wavelet variance 460 (92), 1 100 (220) 

data series as a set of Haar wavelets through "smooth" 
scaling coefficients, sjrk, and detail coefficients, dj,k, 
where j = 1, 2, . . .. The smooth coefficients determine 
the underlying, coarse-scale pattern of the data and the 
detail coefficients recreate progressively finer-scaled 
deviations of the data from this overall smooth pattern. 
The coefficients exist for scale (or dilation) factors 2 
and translation (i.e., location or position along the data 
series) parameters 2 k  (Bruce and Gao. 1994; Csillag 
and Kabos. 2002). For TSPACE, the 12 most 
important coefficients for approximating the pattern 
were the smooth (s6) coefficients at a scale of 26 = 64 
units (320 m). The strongest of these coefficients, 
suggesting an abrupt or edge feature, occurred at 
1920 m along the dataset; note that spectral analysis 
suggested a scale of pattern of 1912 m. TSPACE also 
had two d3 (scale = 40 m), one d4 (scale = 80 m), and 
one d5 (scale = 160 m) coefficient in the largest 16 
coefficients of its transform function. Only one of 
these detail (d3) coefficients appeared to be a true 
signal effect whereas others occurred at the edges of 

TTIME the data and may have been artifacts of the lack of 
Lacunarity 7.5 (1.477), 19.8 (1.898) boundary correction in the analysis. 
Spectral analysis 23.9 (0.066) The position variance of TSPACE showed a strong 
wavelet variance 25.0 (100) peak at 1530 m (location 306 in the series; Fig. 4A) 

SIM and lesser peaks at 1100 m (location 222) and 2475 m 
Lacunarity 2.8 (1.447), 11.1 (2.045) (location 495). 
Spectral analysis 0.6 (0.977), 1.9 (0.337), 10.9 (0.058) 
Wavelet variance 4.4 (44) 

4.2. SHANND, plant diversity across 
" Meters for TSPACE; meters for SHANND; hours for TTIME; linear rransect 

unitless for SIM. 

For SHANND, the shape of the relationship between 
maximum change in slope (breakpoint) at a scale of log(1acunarity) and log(box size) was concave upward 
555 m (log box size = 2.04; Table 2, Fig. 3-A 1 ). (Table 1 , Fig. 3-B 1 ), suggesting randomness of data 
Spectral analysis indicated a scale of pattern of 425 m (Plotnick et al.. 1996). The periodogram for SHANND 
(frequency = 0.074) (Table 2; Fig. 3-A2), similar to exhibited a noisy pattern with alternating high and low 
that found with lacunarity analysis. The periodogram peaks of spectral density from scales of 3820 through 
also suggested a possible, second, larger-scale pattern 
at about 1912 m (frequency = 0.016). 

Wavelet variance suggested two scales of pattern 
(240 and 1 120 m) dominating TSPACE (Table 1 ; Fig. 
3-A3). These results differed from those of both 
lacunarity (555 m) and spectral analysis (425 and 
1912 m). Wavelet analysis indicated that two percent 
(n = 16) of the total (n = 765) coefficients of the 
wavelet transform could explain 99% of the energy 
(variance of pattern) in the data signals for TSPACE. 

325 m i.e., there were no obvious peaks (Fig. 3-B2). 
Thus, both techniques suggested a lack of dominant 
scale of pattern in the diversity data. 

Wavelet variance again indicated different scales of 
pattern for SHANND than did lacunarity or spectral 
analysis. Wavelet variance was the only technique that 
suggested recurrent patterns in SHANND, at scales of 
460 and 1 I00 m (Table 2, Fig. 3-B3). Ninety-three 
percent of the energy in the pattern of SHANND was 
expressed using 16 wavelet transform coefficients, 

The discrete wavelet transforms approximated our slightly less than could be compressed by the same 
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Log (lacunanty) Spectral Denslty Wav el& Variance 

Log @ox size) Frequency Scale 
. , 

Fig. 3. Log(1acunarity) (I), spectral density (2), and wavelet variance (3) for air temperature at the ground surface every 5 m along a uansect (A; 
TSPACE); morning air temperature at ground surface for a single point, every 15 min (0.25 h) over 8 days (B; TTIME); understory plant diversity 
(Shannon-Wiener index) every 5 m along a transect (C; SHANND); and a simulated data series (D; SIM). Dominant scales of pattern suggested 
for a data series by each of the analyses are indicated with arrows (see also Table 2). For SIM, 5th, 50th, and 95th percentiles are presented for 
each analysis and dominant scales are indicated on the median series. For lacunarity, the x-axis is log(box size), where box size ranges from 0 to 
765 units and one unit is 5 m for TSPACE and SHANND, 15 min for TTIME, and 0.1 for SIM. Spectral density is shown as a function of 
frequency along thex-axis. The period (calculated as 2nffrequency) of the peaks in spectral density indicates dominant spatial or temporal scales 
of pattern in the data. To calculate the period In unlts appropriate to a series, a unit is 5 m for TSPACE and SHANND, 15 min (0.25 h) for TTIME, 
and 0.1 for SIM. The scale (x-axis) for wavelet variance is a distance measure (meters = scale 5) for TSPACE and SHANND, a temporal measure 
(hours = scale 0.25) for TTIME, and a unitless measure (units = scale 0.1) for SIM. 

number of coefficients for the other two field datasets. 
Again, the top 12 coefficients were at the coarsest 
scales of analysis, s6 (26 = 64 units, or 320 m; 
Fig. 5B). Of the remaining four of the top 16 
coefficients for SHANND, three were at the coarsest 
level of the detail coefficients (d6) and one, which 
appeared to be an edge effect, was at the d3 level 
(Z3 = 8 units, or 40 m). 

The position variance for SHANND was highest at 
1760 m (Fig. 4B). Lesser peaks were apparent at 11 25 
and 1475 m. Though even smaller, spikes of position 
variance did also stand out at 1620 and 2835 m 
(Fig. 4B). 

4.3. TTIME, temperature over time 

Lacunarity indicated scales of pattern in TTIME of 
7.5 h (log(box size) = 1.5) and 19.8 h (log(box 
size) = 1.9; Table 2, Fig. 3-Cl). Spectral analysis 
suggested one dominant scale of pattern, 23.9 h 
(frequency = 0.065; Fig. 3-C2). 

The wavelet variance of TTIME had a single, strong 
peak (dominant scale) at 25 h (Table 2, Fig. 3-C3). 
Here, all three techniques indicated a repeating pattern 
with a period of approximately 1 day, as expected. The 
scale of pattern detected by lacunarity deviated the most 
from this expected value. Two percent (n = 16) of the 
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Fig. 5. Original data and coefficients of the wavelet transform 

0 (produced with the Haar wavelet function) for (A) air temperature 
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Fig. 4. Position variance, calculated using Haar wavelet, for: (A) 
TSPACE, average morning (05:00-11:OO h) surface temperature 
("C) along a transect; (B) SHANND, understory plant diversity 
(Shannon-Wiener index) from I m2 quadrats along a transect; (C) 
TTIME, surface temperature ("C) across time at a single point; and 
(D) SIM, a simulated dataset (see text for details). The x-axis is 
truncated to positions 100 through 600 for all series, to show areas 
not edge-influenced during analysis. For SIM, position variance is 
shown for the 5th, 50th, and 95th percentiles of 100 iterations of the 
data (see text for details). 

Shannon diversity of understory plants measured every 5 m for 
3820 m along a transect (SHANND). All coefficients are detail 
coefficients except for the bottom row in both panels, which shows 
smooth (coarse-scale) coefficients. Relative size of coefficients is 
indicated by length of the line at each position. Both the detail and 
smooth coefficients at the coarsest (d6 and s6) levels are shown on a 
separate measurement scale to the other (finer-scale) coefficients. 
The thicker, gray lines in panel (B) indicate relatively strong 
coefficients that occurred across multiple scales for SHANND. 
11 = 765 for both datasets. 

coefficients of the wavelet transform could explain 95% 
of the pattern in TTIME. The top 12 coefficients were at 
the coarsest scales (Fig. 4A), as for TSPACE and the 
remaining four of the 16 coefficients were at the 
coarsest detail scale, d6 (i.e., 26 or 16 h). 

Position variance showed seven relatively strong 
peaks at: 07: 15 h, Julian Day (JD) 182; 19: 15 h, Julian 
Day 182; 06:OO h, JD 183; 10:45 h, JD 184; 07:OO h, JD 
185; 15:OO h, JD 185; and 15:45 h, JD 186 (Fig. 4C). 

4.4. SIM, simulated data 

For SIM, both lacunarity and spectral analysis 
indicated structure at scales close to the period of the 
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regular sine wave (period = 9.8). The scale at which 
this breakpoint was detected in lacunarity varied from 
8.4 units (5th percentile) to 1 1.4 units (95th percentile) 
over the 100 iterations of SIM (median = 11.1 units; 
Table 2, Fig. 3-Dl). Spectral density showed the 
strongest peak at a scale between 8.5 units (5th 
percentile) and 10.9 units (95th percentile and median) 
for 85 of 91 iterations (recall nine series were random 
after detrending and were not analyzed; Fig. 3-D2). 
Five of the remaining six series showed a strong peak 
in this range, though the greatest peak was closer to the 
orig~n, at a period of 25.5-76.5 units. Finer patterns 
were noted at scales between 1.8 and 5.1 units 
(median = 1.9 units, Fig. 3-D2) for 56 series, and 
between 0.2 and 0.7 units (median = 0.6 units) for 82 
series, perhaps associated with the random noise 
component of the signal. This was less consistently 
apparent (occurred in fewer decay curves) from 
lacunarity analysis. For curves in which this structure 
was noted, the scale ranged from 1.6 units (5th 
percentile) to 3.1 units (95th percentile), with a 
median value of 2.8 units (Fig. 3-D2). Neither 
lacunarity nor spectral analysis detected the abrupt 
step in the data at 30.0 units. 

Spectral density was maximal at a scale of 8.5, 9.6, 
or 10.9 units for 85 of our analyzed SIM iterations. 
Removal of the Fourier transform of the series at this 
scale from the original data reduced the series to white 
noise in'58 of these 85 cases. Interestingly, for 17 of 
these 58 cases, the series was randomized by removing 
a pattern with period of 9.6, though the strongest peak 
in spectral density was at a value of either 10.9 or 8.5 
units. An additional seven series were randomized by 
removal of a second dominant scale of pattern; two 
were randomized by removal of the top three scales of 
pattern. Of the 91 iterations of SIM, 24 were not 
reduced to white noise by removal of (up to) four 
dominant scales of pattern detected through our 
spectral analysis procedure. 

Wavelet variance suggested only one prominent 
scale of pattern for SIM (Table 2, Fig. 3-D3), after 
which variance continued to climb with no indication 
of leveling by the maximum scale analyzed (30% of 
series length). Mode scale for which the peak in 
variance occurred was 4.2 units (12 = 14), with a range 
in values from 4.0 units (5th percentile) to 5.5 units 
(95th percentile) and a median of 4.4 units (Tdble 2, 
Fig. 3-D3). These values are approximately half the 

length of the full period of the sine wave, the width 
detected for each repeating peak and trough in SIM. 
Eighty-seven of 100 iterations showed this same 
pattern of wavelet variance; there were 13 cases for 
which no obvious scale of pattern occurred. 

For SIM, only 74% of the energy in the data pattern 
was accounted for by the top 16 (2%) of the wavelet 
transform coefficients. The 12 s6 (26 = 64 units or 
scale of 6.4) coefficients were the largest, incorporat- 
ing 73% of the energy in the original data; one 
coefficient at the d l  level (2.0 scale) and three at the d2 
(4.0 scale) level were also in the strongest 16. Within 
the coarsest, s6 level, the strongest seven coefficients 
all occurred after the abrupt step in the series at 30 
units (location 32 units along the data series and after), 
suggesting the presence of this feature in the series. 
We had expected, however, only the coefficient closest 
to that location in the data series, rather than all that 
occurred after it, to be relatively prominent. For the 
discrete wavelet transform, the number of coefficients 
at any scale is related to the width of the analyzing 
wavelet; nlY terms (and coefficients) are required to 
cover the length of the data series (Csillag and 
Kabos, 2002). For the Haar wavelet, the coeffi- 
cients are plotted at the middle of the wavelet 
function that is used to approximate that portion of the 
data (e.g., Fig. 5; and Bruce and Gao, 1994). Thus, the 
plotting of the coefficients is constrained, by the 
discrete nature of the transform (and the data), to occur 
every 6.4 units along the data series SIM; the ability to 
detect a sine wave of period 9.8 is accordingly 
restricted. 

Examining position variance for SIM, 98 of 100 
iterations of the data showed a single, dominant peak, 
as shown in Fig. 4D. The mode location along the 
series at which this peak occurred was 29.5 units 
(n = 7); median location = 29.7 units, 5th percen- 
tile = 28.0 units and 95th percentile = 31.3 units 
(Fig. 3D). Two iterations of SIM did not have an 
obvious peak in position variance. 

5. Summary and discussion 

Lacunarity and spectral analysis gave the most 
consistent results, indicating similar scales of structure 
for the transect temperature series, temperature over 
time, and the simulated dataset. As would be expected 
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for temperature over time, both methods indicated a 
repeating pattern with a period of approximately 1 day, 
though spectral analysis indicated a temporal scale 
closest to the expected diurnal pattern in this case. 
Neither lacunarity nor spectral analysis identified 
dominant scales of structure in Shannon diversity 
across space. Lacunarity gave relatively consistent 
results across iterations of SIM. However, the 
dominant scales of pattern suggested by periodograms 
were more variable. Eighty-five of 91 iterations 
analyzed (93%) had a clear peak in their periodogram 
associated with the base sine wave. However, removal 
of the (apparent), dominant frequencies of pattern did 
not reduce over one quarter of the iterations to white 
noise. Further, 29% of those randomized could only be 
so by removing a pattern with frequency adjacent to 
that which had the strongest value of spectral density. 
These results illustrate some difficulties inherent in 
distinguishing dominant, underlying patterns in data 
with this technique. Because the coefficients of the 
Fourier transform are not well localized (in space or 
time), even minor changes (or minor random 
variation) can influence the coefficients and pattern 
detection (see Percival, 1993, for an illustration of this 
effect). In the case of SIM, we expected that a specific 
period of pattern would contribute most of the energy 
to the process and could reasonably test this. However, 
when using spectral analysis as an exploratory process 
to question whether a process has periodic structure, or 
to rule out competing a priori hypotheses regarding 
scales of pattern, lack of clear dominance in spectral 
density will be confounding. 

The results of wavelet analyses contrasted with the 
results of the other two techniques for the transect 
datasets (both TSPACE and SHANND), though 
relatively similar results were obtained for TTIME 
and SIM. The wavelet variance suggested two 
prominent scales in the pattern of understory plant 
diversity (at 460 and 1100 m), in contrast to the lack of 
structure found using lacunarity or spectral analysis. 
Rrosofske et al. (1999) also found a double-peaked 
pattern in wavelet variance for a different set of 
Shannon diversity values calculated for the same 
landscape. Through the current study, two scales of 
patchiness were also indicated by wavelet variance for 
temperature across space, 240 and 121 0 m. The 
broader scale is substantially smaller than the larger 
patch size determined from the periodogram and the 

finer scale approximately half the breadth of the finer 
scale patterns suggested by the other two analyses 
(Table 1). This disparity between the wavelet variance 
output for some series and the relatively similar 
outputs of the lacunarity and spectral analyses across 
datasets might tend to build confidence in the latter 
two techniques. However, the wavelet variance did 
provide an estimate of the period closer to that 
expected for the temporal dataset (25 h) than did 
lacunarity (19.8 h). Wavelet variance also suggested a 
repeating pattern of 4.4 units for SIM, which would 
suggest a sine wave period of approximately 8.8 units, 
closer to the expected value of 9.9 than the other 
techniques. Further, lacunarity has been cited as 
imprecise at determining scale in patterns with known 
structure (Dale, 2000), suggesting caution should be 
used when interpreting output of analyses. 

There were no apparent broad-scale features in the 
field, such as repeating topography or overstory 
management that readily explained patterns in 
TSPACE at scales >lo00 m (all techniques). How- 
ever, the pattern at a scale of 240 m (detected by 
wavelet analysis) may correspond to the average 
overstory patch size of -220 m along this transect 
(Saunders et al., 1998). The apparent 400-550 m scale 
of patterning (lacunarity and spectral analyses) could 
be associated with the influence of four management 
patches (60-year red pine, retention jack pine, 12- 
year-old red pine, and clearcut) that each extended 
>450 m along the transect. However, previous 
analyses of data from these landscapes suggested that 
the thermal environment existed in finer patches than 
overstory structure at all but the coarsest scales of 
analysis. Though there was strong suggestion of a 
process structuring the transect temperature data at 
this scale, we also considered that long memory (i.e., 
slowly decaying autocorrelations) was responsible for 
the strong peak in spectral density near the origin (and 
the conclusion of scale of pattern at a frequency of 
425 m). Existence of a straight line pattern with 
negative slope in the log-log plot of a periodogram 
can indicate long memory correlations (Beran, 1994; 
Beran and Ghosh, 2000). Our examination of the log- 
log plot and residuals suggested a linear regression 
was not the most appropriate fit for the relationship 
and, along with supporting results from lacunarity 
analysis, encouraged consideration of ecological 
explanations for this periodic pattern. 
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We expected the broad management patches of 
approximately 400-500 m in length to influence 
strongly the scale of pattern of the SHANND data 
series. In contrast to results for the TSPACE data, this 
scale of pattern was only indicated by the wavelet 
variance for understory plant diversity. These dis- 
crepancies highlighted the importance, when analyz- 
ing field data, of interpreting the results from these 
analysis techniques in concert with each other and 
with examination and ecological understanding of the 
original data. 

The wavelet analysis provided additional informa- 
tion about these data and the potential reasons for the 
scales of pattern that were observed. The wavelet 
transform showed that even for a relatively cyclic 
phenomenon, such as diurnal temperature change, not 
all patches contribute similarly to a data signal. For 
example, the coefficients for the transform of TTIME 
were unequal across time at the coarsest scales of 
analysis (d6, s6; Fig. 5A). The largest three 
coefficients corresponded to the relatively sharp drop 
in temperature during the sixth, fifth, and eighth days 
in the series (Julian Days 186, 185, and 188, 
respectively). Other days contributed relatively little 
to the overall pattern or exhibited relatively smooth 
temperature gradients (rather than abrupt, step-like 
changes) and had small coefficients at the coarse 
scales of analysis e.g., Days 3 and 7 (see Fig. 5A). 
Thus, variation in even coarse-scale temperature 
patterns was highlighted. This information was 
augmented by examination of position variance, for 
which strong peaks indicated sudden changes (either 
increase or decrease) of temperature in time. Again, 
peaks were unequal across days; Julian Days 182 and 
185 had higher position variances than Julian Days 
184 and 186 (Fig. 4C). One could examine local 
weather station data, for example, to see if broad 
changes in weather could account for the irregularities 
in contributions of different days to the overall 
variation in surface temperature data. One would 
expect a cloudy day, with lower variation in 
temperature over 24 h than a sunny day, to contribute 
less to the total variation in these data, and have 
correspondingly smaller transform coefficients along 
the series of temperature in time. Similar variation 
occurred within the other two field data series but 
examination of lacunarity or spectral output, or the 
wavelet variance - in isolation from the transform, 

suggested only the global pattern within any of these 
series. 

This variation in the wavelet transform across the 
data series further facilitated the examination of 
features for their effects on patterns at specific scales 
of space or time. For example, the relatively strong 
changes in broad-scale pattern towards the center of 
the TSPACE data series (Figs. 1A and 2A) may be 
related to a specific patch type. Of the 16 coefficients 
we examined, all of those falling within clearcuts or 
retention cuts (i.e., open canopy stands) were stronger 
than those located within closed canopy stands. 
Averaging the transform across scales, position 
variance indicated strong influence of a road at 
1100 m (Fig. 4A), though no obvious feature could be 
associated with peaks at 1530 or 2475 m. Similarly, 
for the Shannon diversity series, it appeared that 
specific cover types of patches were influencing 
patterns detected by wavelet variance, suggesting 
future datasets or experimental manipulations to 
analyze with these techniques for comparison to our 
initial results. Position variance also highlighted the 
effect of structural features on data pattern. Strongest 
peaks for SHANND (Fig. 4B) occurred in proximity to 
roads: gravel road at 1755 m, sand road at 1125 my and 
ATV trail at 1455 m. 

For SIM, the strongest wavelet transform coeffi- 
cients at the s6 (coarsest) level of analysis all occurred 
after the abrupt step in the series at 30 units, 
suggesting detection of a feature in the data series 
at this point. This feature in the data was clear from 
position variance (Fig. 4D). Position variance did not 
point out the underlying sine wave of SIM. 

Examination of the wavelet transform coefficients 
suggested hierarchical structure for some datasets. For 
example, some propagation of pattern across scales 
was indicated for SHANND by the relatively strong 
transform coefficients in close spatial proximity at 
scales d2 (22 units or 20 m) through d3, d4 and d5 (25 
or 160 m scale) (thick, gray line in Fig. 5B). The 
relationship between apparently minor structural 
features on the landscape and pattern across multiple 
(coarser) scales has been suggested by wavelet 
analysis of vegetation patterns in other landscapes 
(Brosofske et al., 1999; Chen et al., 1999). 

The data reduction capabilities of wavelet analysis 
have implications not only for understanding dorni- 
nant scales of pattern, but also for data collection, 
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compression and archiving. One can assess how many 
scales retain a desired level of detail within a dataset, 
and examine the degree of homogeneity among scales 
of information, determining the relative importance of 
fine versus coarse-scale heterogeneity in contributing 
to patterns. At least 93% of the energy - or dominant 
pattern - in any of the three empirical datasets could 
be expressed with only 16 coefficients using the Haar 
function. All 16 of these coefficients for the field data, 

. and 12 of 16 top coefficients for the simulated data 
occurred at the two coarsest scales of analysis, 
suggesting that the finer scales (less than 160 m 
(transect datasets), 8 h (temporal sets), or 64 units 
(simulated data)) contributed relatively little to the 
patterns in these data. The exception may be for SIM, 
which had four of 16 of its largest coefficients at the 
scale of two and four units. Such fine scales of 
repeating pattern were also suggested by lacunarity 
and spectral analyses (Table 1, Fig. 3D), possibly 
reflecting the random noise imposed on the sine curve 
in this series. Thus, wavelet analysis allowed us to 
retain information on the heterogeneity of patterns at 
coarse scales, and propose management features or 
ecological processes that might create that hetero- 
geneity, but clarified those scales that require less 
attention for understanding patterns in our data. That 
large amounts of variation in the data could be 
explained by few transform coefficients, particularly 
relative to the simple, simulated data series, sustained 
our expectation that features such as roads, and regular 
extents of vegetation management patches, impose a 
strong signature in the pattern of other ecological 
variables. The need to assess the contribution of finer 
scales to overall data patterns will be augmented by 
the increasing use of relatively coarse-resolution. 
remotely sensed data in ecology. 

Lacunarity, wavelet and spectral analyses provided 
complementary information regarding our data. The 
utility of combining multiple methodologies to 
understand patterns in ecological phenomena was 
similarly noted by Nezlin and Li (2003). They found 
that spectral analysis, lagged correlations analysis, 
and wavelet analysis used in concert revealed 
different aspects of the abiotic influences on coastal 
phytoplankton dynamics. Dale (2000) suggested that 
estimates of scales of pattern identified by lacunarity 
have low precision and the technique does not 
consistently detect known features in multiscaled 

patterns. However, lacunarity detected similar, multi- 
ple scales of pattern in our simulated dataset, SIM, to 
both wavelet variance and spectral analysis. In 
contrast, the scale of pattern indicated by lacunarity 
for TTIME was the furthest of any technique from the 
expected, 24 h period for TTIME. Thus, precision 
may depend on the nature of the pattern being 
examined. 

Similar to the lacunarity output, wavelet variance 
suggested the presence of dominant scales in the data. 
In contrast to lacunarity, the wavelet transform can 
indicate both the scales of patchiness and positions in 
space or time that contribute to the data structure and 
pattern without comparison to data of a known 
structure. Wavelet analysis did not, however, provide 
insight into random versus regular distributions of data 
patches. Further, to avoid analytical artifacts in the 
absence of any edge correction, wavelet analysis must 
be restricted, at coarser scales (i.e., wider analyzing 
wavelets), to the central portion of a series. Spectral 
analysis is sensitive to nonstationarity of a data series 
in addition to being influenced by data edges. This 
contrasts with lacunarity, which requires no edge 
correction. 

The appropriate technique to use in assessing the 
scale of pattern is dependent on the type of data being 
analyzed, the detail of information required, and the 
study objective. Tradeoffs exist among acquiring: (1) 
relatively detailed information on a subset of the data 
(wavelet analysis); (2) more global information on a 
subset of the data (spectral analysis); or (3) relatively 
coarse information on the full set of data (lacunarity 
analysis). None of these techniques appeared superior 
in identifying the scales of structure across all four 
datasets. Differences in the scales of pattern detected 
emphasized the importance of matching the analysis 
technique to the expected nature of pattern in the data. 
For example, as expected, spectral analysis provided 
the closest assessment of the (predicted) periodicity of 
pattern in our most uniformly repeating and cyclical 
data series, diurnal temperature. This suggested that a 
smooth wavelet function would provide a good fit to 
the temporal data. The strong approximation to all our 
datasets obtained using the Haar wavelet indicated 
that even diurnal cycles of temperature could be abrupt 
and variable. All three techniques approximated the 
scale of the sine wave in the simulated data; however, 
only the wavelet trbnsform (along with wavelet 
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position variance) provided information on the abrupt 
"step" feature in these data. The graphical outputs of 
lacunarity and the wavelet and position variances 
were, perhaps, the most easily interpreted, but gave 
only an average or global understanding of data. 
Spectral analyses also provided an "overall" assess- 
ment of scales of structure. The abilities of the wavelet 
transform to compress data and retain locational 
information provided further detail on dominant 
scales. hierarchical structure, and specific points in 
space or time that strongly influenced the global 
pattern of the data. When information on the average 
sizes of the patches and gaps is inadequate or one 
wishes to investigate changes in pattern across 
multiple scales, wavelet analysis provides a promising 
a1 ternative. These comparisons emphasized the: (1) 
importance of using multiple techniques to examine 
scales of pattern in ecological data (Dale. 2000; Perry 
et al.. 2002); (2) utility of interpreting output of 
analysis in concert with ecological knowledge of the 
original data; and (3) usefulness of some of the 
techniques for directing subsequent descriptive and 
experimental examination of features or processes 
inducing scales of pattern. 
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