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ABSTRACT 

The objective of this study was to determine how well forestfnon-forest and biomass classifications obtained from 
Landsat-TM and MODIS satellite data modeled with FIA plots, compare to each other and with forested area and 
biomass estimates from the national inventory data, as well as whether there is an increase in overall accuracy when 
pixel size (spatial resolution) decreases. A subset of 1049 inventory plots (100% forested, 100% non-forested) was 
used to classify the land cover and model the biomass in 20 counties of East Kentucky. Forest inventory data have 
been further subdivided into two datasets containing 100% forested/non-forested, and only 100% forested plots. 
Separately, each of these two datasets was used in a decision tree modeling process applied to Landsat-TM, MODIS 
satellite data, and ancillary data to classify the land cover and model the forest biomass. The satellite, ancillary, and 
plot data have been processed in See5 and Cubist software. Classification results from trials with Landsat-TM and 
MODIS show that overall classification accuracy for the percent of pixels correctly classified (%PCC) increased 
from 85.9% to 89.9%. Classifications from Landsat-TM and MODIS modules show an increase in biomass and 
forest area when compared to forest inventory estimates, but Landsat-TM module performed better. Comparison 
between classified forest area with MODIS and Landsat-TM, forest area shows a 2.9% increase. The forestlnon- 
forest single layer classification from each trial was used to mask out non-forested areas for the forest biomass 
classification. Accuracy of modeled forest biomass was compared with plot data estimates of forest biomass. 
Biomass obtained from Cubist models with 100% forested forest inventory plots and Landsat-TM images, when 
compared to the biomass from the published plot data estimates, show a difference less than 2.5%. 

INTRODUCTION 

Satellite image data from sensors with different spatial and spectral resolution have been used in many land 
coverluse classifications. Satellite remote sensing is an important tool for forest management and for surveying vast 
areas of forestland. Forest type classifications have been derived from an assortment of satellite data sensors with a 
variety of spatial and spectral resolutions. Results varied according to the classification algorithm, site location, 
number of classes used in each classification, etc. 

Spectral and spatial resolutions were the primary elements that dictated classification accuracy and what could 
be achieved (Ma, 1985; Ma and Olson, 1989; Chavez et al., 1991; Salajanu, 1992; Lunetta et al., 1998). 

Improvements in technology and classification algorithms allow ancillary data (slope, soil type, vegetation 
indices, merged information from sensors with different resolutions, etc.) to be incorporated into the original 
satellite data as new channels. Classification accuracy has improved when the original spectral channels have been 
combined with ancillary data as additional channels in the classification process (Ricchetti, 2000; Chavez, 1986; 
Borry et al, 1990; Pellemans et al, 1993; Vogelmann et a1 1998; Salajanu and Olson, 2001). In the last few years, 
classification and regression tree analyses have been implemented in several software programs and were used in 
many remote sensing applications (Huang and Jensen, 1997; Lawrence and Wright, 2001; Cooke and Jacobs, 2005). 

The inventory design of the Forest Inventory and Analysis National Program of the United States Department of 
Agriculture Forest Service (FIA) requires annual measurements on a portion of all land in order to form rotating 
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panels. The Southern States strive for a 20% sample each year as part of a 5-year cycle. Forest inventory plot data 
are used as ancillary information when modeling the forest biomass, and classifying forest types and forest area. 

The main objective of this study was to determine whether decreasing pixel size provides significant increase 
for the overall accuracy of forestlnon-forest and forest biomass classifications from Landsat-TM, and Moderate 
Resolution Imaging Spectroradiometer (MODIS) satellite imagery modeled with 100% forested/non-forested FIA 
plots from a complete 5-year cycle of FIA data. 

STUDY AREA 

The test site for this study encompasses a large portion of the USGS mapping zone 53, which covers 20 
counties in East Kentucky. The test site consists of a large diversity of landforms and land coverluse types such as 
forests, agricultural lands, strip mines, open spaces, highly developed areas (apartments complexes, 
commerciallindustrial areas), low developed areas that includes single-family units, bodies of water and wetlands. 
Hardwoods forests are the dominant forest type followed by the mixed hardwoods-conifers and conifer species. 
Hardwoods forests consist of mixed broadleaf species throughout the area. 

FOREST INVENTORY AND ANALYSIS PLOTS 

The national inventory design of the Forest Inventory 
and Analysis program requires annual measurements on 
a proportion of all lands and 5-year reports. The field 
plot design consists of four subplots approximately 1/24 
acre in size, and are used to collect data on trees with a 
diameter at breast height of 5 inches or greater (Figure 
1). Each subplot contains a microplot of approximately 
11300 acre in size. Microplots are used to collect 
information data on seedlings and saplings. 

An attempt is made on all forested plots to collect 
coordinates with a Global Positioning System (GPS) 
receiver at the center subplot. Some non-forest plots 
may have GPS coordinates, but some do not. Hence, 
not all of the plots used in the study have accurate GPS 
coordinates. For this study, a subset of 1049 plots (850 
foresd8 1%, 195 non-forest/l8.6%, and 4 water/0.4%) 
was filtered from a complete 5-panel dataset of 
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Kentucky for mapping zone 53. This subset includes 
all of the 100% forest and 100% non-forest plots. Figure 1. FIA field plot design. 

DATA BASE DESCRIPTION 

Satellite images from two different satellite sensors, Landsat-TM and MODIS were used to model foresdnon- 
forest cover and forest biomass of the study area. The database consists of raster and vector data that fall within the 
USGS mapping zone 53. Mapping zone 53 used in this study consists of two different sets of data. One data set 
contains 269 layers of data (49 are MODIS): a large number of ancillary and remote sensing layers re-sampled to a 
spatial resolution of 250 meters and projected to the Albers Equal Area projection. Multitemporal MODIS satellite 
data have been acquired during the spring, summer, and fall of 2001, 2002, and 2003, while Landsat-TM was 
acquired in 1999. The other set contains 221 layers of data (6 are Landsat-TM). The six Landsat-TM layers have 
replaced the MODIS layers in the first data set. Landsat-TM layers were projected to the Albers Equal Area 
projection and the ancillary layers have been re-sampled to 30 meters spatial resolution. These data sets were used 
to model the forest biomass and forestlnon-forest land cover. 
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The data layers in Table 1 either existed as 250-meter resolution data or were re-sampled to 250-meters and 
projected to Albers Equal Area projection by personnel at the USFS Remote Sensing Applications Center in Salt 
Lake City (RSAC). The database contains continuous and categorical variables. 

Table 1. List of Layers Used to Map Forest, Non-forest and Forest Biomass. 

Database Layers Description 

MODIS 32 day composite imagery between 2001 and 2003 
Conus MODIS32-200 1097 - Bands 1 to 7 
Conus MODIS32-200 1 193 - Bands 1 to 7 
Conus MODIS32-2002129 - Bands 1 to 7 
Conus MODIS32-2002225 - Bands 1 to 7 
Conus MODIS32-2002257 - Bands 1 to 7 
Conus MODIS32-2002321 - Bands 1 to 7 
Conus MODIS32-2003 161 - Bands 1 to 7 
Conus Bailey's Ecoregions image layer 
MODIS Vegetation Indices Layers 
Conus EVI- 2002097 image 
Conus EVI- 2002225 image 
Conus EVI- 200232 1 image 
Conus NDVI- 2002097 image 
Conus NDVI- 2002225 image 
Conus NDVI- 200232 1 image 
MODIS Vegetation Layer: MODIS -percent tree cover image 
Reflectance layers from spring, summer and fall of 2002 
Conus Reflectance - 2002097 - Bands 1 to 7 
Conus Reflectance - 2002225 - Bands 1 to 7 
Conus Reflectance - 200232 1 - Bands 1 to 7 
NLCD layers; 
Conus NLCD - Percent conifer forest image 
Conus NLCD - Percent deciduous forest image 
Conus NLCD - Percent mixed forest image 
Conus NLCD - Percent shrub land image 
Conus NLCD - Percent woody wet land image 
Terrain information; Conus dominant aspect, Conus mean elevation, stream density 
Conus MODIS fire points from 200 1 and 2002 
Soil data layers; available water capacity, permeability, soil bulk density, soil ph, soil 
plasticity, soil porosity, rock volume and soil texture. 
USGS mapping zone images 
Precipitation - annual and for each month 
Temperature layers - averages, minimum and maximum temperatures. 

DATA MINING - CUBIST AND SEES 

Cubist and See5 are regression tree software used to create decision tree classifications (foresthon-forest map) 
and models for modeling continuous variables (forest biomass). See5 was used to classifjdmodel categorical 
variables, forest, non-forest and water, while Cubist was used to model the biomass continuous variable. Two files 
are essential for running Cubist or Sees, and several others are optional. The first essential file is the names file that 
lists the names and describes the classes and attributeslpredictors, as shown below (Table 2). 

ASPRS 2007 Annual Conference 
Tampa, Florida + May 7 - 11,2007 



Table 2. Names File Description. 

FNF 
FNF: 1,2,3,4. 
awc-250m.img-bandl : continuous. 
bdgrid-250m.img-band 1 : continuous. 
conus-dvi-2002225 .img : continuous. 
conus-evi-2002097.img: continuous. 
conus-modis32-200 1097-albers.img-band 1 : continuous . 
usgpt0 1jan.img: continuous. 
usgpt02-feb. img: continuous. 
usgpt03-mar.img: continuous. 
us-tavg30 1-albersimg : continuous. 
us-tavg302-albers.img: continuous. 
us-tavg303-albers.img: continuous. 
usgs-mapping-zones.img: 0,54,58,59. 
ustrnaxO 1-albers.img: continuous. 
ustmax02-albers.img: continuous. 

attributes excluded: 
conus-modis32-200 1097-albers.img-band5. 
conus-modis32-200 1 193-albers.img-band5. 

The first rowlentry in the name file is the attribute (forestlnon-forest, biomass) that contains the target value to 
be classified1 modeled based on values of the other predictors. Predictors contained in the name file are continuous 
or defined by numeric values. The final entry in the name file specifies if a predictor is included or excluded from 
the classifier/model. The second essential file is the data file that provides information on the training data used to 
construct the decision tree model. The entry for each case consists of one or more lines that give the values for all 
the predictors. A comma separates the values and the entry terminates with a period (http://www.rulequest.com). 
The test file is one of the optional files, and it is used to evaluate the performance of the classifier/model. There are 
several ways for assessing model predictive ability such as; collection of new data to check the model and its 
predictive ability, comparison of results with earlier empirical results, and use a holdout sample when a data set is 
large to check the model performance. In this study FIA, plot data have been split randomly 60% and 40% into data 
training and test files. Test file has the same structure as data file. 

FOREST NON-FOREST CLASSIFICATION 

There are several types of algorithms and methods to classify satellite data, such as supervised and unsupervised 
classification, neural network, decision tree, etc. The decision tree algorithm in See5 was used for this study. A 
subset of 100% forested/non-forested plots was selected from a complete 5-year cycle of FIA data. These data were 
used to produce two datasets containing a) Landsat-TM satellite data (30 m), 100% forested/non-forested plots and 
ancillary data; b) MODIS satellite data (250 m), 100% forestedlnon-forested plots and ancillary data. Separately, an 
iterative decision tree modeling process was applied to each of these two datasets to classify the land cover into 
forest, non-forest, and water. See5 cannot process geographic information system data (GIs) or remote sensing 
layers. Prior to the data mining process, satellite, ancillary and plot data for each dataset was processed with tools 
developed at the Remote Sensing Applications Center (RSAC) in Salt Lake City for ERDAS Imagine to convert 
remote sensing and GIs layers to See5 and Cubist data file formats. 

The "Prepare FIA Data for CubistlSee5" tool extracts geospatial image information using FIA points. The 
program then creates three data files for See5 and three for Cubist (data file, name file, and test file), and randomly 
selects a dataset to be set aside for accuracy assessment. Once the name, data, and test files have been produced, 
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See5 program is used to create decision tree models. See5 offers several options (rulesets, boost) to build a decision 
tree model, and each option produces a different type of classifierldecision tree based on the way it is constructed. 

The boosting option set to ten trials, was the only one used in this study to model the forestlnon-forest 
categorical variable. The boosting option was selected because it creates several classifiersldecision trees. Each 
classifierldecision tree produced by boosting option will be different from the previous. Each decision tree tries to 
correct the prediction error from the previous decision tree. This process continues for a pre-determined number of 
trials. Data file from each dataset (with TM and MODIS) was used in See5 to create foresdnon-forest (fnf) decision 
tree models. Forty percent of the data were set-aside in each data set for accuracy assessment. A sample of the 
output file from the See5 software program (Table 3) reports classification errors based on a confusion matrix 
produced for both training and test datasets. 

Table 3: Sample of the See5 output showing the misclassifications from Landsat-TM. 

Options: 
10 boosting trials 

Class specified by attribute 'fnf 
Trial 9: Decision tree: 
SubTree [S 11 
conus-tm6-albers-img-band6 <= 1: 4 (9.1) 
conus-tm6-albers.img-band6 > 1 : 
:. ..conus-tm3-albers.img-band3 <= 14: 
SubTree [S2] 
conus-reflectance-200232 1 .img_band4 > 507: 
conus-reflectance-200232 1 .img-band4 <= 507: 1 ( 2 5 4 . 9  / 2 2 . 2  ) 
:...conus~modisqercent~tree~cover.img > 80.56: 2 (1 3.615.8) 
conus~modisqercent~tree~cover.img <= 80.5 6: 

:...usgpt04-apr.img <=10467: 2 (36.611 1.6) 
usgpt04-apr.img > 10467: 1 (14.5 ) 

conus-tm3-albers.img-band3 > 14: 
bdgrid-30m.img-band10 > 2.64: 1 (42,311 4) 
: .. .conu~~modis~ercent~tree~cover.img > 67.852: 1 (1 8.414.3) 

conus~modisgercent~tree~cover. img <= 67.852: 
Evaluation on training data (464 cases): Evaluation on test data (308 cases): 
Trial Decision Tree Trial Decision Tree 

Size Errors Size Errors 
0 15 24( 5.2%) 0 15 54(17.5%) 
1 11 65(14.0%) 1 11 60(19.5%) 
2 12 48(10.3%) 2 12 45(14.6%) 
3 22 49(10.6%) 3 22 59(19.2%) 
4 19 39( 8.4%) 4 19 71(23.1%) 
5 9 37(8.0%) 5 9 50(16.2%) 
6 23 52(11.2%) 6 23 53(17.2%) 
7 15 65(14.0%) 7 15 94(30.5%) 
8 14 44( 9.5%) 8 14 42(13.6%) 
9 9 47(10.1%) 9 9 51(16.6%) 
boost 9( 1.9%) << boost 31(10.1%) 

(a) (b) (c) (d) (e) classified as (a) (b) (c) (d) (e) classified as 
(a): class 0 (a): class 0 

377 (b): class 1 248 10 (b): class 1 
9 73 (c): class 2 19 29 (c): class 2 

(d): class 3 (d): class 3 
5 (e): class 4 1 1  (e): class 4 

The See5 decision tree model was used in the "Apply See5 Results Spatially" tool developed for ERDAS 
Imagine by RSAC to spatially model the entire foresdnon-forest area. The classification tree obtained from 
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boosting was used in the Apply See5 software module to model forest non-forest and water classes as a function of 
the modeling dataset for each sensor. The final product is a single layer forestlnon-forest image map (predicted 
output image) with values representing the variables (forestinon-forest) that were modeled (Figure 2) and a 
confidence image that shows spatial distribution of the correct and misclassified areas. Confidence values range 
from zero to one. A value of or near one indicates a more confident prediction for forest area, while values near 
zero show a confident prediction for non-forest area. 

Pixels classified as forested have been converted to hectares and total forested area fiom each sensor was 
compared to each other and to the total forest land area (U.S. Survey acres converted to hectares) reported in the 
Forest Resources of the US, 2002 report (Smith et. al. 2004). 

a) b) 

Figure 2. Forest non-forest classification from a) Landsat-TM and b) MODIS images. 

BIOMASS CLASSIFICATION 

The procedure for preparing the data for Cubist and classifyinglmodeling the forest biomass is similar to the 
forestinon-forest classification procedures for See5. Before modeling forest biomass, a forest mask was produced 
for each sensor (Landsat-TM and MODIS). Classified forest maps from Landsat-TM and MODIS have been used to 
mask non-forested area. 

Forest biomass estimates (total dry weight) from FIA plot data and hundreds of continuous predictor layers 
were used in Cubist to produce biomass predictor models. Cubist, like Sees, offers several options (rules alone, let 
Cubist decide, etc.) to build decision tree models. A model consists of a collection of rules. Two of the several 
available options in Cubist were used to produce decision tree biomass models - "rule alone" and "committee of 5 
members." Committee option, like boosting in See5, creates several rule-based models. Each member of the 
committee predicted a value for a class and the members' predictions have been averaged into a final prediction. 
There were five committee members and each member of a committee model tries to correct the predictions of the 
previous member (www.rulequest.com). A biomass model was produced for each sensor using complete 
forestedlnon-forested FIA plots. For each data set, a random sample of 40% of the data was set aside for accuracy 
assessment and the remaining 60% was used to build the model. For each sensor data, several iterations of decision- 
tree biomass models were performed and analyzed. With each step, predictor layers poorly correlated with the 
biomass estimates were excluded during the next iteration. The Cubist output file (decision tree model) reported the 
errors (average and relative error), and the correlation coefficient for both training and test data sets. 

ASPRS 2007 Annual Conference 
Tampa, Florida 4 May 7 - 11,2007 



Forest biomass models obtained for each sensor were used in the ERDAS Imagine tool "Apply Cubist Results 
Spatially" to create a spatial biomass image map (predicted image) with predicted values representing the biomass 
variable and an error image file showing the predicted misclassifications. 

RESULTS AND DISCUSSIONS 

Foresunon-forest land cover was classified for the 20 county study areas in East Kentucky using satellite 
information from two different sensors (MODIS and Landsat-TM), ancillary and FIA plot data. A set of single 
condition plots, and the See5 option of boosting with 10 trials were used to classify the land cover into forest, non- 
forest and water. Results of these trials are summarized in Table 4, 5, and 6. Classification results from See5 
showed an increase in overall classification accuracy (%PCC and Khat %) from Landsat-TM data compared to 
MODIS. Classification accuracy assessments were performed using three different methods. The first method is 
based on analysis of a contingency table produced by the See5 program for the 40-percent set-aside data set (Table 
4). This test was used to evaluate the predictive ability (validation) of the selected model. Overall classification 
accuracy shows that Landsat-TM prediction model performs better (89.94%) than MODIS predictive model 
(85.92%). Predictive models from both sensors perform relatively poor in detecting the non-forest land cover, while 
the two water plots were each misclassified as either forest or non-forest. Table 4 summarizes the producer, user, 
Khat, and overall accuracy (%PCC) for each sensor type obtained from classifications with single condition (100% 
forestedlnon-forested) FIA plots. 

Table 4. Classification accuracy of foresunon-forest from test data. 

Sensor Percent of Khat Overall Producer accuracy % User accuracy % 
Type For&nonforest % %pCC Forest Non-forest Water Forest Non-forest Water 
Landsat-TM 100% forest 59.88 89.94 96.12 60.42 92.54 72.50 

/non-forest 
MODIS 100% forest 50.84 85.92 95.49 50.60 87.84 73.68 

Inon-forest 

The second method used in accuracy assessment is based on analyses of contingency tables obtained from 
overlaying FIA forestlnon-forest plots on the classified image (Table 5). Information from each contingency table 
shows how well FIA plots were correctly classified in each class, as well as the number of misclassified plots. The 
assessed classification accuracy ranges from 61.9% to 98.5%. The overall accuracy is 94.8% for the Landsat-TM 
and 92.6% for the MODIS data. According to user, producer, Khat, and overall accuracy (Table 5) the Landsat-TM 
model performed better in modeling (classifying) each land cover class than the MODIS model. Both producer and 
user accuracy show a much higher classification accuracy of forest class than for non-forest and water classes. The 
low percent discrimination of non-forest cover type may be due to the presence of narrow mountain streams and 
roads as well as single-family housing units and small open spaces that are modeled as forest. The Z test proposed 
by Cohen (1960), was used to test for significant differences between the two land cover classifications. The results 
show that there is a significant difference between the classification accuracy of the two sensors at 90% significance 
level (Z=1.79 > 1.64). 

Table 5. Classification accuracy of forestlnon-forest from FIA plots overlaid on the modeled output. 

Sensor Percent of Khat Overall Producer accuracy % User accuracy % 
Type I?0rtW/n0nforest % %PCC Forest Non-forest Water Forest Non-forest Water 
Landsat-TM 100% forest 78.94 94.82 98.47 75.31 66.67 95.54 89.71 100 

/non-forest 

MODIS 100% forest 68.09 92.61 98.25 61.90 93.35 86.67 
Inon-forest 

The third approach used for assessing classification accuracy of the foresunon-forest models was to compare 
outputs of area to the published FIA numbers (Table 6). Forest inventory mapmaker web-application version 2.1 
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has the most recent biomass and forest area estimates (Miles, Patrick D. January 19, 2007). Pixel area classified as 
forest was converted to hectares and compared to the total FIA forest area estimates, converted from acres to 
hectares. 

Results in Table 6 show an increase of 5.71% in forested area model with Landsat-TM data, and respectively 
8.75% increase in forested area modeled by MODIS data as compared to forested area from FIA data. 

Table 6. Comparison of MODIS and Landsat-TM classifications with published inventory forested area. 

Map-based estimates of forest area from Landsat-TM compare relatively well with FIA forested area when only 
single condition plots (100% forest, 100% non-forest) are used in the model. The forest classification obtained from 
MODIS image (100% forest and 100% non-forest plots) overestimate forest area by 8.75% when compared to FIA 
estimates. Forest non-forest classifications obtained from each sensor were used to mask out the non-forested area 
and retain a forested area mask. This forest area mask was then used as the area over which forest biomass was 
modeled using the same geospatial predictors. Models developed from each sensor have been applied to their 

corresponding predictor dataset to produce forest 
biomass predictions on a pixel-by-pixel basis. An 
output of the predicted biomass map distribution 
obtained from Landsat-TM is shown in Figure 4. 
The decision tree models developed to model forest 
biomass varied in their ability to predict plot level 
biomass and the results show variation of the total 
biomass from one sensor to another. The MODIS 
biomass model overestimated forest biomass by 
8.87% when compared to FIA estimates, and 
estimated 6.23% greater total biomass than that 
provided by the Landsat-TM biomass model. 
However, the Landsat-TM model provided a 
biomass estimate that was less than 2.5% greater 
than FIA estimates (Table 7). 

ll*i 41 80 

61 .40  

1 S1.130 

Sensor Data 

Landsat-TM 

MODIS 

Figure 4. Predicted biomass from Landsat-TM for East Kentucky (dry tonslac). 

Table 7. Comparison of modeled biomass with FIA estimates (total dry weight). 

Percent (%) 
5.71 

27.32 
0.08 
8.75 

41.04 
0.02 

Land cover 
Forest 
Non-forestlwater 
Total land 
Forest 
Non-forestlwater 

. Total land 

An analysis of the predicted biomass values show that both Cubist models overestimated biomass for the FIA 
plots containing low amounts of biomass, and underestimated biomass for plots with high biomass values. 

Satellite sensor 

Landsat - TM 

MODIS 
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Difference (+I-) 
+ 79,463 
- 80,836 
- 1,373 
+ 121,727 
- 121,448 

. + 279 

Area (ha) 
1,470,128 

215,050 
1,685,178 
1,512,392 

174,438 
. 1,686,830 

FIA (ha) 
1,390,665 

295,886 
1,686,55 1 
1,390,665 

295,886 
1,686,551 

Error 
YO 

2.49 

8.87 

Classified/modeled 
biomass (dry-tons) 

188,378,078 

200,124,6 16 

FIA forest biomass 
(dry-tons) 

183,804,593 

183,804,593 



CONCLUSIONS 

This dataset is a part of a product developed with the intent of using a full five-year cycle of FIA plot data. 
Accuracy of the forestinon-forest map is a very important factor when modeling the correct forest area for forest 

biomass. 
Based on the work described, Landsat-TM performed relatively better than MODIS in both forest area 

determination and biomass modeling. 
Biomass classifications provide information not only on the total amount of estimated biomass, but also 

information on how forest biomass is spatially distributed throughout the forested landscape. The spatial pattern 
allows a visual assessment of biomass distribution below the county level to help analysts understand where there 
are areas of high and low forest biomass. 

Although classification accuracies suggest that both models under-predicted the amount of non-forest area, 
MODIS was more adversely affected, due to its larger cell size, by the presence of small-area fragmentation (narrow 
mountain roads and streams) and single-family housing units much more than the Landsat-TM model. 

FIA plot information ties See5 and Cubist models to actual FIA plot measurements on the ground. 
Even though the overall classification accuracies between the two sensors are not particularly disparate, each is 

nonetheless significant and thus meaningful when used in different forest applications. Results suggest that FIA plot 
information can provide good results in classifying large areas of land cover. 
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