
ASPRS 2006 Annual Conference 
Reno, Nevada  May 1-5, 2006 

THE EFFECT OF USING COMPLETE AND PARTIAL FORESTED FIA PLOT DATA 
ON BIOMASS AND FORESTED AREA CLASSIFICATIONS FROM MODIS 

SATELLITE DATA 
 

Dumitru Salajanu, Forester 
Dennis M. Jacobs, Research Forester 

USDA Forest Service 
Forest Inventory and Analysis 

4700 Old Kingston Pike 
Knoxville, TN 37919 
dsalajanu@fs.fed.us 
djacobs@fs.fed.us 

 
 

ABSTRACT 
  
Authors’ objective was to determine at what level biomass and forest area obtained from partial and complete 
forested plot inventory data compares with forested area and biomass estimates from the national inventory data. A 
subset of 3819 inventory plots (100% forested, 100% non-forested, mixed-forest/non-forest) was used to classify the 
land cover and model the biomass in South Carolina. Forest inventory data have been further subdivided into three 
datasets containing 1) mixed plots at least 50% forest or a 50% non-forest, 2) mixed plots that are at least 75% 
forested or 75% non-forested, and 3) 100% forested/non-forested plots.  Separately, each of these three datasets was 
used in a decision tree classification process applied to MODIS satellite (250-meter resolution) and ancillary data to 
classify the land cover and model the forest biomass.  The satellite, ancillary, and plot data have been subdivided 
into three mapping zones (54, 58, and 59) for processing in See5 and Cubist software. Classification results for trials 
with 100% forested/non-forested and mixed (multi-condition) plots show that overall classification accuracy for the 
percent of pixels correctly classified (%PCC) increased from 75.4% to 79.2%. Comparison between classified forest 
area with mixed (75% forest, 75% non-forest) plots and the inventory forest area shows a 10% increase.  The 
forest/non-forest single layer classification from each trial was used to mask out non-forested areas for the forest 
biomass classification.  Accuracy of modeled forest biomass was compared with plot data estimates of forest 
biomass. Biomass obtained from Cubist models with 100% forested and mixed forest inventory plots when 
compared to the biomass from the published plot data estimates show a difference of less than 2%. 
 
 

INTRODUCTION 
 
       Satellite remote sensing is an important tool for forest management and for surveying vast areas of forestland.  
Over the years, forest type classifications have been derived from an assortment of satellite data sensors with a 
variety of spatial and spectral resolutions.  Results varied according to the classification algorithm, site location, 
number of classes used in each classification, etc. 

Early classifications of forest and land cover/use from satellite data were produced based on spectral 
information in the image.  Spectral and spatial resolutions were the primary elements that dictated classification 
accuracy and what could be achieved (Ma, 1985; Ma and Olson, 1989; Chavez et al., 1991; Salajanu, 1992; Lunetta 
et al., 1998).   

Improvements in technology and classification algorithms allow ancillary data (slope, soil type, vegetation 
indices, merged information from sensors with different resolutions, etc.) to be resampled and incorporated into the 
original satellite data as new channels of raster data.  Classification accuracy was improved when the original 
spectral channels were combined with ancillary data as additional channels in the classification process (Ricchetti, 
2000; Chavez, 1986; Borry et al, 1990; Pellemans et al, 1993; Vogelmann et al 1998; Salajanu and Olson, 2001).  In 
the last several years, classification and regression tree analysis have been implemented in several software 
programs and were used in many remote sensing applications (Huang and Jensen, 1997; Lawrence and Wright, 
2001; Cooke and Jacobs, 2005). 

The inventory design of the Forest Inventory and Analysis National Program of the United States Department of 
Agriculture Forest Service (FIA) requires annual measurements on a portion of all land in order to form rotating 
panels.  The Southern States strive for a 20% sample each year as part of a 5-year cycle.  Forest inventory plot data 
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are used as ancillary information when classifying forest types and forest area, as well as modeling the forest 
biomass. 

The main objective of this study is to determine whether there is significant improvement in the accuracy of 
forest/non-forest and forest biomass classifications from Moderate Resolution Imaging Spectroradiometer (MODIS) 
satellite data by incorporating partially forested FIA plot data as opposed to using only complete forested plots 
(100% forested and 100% non-forested) from a complete 5-year cycle of FIA data. 
 
 

STUDY AREA 
 
   The test site for this study covers the entire state of South Carolina.  South Carolina was selected because it was 
the only state in the South with a complete 5-panel cycle of FIA field data available at commencement of this study.  
The test site consists of a large diversity of landforms (sandy beaches to coastal plains and hills to low mountains), 
soil types and land cover/use types.  Hardwood forests are mixed throughout the State and are the dominant forest 
type followed by southern yellow pines (Smith et. al. 2004).  The study area includes portions of United States 
Geological Survey (USGS) mapping zones 54, 57, 58, and 59 that fall within the state of South Carolina. 
 
 

FOREST INVENTORY AND ANALYSIS PLOTS 
 
   The national inventory design of the Forest Inventory and Analysis program requires annual measurements on a 
proportion of all lands and 5-year reports.  The field plot design consists of four subplots approximately 1/24 acre in 
size, and are used to collect data on trees with a diameter at breast height of 5 inches or greater (Figure 1).  Each 
subplot contains a microplot of approximately 1/300 acre in size.  Microplots are used to collect information data on 
seedlings and saplings.  

   An attempt is made on all forested plots to collect 
coordinates with a Global Positioning System (GPS) 
receiver at the center subplot.  Some non-forest plots 
may have GPS coordinates, but most do not.  Hence, 
not all of the plots used in the study have accurate GPS 
coordinates.  For this study a subset of 3819 plots (2601 
forested, 1204 non-forested, and 14 water) was filtered 
from a complete 5-panel dataset of South Carolina.  
This subset includes all of the 100% forested and 100% 
non-forested plots, and mixed plots containing both 
forest and non-forest conditions that are at least 50% 
forested and non-forested (multi-condition).    
 
 
 
 
 

           Figure 1. FIA field plot design. 
 
 

DATA BASE DESCRIPTION 
 
   The database consists of raster and vector data that fall within portions of the four USGS mapping zones 
indicated above.  Since mapping zone 57 was such a small portion of the State it was merged with zone 54, and the 
database considered as three mapping zones.  Each mapping zone contains 269 layers of data:  a large number of 
ancillary and remote sensing layers re-sampled to a spatial resolution of 250 meters and projected to the Albers 
Equal Area projection.  This set was used for modeling the forest/non-forest and forest biomass classifications.  The 
data layers in Table 1 either existed as 250-meter resolution data or were re-sampled to 250-meters and projected to 
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Albers Equal Area projection by personnel at the USFS Remote Sensing Applications Center in Salt Lake City 
(RSAC).  The database contains continuous and categorical variables. 
 

Table 1. List of Layers Used to Map Forest, Non-forest and Forest Biomass. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CUBIST AND SEE5 
 

Cubist and See5 are regression tree software used to create decision tree classifications (forest/non-forest map) 
and models for modeling the forest biomass.  See5 was used to classify/model categorical variables, forest, non-
forest and water, while Cubist was used to model the biomass continuous variable.  Two files are essential for 
running Cubist or See5, and several others are optional.  The first essential file is the “names” file that lists the 
names and describes the classes and attributes/predictors (Table 2).  

The first row/entry in the names file is the attribute (forest/non-forest, or biomass) that contains the target value 
to be classified/modeled based on values of the other predictors.  Predictors contained in the names file are labeled 
as continuous or are discrete and defined by numeric values.  The final entry in the names file specifies the list of 
predictors that are excluded from the classifier/model.  The exclusion list can be empty.  The second essential file is 

Database Layers Description 
MODIS 32 day composite imagery between 2001 and 2003  
Conus MODIS32-2001097  - Bands 1 to 7 
Conus MODIS32-2001193  - Bands 1 to 7 
Conus MODIS32-2002129  - Bands 1 to 7 
Conus MODIS32-2002225  - Bands 1 to 7 
Conus MODIS32-2002257  - Bands 1 to 7 
Conus MODIS32-2002321  - Bands 1 to 7 
Conus MODIS32-2003161  - Bands 1 to 7 
Conus Bailey’s Ecoregions image layer 
MODIS Vegetation Indicies Layers 
Conus EVI- 2002097 image 
Conus EVI- 2002225 image 
Conus EVI- 2002321 image 
Conus NDVI- 2002097 image 
Conus NDVI- 2002225 image 
Conus NDVI- 2002321 image 
MODIS Vegetation Layer: MODIS –percent tree cover image 
Reflectance layers from spring, summer and fall of 2002 
Conus Reflectance – 2002097 – Bands 1 to 7 
Conus Reflectance – 2002225 – Bands 1 to 7 
Conus Reflectance – 2002321 – Bands 1 to 7 
NLCD layers; 
Conus NLCD – Percent conifer forest image 
Conus NLCD – Percent deciduous forest image 
Conus NLCD – Percent mixed forest image 
Conus NLCD – Percent shrub land image 
Conus NLCD – Percent woody wet land image 
Terrain information; Conus dominant aspect, Conus mean elevation, stream density 
Conus MODIS fire points from 2001 and 2002 
Soil data layers; available water capacity, permeability, soil bulk density, soil ph, soil 
plasticity, soil porosity, rock volume and soil texture. 
USGS mapping zone images 
Precipitation – annual and for each month 
Temperature layers – averages, minimum and maximum temperatures. 
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the data file that provides information on the training data used to construct the decision tree model.  The entry for 
each case consists of one or more lines that give the values for all the predictors.  A comma separates the values and 
the entry terminates with a period (http://www.rulequest.com).  The test file is one of the optional files, and it is used 
to evaluate the performance of the classifier/model.  There are several ways for assessing model predictive ability 
such as: collection of new data to check the model and its predictive ability; comparison of results with earlier 
empirical results; and use of a hold out sample when using a large data set.  In this study FIA plot data have been 
split randomly 60% and 40% into data training and test files.  Test file has the same structure as data file. 
 

Table 2. Types of information contained in the name file 
 

FNF 
FNF: 1, 2, 3, 4. 
awc-250m.img-band1: continuous. 
bdgrid-250m.img-band1: continuous. 
conus-dvi-2002225.img: continuous. 
conus-evi-2002097.img: continuous. 
conus-modis32-2001097-albers.img-band1: continuous. 
us_ppt01_jan.img: continuous. 
us_ppt02_feb.img: continuous. 
us_ppt03_mar.img: continuous. 
us_tavg301_albers.img: continuous. 
us_tavg302_albers.img: continuous. 
us_tavg303_albers.img: continuous. 
usgs_mapping_zones.img: 0, 54, 58, 59. 
ustmax01_albers.img: continuous. 
ustmax02_albers.img: continuous. 
: 
: 
attributes excluded: 
conus_modis32_2001097_albers.img_band5. 
conus_modis32_2001193_albers.img_band5. 

 
 

FOREST NON-FOREST CLASSIFICATION 
 

There are several types of algorithms and methods to classify satellite data, such as supervised and unsupervised 
classification, neural network, decision tree, etc.  The decision tree algorithm in See5 was used for this study.  A 
subset of plots with associated quality location coordinates was pulled from a complete 5-year cycle of FIA data.  
This dataset was partitioned into the following three subsets of plots for forest/non-forest labeling purposes:  1) plots 
that were either 100% forest or 100% non-forest, 2) plots that were at least 75% forest or at least 75% non-forest, 
and 3) plots that were at least 50% forest or at least 50% non-forest.  Separately, each of these three datasets was 
used in an iterative decision tree classification process applied to MODIS satellite data (250 m resolution) and 
ancillary data to classify the forest, non-forest, and water.  See5 cannot process geospatial data such as geographic 
information system data (GIS) or remote sensing layers in their inherent geospatial format.  Prior to the data mining 
process, satellite, ancillary and plot data for each mapping zone were processed with tools developed at the Remote 
Sensing Applications Center (RSAC) in Salt Lake City for ERDAS Imagine to convert remote sensing and GIS 
layers to See5 and Cubist tabular data file formats. 

The “Prepare FIA Data for Cubist/See5” tool extracts geospatial image information using FIA points.  The 
program then creates three data files for See5 and three additional files for Cubist (data file, names file, and test file), 
and randomly selects a dataset to be set aside for accuracy assessment. Once the name, data, and test files have been 
produced, See5 program is used to create decision tree models.  See5 offers several options (e.g., rulesets, boost) to 
build a decision tree model, and each option produces a different type of classifier/decision tree based on the way it 
is constructed.   

The boosting option set to ten trials was the only one used in this study to model the forest/non-forest 
categorical variable.  The boosting option was selected because it creates several classifiers/decision trees.  Each 
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classifier/decision tree produced by the boosting option will be different from the previous.  Each decision tree tries 
to correct the prediction error from the previous decision tree.  This process continues for a pre-determined number 
of trials.  The data file from each mapping zone was used in See5 to create forest/non-forest (fnf) decision tree 
models.  Forty percent of the data was set-aside in each data set for accuracy assessment and 60% retained for 
processing.  A sample of the output file from the See5 software program (Table 3) reports classification errors based 
on a confusion matrix produced for both training and test datasets.  

 
Table 3. Sample of the See5 output showing the misclassifications 

  
Options:  
 10 boosting trials 
Class specified by attribute `fnf' 
Trial 9:  Decision tree: 
SubTree [S1] 
conus_modis32_2001097_albers.img_band3 <= 429: 2 (29) 
conus_modis32_2001097_albers.img_band3 > 429: 1 (3.8/0.8) 
SubTree [S2] 
conus_reflectance_2002097.img_band4 > 2224: 2 (5.8) 
conus_reflectance_2002097.img_band4 <= 2224: 
:...conus_modis32_2002225_albers.img_band2 <= 2591: 2 (8.4/0.8) 
    conus_modis32_2002225_albers.img_band2 > 2591: 
    :...conus_modis32_2001097_albers.img_band6 > 2220: 2 (3) 
        conus_modis32_2001097_albers.img_band6 <= 2220: 
        :...ustmin10_albers.img <= 777: 2 (2.5) 
            ustmin10_albers.img > 777: 
            :...conus_ndvi_2002321.img <= 8052: 1 (42.2/3.2) 
                conus_ndvi_2002321.img > 8052: 2 (2) 
Evaluation on training data (695 cases):         Evaluation on test data (462 cases): 
Trial     Decision Tree                                 Trial       Decision Tree     
   Size         Errors                                                Size      Errors 
   0     70      21(  3.0%)                                0      70      126(27.3%) 
   1     36      81(11.7%)                                1      36      105(22.7%) 
   2     44      66(  9.5%)                                2      44      140(30.3%) 
   3     51      61(  8.8%)                                3      51      152(32.9%) 
   4     50      77(11.1%)                                4      50      137(29.7%) 
   5     40      85(12.2%)                                5      40      142(30.7%) 
   6     52      74(10.6%)                                6      52      130(28.1%) 
   7     48      65(  9.4%)                                7      48      122(26.4%) 
   8     48      78(11.2%)                                8      48      135(29.2%) 
   9     52      78(11.2%)                                9      52      127(27.5%) 
   boost          0(  0.0%)   <<                        boost                  86(18.6%)  
(a)   (b)    (c)    (d)    (e)  classified as                (a)    (b)    (c)    (d)    (e)  classified as 
                                 (a): class 0                                                             (a): class 0  
       477                          (b): class 1                          301     30                    (b): class 1 
         215                  (c): class 2                            53     73              1    (c): class 2 
                                 (d): class 3                                                             (d): class 3   
                            3   (e): class 4                              2                        2    (e): class 4 

 
The “Apply See5 Results Spatially” tool developed for ERDAS Imagine by RSAC was used to create a spatial 

forest/non-forest data layer from the See5 decision tree models.  The classification tree obtained from boosting was 
used in Apply See5 software module to model forest, non-forest and water classes as a function of the modeling 
dataset in each mapping zone.  The final product is a single layer forest/non-forest image map (predicted output 
image) with values representing the variables (forest/non-forest) that were modeled (Figure 2) and a confidence 
image that shows spatial distribution of the correct and misclassified areas.  Confidence values range from zero to 
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one.  A value of or near one indicates a more confident prediction for forest area, while values approaching zero 
show an increase in confidence prediction for non-forest area.   

Pixels classified as forested have been converted to hectares and total forested area was compared to the total 
forestland area (U.S. Survey acres converted to hectares) reported in the Forest Resources of the US, 2002 report 
(Smith et. al. 2004).                                                                      

 
 

 
  a)                                                                              b) 
 

Figure 2. Forest non-forest MODIS classification modeled with FIA plot inventory data. 
a) using 100% forest and 100% non-forest; b) using ≥50% forest and non-forest FIA plot data. 

 
 

BIOMASS CLASSIFICATION 
 
   The procedure for preparing the data for Cubist and classifying/modeling the forest biomass is similar to the 
forest/non-forest classification procedures for See5.  Cubist, similar to See5, can process a large volume of data but 
cannot read remote sensing and GIS data layers.  The RSAC-developed tools within ERDAS Imagine were used to 
convert remote sensing image layers to Cubist data files.  Before modeling forest biomass, a forest mask was 
produced for each mapping zone.  Classified forest maps have been used to mask non-forested area (Figure 3).  Plots 
with location coordinate falling outside the forest area mask were eliminated from the biomass modeling datasets.   
Forest biomass estimates (total dry weight) from FIA plot data and hundreds of continuous predictor layers were 
used in Cubist to produce biomass predictor models.  Cubist, like See5, offers several options (rules alone, let Cubist 
decide, etc.) to build decision tree models.  A model consists of a collection of rules.  Two of the available options in 

Cubist were used to produce decision tree biomass 
models – “rule alone” and “committee of 5 
members.”  Committee option, like boosting in See5, 
creates several rule-based models.  Each member of 
the committee predicted a value for a class and the 
members’ predictions have been averaged into a final 
prediction.  There were five committee members and 
each member of a committee model tries to correct 
the predictions of the previous member 
(www.rulequest.com).  A biomass model was 
produced for each mapping zone using the complete 
subset of 100% forested/non-forested and one model 
for each subset of mixed (50% threshold, or 75% 
threshold) FIA plots.  Again, for each data set, a 
random sample of 40% of the data was set aside for 

        Figure 3. Forest mask for modeling forest biomass. 
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accuracy assessment and the remaining 60% of the data was used to build the model.  For each mapping                             
zone, several iterations of decision tree biomass models were performed and analyzed.  With each step, predictor 
layers poorly correlated with the biomass estimates were excluded during the next iteration.  The Cubist output file 
(decision tree model) reported the errors (average and relative error), and the correlation coefficient for both training 
and test data sets. 
       Forest biomass models from each mapping zone were used in the ERDAS Imagine tool “Apply Cubist Results 
Spatially” to create a spatial biomass image map (predicted image) with predicted values representing the biomass 
variable and an error image file showing the predicted misclassifications. 
 
 

RESULTS AND DISCUSSIONS 
 

Forest/non-forest land cover was classified for the entire state of South Carolina from multitemporal MODIS 
satellite data (acquired during the spring, summer, and fall of 2001, 2002, 2003), ancillary data layers, and FIA plot 
data.  Single and multiple condition plots (greater than or equal to 50% forested/non-forested condition), and the 
See5 option of boosting with 10 trials were used to classify the land cover for South Carolina into forest, non-forest 
and water.  Forest/non-forest classifications (from See5) showed an increase in overall classification accuracy 
(%PCC – percent of pixels correctly classified) within each mapping zone when the mixed condition plots were 
included rather than modeling with only the 100%-single-condition plots.  Accuracy assessment is based on analysis 
of a contingency table produced by the See5 program for the 40-percent set-aside dataset.  The overall classification 
accuracy (%PCC) varied in each mapping zone with the degree of land fragmentation and the types of FIA plot data 
(single condition - 100% forest/non-forest, multi-condition forest/nonforest) used in classification.  Table 3 
summarizes the producer, user, and overall accuracy (%PCC) for each mapping zone, and for the entire State 
obtained from classifications with each of the three sets of plots: 100% forested/non-forested single-condition plots, 
the single- and multi-condition plots that are at least 75% forested/non-forested, and the single- and multi-condition 
plots that are at least 50% forested/non-forested. 

The lowest and highest accuracies occurred in the smallest zone (59), where the low accuracy of 63.2% was 
associated with plots having 50- to-100% forest or non-forest condition, and the high accuracy (84.5%) associated 
with the 100%-single-condition plots. At the state level, overall forest/non-forest accuracy (%PCC) increases from 
75.4%, to 79.2%.  Mapping zone 58 has lower accuracy values compared to mapping zones 54 and 59.  This is 
explained by the fact that zone 58 contains the highest diversity of land cover in the entire state (sand beach, 
wetlands, small lakes and estuaries, forested wetlands, agriculture, etc.).  Both producer and user accuracy show a 
much higher classification accuracy of forest class (in each mapping zone, and state level) than for non-forest and 
water classes, especially when multi-condition plots were used in the model. 

 
Table 3. Classification accuracy of forest/non-forest by mapping zone 

 
         Producer accuracy  %          User accuracy   % Mapping 

zone # 
Percent of 
Forest/nonforest 

Overall 
 %PCC Forest Non-forest Water Forest Non-forest Water 

≥50% forest/non-forest 81.38 90.94  59.35   50.00 84.55  70.87   66.67 
≥75% forest/non-forest 78.73 90.48  55.22   50.00 81.52  73.27   20.00 

 
Zone 54 

100% forest/non-forest 80.70 88.07  70.00   33.33 82.45  77.08 100.00 
≥50% forest/non-forest 73.43 86.27  47.92 100.00 76.57  63.89 100.00 
≥75% forest/non-forest 73.83 85.52  51.87 100.00  76.74  66.13 100.00 

Zone 58 

100% forest/non-forest 78.22 82.69  71.68   66.67 81.13  73.80   66.67 
≥50% forest/non-forest 63.16 83.33  29.63  66.67  50.00  
≥75% forest/non-forest 78.95 87.50  66.67  80.77  78.26  

Zone 59 

100% forest/non-forest 84.48 91.43  72.73 100.00 84.21  84.21 100.00 
≥50% forest/non-forest 76.88 88.00  52.87   66.67 80.40  66.84   50.00 
≥75% forest/non-forest 75.39 84.31  58.07 100.00 79.73  65.64   33.33 

State-
South 
Carolina 100% forest/non-forest 79.25 84.69  71.25   57.14 81.69  75.13   80.00 
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Another way to assess classification accuracy of forest/non-forest from FIA data is to determine the total area in 
hectares of all the pixels classified as forest and compare that total with the total forested area (U.S. Survey acres 
converted to hectares) reported in the Forest Resources of the United States, 2002 report (Smith et. al., 2004). This 
publication is an updated report required by the Forest and Rangeland Renewable Resources Planning Act of 1974 
(RPA).  The results are summarized in Table 4. 
 

Table  4. Comparison of forested area from MODIS classification with inventory forested area 
 

Percent Forest Classified as Forest (ha) RPA Forest (ha) Difference (+/-) Percent (%) 
≥50% forest/non-forest 5,627,527 5,024,380      +  603,147 12.00 
≥75% forest/non-forest 5,558,611 5,024,380 +  534,231 10.63 
100% forest/non-forest 5,015,420 5,024,380      -      8,960  0.18 

 
At the State-level, map-based estimates of forest/non-forest area compare very well with RPA forested area 

when single-condition-only plots (100% forest, 100% non-forest) are used in the model.  Forest/non-forest 
classifications obtained from multi-condition plots (≥75percentage or ≥50% forest/non-forest) show an increase in 
forest area of 10.6% and 12.0% respectively, when compared to RPA forested area.  Analysis of producer and user 
classification accuracy by mapping zones and at the state level suggest that more pixels modeled by multi-condition 
plots (≥50% forest, ≥50% non-forest) that have plot center in the non-forest area are classified as forest then non-
forest.  It is important to note that 85% of the multi-condition FIA plots have their plot center (GPS coordinate) in 
the forested condition and only 15% have their plot center in the non-forested condition.  

A forest/non-forest classification map within each mapping zone was used to mask out the non-forested area 
and retain only the forested area for further work.  This forest area mask was then used as the area over which forest 
biomass was modeled with the same geospatial predictors.  Models for each mapping zone have been applied to 

their corresponding zonal predictor dataset to 
produce forest biomass predictions on a pixel-by-
pixel basis.  A mosaic of the three mapping zones 
produced the biomass map shown in Figure 4.  The 
decision tree models developed to model forest 
biomass varied in their ability to predict plot level 
biomass and the results show variation of the total 
biomass in each mapping zone as well as variations 
due to the status of FIA plots (single or multi-
condition plots) used in the model.  Biomass trend 
shows an increase of forest biomass and accompanies 
the increase in the number of FIA plots in the model, 
but it is not always the case since Cubist randomly 
sets aside a different set of plots for the test file in 
each trial. 
An accuracy assessment of the biomass results 
obtained from Cubist models (single- and multi-
condition FIA plots) and comparison with RPA 
biomass is shown in Table 5.  Predicted biomass 
compared well with RPA. 

Figure 4. Predicted biomass for South Carolina (dry tons/ac). 
 

Table 5. Comparison of modeled biomass with RPA biomass (total dry weight) 
 

Percent of forest or non-forest in 
the plot 

Classified/modeled 
biomass (tons) 

Timberland    
biomass  (tons) 

Error 
% 

Forest land 
biomass  (tons) 

Error 
% 

≥50% Forest, ≥50% Non-forest 472,940,000 458,128,000   3.23 463,836,000   1.96 
≥75% Forest, ≥75% Non-forest 472,719,000 458,128,000   3.18 463,836,000 1.91 
100% Forest, 100% Non-forest 456,202,000 458,128,000 0.42 463,836,000 1.64 
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Results in table 5 show less than 2% difference between modeled biomass and RPA biomass even though the 
forest area increased by 10 to 12% when mixed (multi-condition) plots were included in the model.  This is because 
the biomass value used to model the biomass for the same pixel that was classified as forest by a mixed condition 
plot (even though not the entire pixel was forested), represents only the biomass of the forested part of the same plot 
in the pixel. 

Biomass classification accuracy can be evaluated by analysis of the average error, relative error, and the 
correlation coefficient produced by Cubist models for each mapping zone (Table 6).  High values of relative errors 
correspond to areas with a high proportion of forest fragmentation that are hard to classify with MODIS (250 m 
pixel ground resolution). 

 
Table 6.  Biomass classification accuracies 

 

Mapping 
Zone 

 
Percent of forest or non-

forest in the plot 
 

Number of 
Test Plots 

Average 
Error 

Relative 
Error 

Correlation 
Coefficient 

50% forest, 50%non-forest 995 23.0078 0.91 0.37 State - South 
Carolina 75% forest, 75%non-forest 868 22.8514 0.89 0.38 

 
An analysis of the predicted biomass values show that Cubist models have overestimated the biomass for FIA 

plots containing low amounts of biomass, and underestimated biomass for FIA plots with high biomass values. 
 
 

CONCLUSIONS 
 

This dataset is a part of a product that was developed with the intention of using a full five-year cycle of FIA 
data.  That luxury is currently not available in neighboring states, thus providing partial cycles of data across state 
lines within each mapping zone.  Accuracy of the forest/non-forest map is a very important factor when modeling 
the correct area for forest biomass. 

Based on the work described, it can be concluded that mixed (multi-condition) FIA plot information increased 
total area of forest/non-forest classifications.  The study also suggests that forest biomass can be modeled with 
comparable results when mixed (multi-condition) FIA plots are used.  Biomass at the state level provides 
information on how forest biomass is spatially distributed throughout the entire statewide landscape.  The spatial 
pattern allows a small-area visual assessment of biomass distribution to help show areas of high to low forest 
biomass; finer detail than the usual county-level minimum-mapping unit associated with FIA tabular data. 

FIA plot information ties See5 and Cubist models to actual FIA phase 2 plot measurements on the ground. 
Even though the increases in accuracy were not too large, they are meaningful when used in different forest 

applications.  Results suggest that FIA plot information can be used with good results in classifying large areas of 
land cover. 
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