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Abstract: This article presents two approaches for estimating the components of forest change utilizing data 
from a rotating panel sample design. One approach uses a variant of the exponentially weighted moving average 
estimator and the other approach uses mixed estimation. Three general transition models were each combined 
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E RIKSSON (1995) gave a set of definitions for the poral partitioning of the observations; and (3) a desire to 
components of forest change that was applicable facilitate a matrix-based definition of the population. 
over a temporal continuum as opposed to the tradi- 

tional sample-based definitions (e.g., see Meyer 1953) de- The Population 
fined over discrete periods. 

We use a discrete analog to the Eriksson definitions that 
facilitates a matrix approach to population definitions. The 
underlying assumption is that there exists a minimal tem- 
poral unit for which an observation of change is either 
practical or possible. The value of the Eriksson definitions 
did not so much lie in their absolute temporal continuity as 
in their independence of the time of observation and the 
sample design. Eriksson (1995) was seminal in that the 
traditional definitions of the components of growth were not 
based strictly on population parameters. For instance, the 
traditional component of ingrowth can be partitioned into 
(1) the value of the ingrowth trees as they enter the popu- 
lation, and (2) the value growth subsequent to entering the 
population. Eriksson (1995) identified the latter partition as 
a component of survivor growth, using the argument that the 
tree is a survivor once it has entered the population, regard- 
less of whether or not the entry was observed. 

Before considering the sample design, we define (1) Live 
tree growth as the growth in value that occurs on trees after 
a defined entry criterion has been achieved; (2) Entry as the 
value of trees as they attain the entry criterion; (3) Mortality 
as the value of trees as they die; and (4) Harvest as the value 
of trees as they are harvested. Eriksson's (1995) definitions 
were purposefully continuous to ensure additivity, no matter 
how small a temporal interval one considered. In this article 
I use a discrete analog to the Eriksson definitions with a 
small (1-year) interval length. The discrete definitions are 
motivated by (1) an assumption that 1 year is about the 
minimum interval length, in most forest conditions, required 
for each of the respective change signals to overpower 
measurement error; (2) the need for some reasonable tem- 

The sampled population is three-dimensional; two di- 
mensions are land area and the third is time. Trees exist 
within this spatial-temporal volume and constitute an asso- 
ciated population of interest. The population of trees (or 
measures on them) can be partitioned into subpopulations 
defined by partitions of the original sampled population 
and/or by attributes of the trees themselves. Below we focus 
mainly on the temporal dimension of the population and 
partition the tree population annually, and further subdivide 
the annual subpopulations by the component of change 
associated with each tree. Let N = the total number of trees 
that are in the population during a specific temporal period, 
and P = the number of years in the population ( t  6 P). 

Define I, to be an (N X P) indicator matrix for trees as 
they enter the population during the forest inventory. In I,, 
and all subsequent population matrices, each column repre- 
sents a year, the first column being the final year of the 
population of interest, and each successive column 1 year 
before the previous column. Each row corresponds to an 
individual tree in the population. That is, a 1 in row i and 
column j indicates that tree i entered the population in year 
j. All other entries in row i are zeros. Similarly define the 
indicator matrices for tree mortality year, I,, and tree 
harvest year, I,, allowing a 1 to indicate the year in which 
a tree died or was harvested, respectively. The indicator 
matrix for the live category, I,, also has one row for each 
tree and contains a 1 in the column for each year that a tree 
is alive and in the population of interest subsequent to the 
entry year and prior to its year of harvest or death, and a 
zero otherwise. The four indicator matrices are of equal 
dimension and sum to the population indicator matrix, Ip, as 
shown in the example in the Appendix. 

Francis A. Roesch, Mathematical Statistician, Forest Inventory and Analysis, Southern Research Station, USDA Forest Service, 200 WT Weaver Blvd., 
Asheville, NC 28804-3454-Phone: (828) 257-4871; Fax: (828) 257-4894; froesch@fs.fed.us. 

Acknowledgments: The final version of this manuscript has benefited from comments offered by Ed Green, Ray Czaplewski, and an anonymous reviewer. 

Manuscript received April 4, 2006, accepted October 10, 2006 

This article was written by U.S. Government employees and is therefore in the public domain. 

50 Forest Science 53(1) 2007 



The Value of Interest.-Associated with each subdivi- 
sion of the population of trees is a value of interest. We 
define the (N X P) value matrix V, analogously structured 
to those above, in that row i represents tree i, and column j 
represents time j in reverse annual order from the final year 
P back to year 1. The column vector of V corresponding to 
year h is represented as v,. Assuming that each tree only 
enters once, the entry value can be represented by a column 
vector, vE, containing a row for each tree. 

Estimands of Interest.-We define two temporal selec- 
tion matrices. The superior selection matrix, S, has P - 1 
columns and P rows, such that in column i, row i contains 
a 1, and all other entries are zero. The final row is all zeros. 
The inferior selection matrix, S, has P columns and P rows, 
such that in the first P - 1 columns, i, row i + 1 contains 
a 1 and all other entries are zero. The first row and last 
column contain all zeros. We also define the first difference 
matrix, D, with P columns and P rows, such that in the first 
P - 1 columns, i, row i contains a 1 and row i + 1 contains 
a negative 1, and all other entries are zero. The final column 
contains all zeros. 

We are interested in estimators of the temporal vectors of 
population change components: 

Entry: 

Live growth: 

where ** represents element-by-element matrix multiplica- 
tion, (V - vE) indicates subtraction of the column vector, 
vE, from each column of the matrix V, and 1 is an (N X 1) 
summation vector of ones. 

Mortality: 

Harvest: 

h p . 2  = [(I" ** (vS) )~]  ' 1. 

We also seek estimators of the total value vector at times P 
to 1: v,,, = (I, ** V)'1. The Appendix contains a worked 
example of these definitions. 

The Rotating Panel Design 

Here we focus on estimating the components of change 
over a defined area and temporal period using a rotating 
panel annual inventory design, such as the design being 
used by the USDA Forest Service's Forest Inventory and 
Analysis (FIA) Units (e.g., see Roesch and Reams 1999). In 
designs of this type, the sample units are assigned to one of 
g mutually exclusive temporal panels. One panel is mea- 
sured per year for g consecutive years, after which the panel 
measurement sequence reinitiates. That is, if panel 1 is 
measured in 2007, it will also be measured in 2007 + g, 
2007 + 2g, and so on. Panel 2 would then be measured in 
2008, 2008 + g, 2008 + 2g, etc. 

Without loss of generality, we will assume that the 

population is uniquely partitioned into K units, indexed k = 
1 to K,  with each unit having a known probability of 
inclusion in the sample, ?.r, = aJA, (where a, is the area of 
unit k, and Ajy is the total area of interest). Trees exist on and 
are uniquely assigned to one and only one unit, and all trees 
are measured on selected units. For simplicity, assume that 
a unit's assignment to temporal panel p is random, with 
probability equal to llg. In this case, the joint probability of 
selection of unit k in panel z is then q, = r J g .  Let the 
sample panel be represented by an N X N diagonal matrix, 
W, indexed as above for each tree in the population, i = 1, 
. . . , N, such that row i, column i contains a 1 if tree i is 
selected for sample panel p, and a zero otherwise. Represent 
the panel z sample as W, = *Ip. 

Let the probability of the panel sample be represented by 
an N X N diagonal matrix, II,, indexed as above for each 
tree in the population, i = 1, . . . , N, such that row i, column 
i contains for tree i in unit k and any panel z ,  and a 0 
otherwise. 

With this overlapping panel design, the measurement 
interval is g years and the minimum growth period that we 
are recognizing is 1 year. Therefore, between panel mea- 
surements, a tree can contribute to multiple components of 
change. For example, an individual may enter the popula- 
tion, live for 2 years, and then die between observation 
instances. For a suggestion for estimation to be efficient, the 
approach must account for a measurement interval length 
that is longer than the minimum growth interval and it must 
capitalize on the annually overlapping measurement inter- 
vals that result from the rotating panel design. 

Estimation 
Especially in a rotating panel design, there are potentially 

many periods of interest within the overall population, so 
we generalize the above discussion by allowing h to equal 
the initial year in a specific period of interest, and t to equal 
the number of annual intervals of interest. We form y,,,,, 
a (P X 1) temporal vector containing a 1 in rows corre- 
sponding to years within a specific period of interest (such 
as h + t to h) and zeros in all other rows, indexed by the 
endpoints of the period of interest. 

In this design, in each panel, we observe the vectors 
3tE = W I E Y ~ + ~ , + ~ .  1VM = w I M ~ h + ~ , h + l ,  and +L = 
WI,y,+,,, , for entry, mortality, and harvest, respectively. 
For live growth let f = WIL~h+t ,h+l ,  where f is a column 
vector of length N. Form another column vector of length N, 
+;, the observation vector due to the sample. For i = 1 to 
N let #L[i] = 1 if f[i] = t. 

Within-Panel Estimators.-For within panel estimators 
we define the period of interest to be the time between the 
measurements of the panel, so h equals the year of the initial 
measurement and t is equal to the cycle length or number of 
years until the next measurement. 

Entry 

Although we desire estimates for the vector e,+,,+ ,, we 
actually observe an estimate of the scalar sum of the ele- 
ments of this vector over the years between panel measure- 
ments. We label the scalar sum as E,+,,l+ ,. If we assume 
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that a basic entry value is solely dependent on an entry 
criterion (such as dbh), the measurement of entry trees 
during each panel remeasurement provides an estimate of 
both E,,,,,,, and the growth on the entry trees (E$+,,,+,) 
subsequent to entry. The strictly sample-based per-panel 
estimator for E,+~,,+, would be fi,++,,+, = (n,&)'vE. 

El?+ t,h+ is a biased estimator of E,,,,,, , because it does 
not include trees that became eligible and subsequently died 
or were harvested between observations. The sample esti- 
mate at time h + t of trees entering the population between 
times h and h + t would be 

The per-panel estimator for growth on entry (Ef+t,h+l) can 
be expressed as 

As with entry, we desire estimates for the mortality 
vector m,+,,+ ,; however, we actually observe a scalar sum 
over the years between panel measurements. Consider the 
sum of the elements of m,,,,+,, label it M,+,,+,, and 
assume that mortality trees cannot be reliably measured. We 
might estimate M,+,,,+ , with the biased estimator 

Value is unobserved for mortality trees past year h and, 
therefore, the value at the year of death (h + d) for tree i 
(v,,~) would have to be modeled. For a model-based estima- 
tor, form the column vector v:, in which element i for tree 
i is equal to v,+,,,+~ - v,,, if the row i in +!& contains a 1. 
Assuming an estimator of v:, $5 M,+~,,+~ could be formed 

- - 
~ h + t , h + l  - Mh;ztt,h+l + Mi+t.h+l, where Mi$t,h+l - 

Cj(Mf$:. Even if Mi+,,+, is unbiased, like E12+t,,+,, 
M,+,,+, is a biased estimator, owing to the unobserved 
subpopulation of trees that becomes eligible and subse- 
quently dies between observations. 

Harvest 
As with the previous two components, sum the elements 

of hh+ t,h+ to produce &+t,h+ and assume that mortality 
trees cannot be reliably measured. A biased per-panel esti- 

- mator for H,+, ,~+~ could be expressed as H ~ ~ + ~ , ~ + ~  - 
(Q#H)'~,l. AS with mortality, the value at the year of 
harvest (h + c),  for tree i (v ,+~,~)  is unobserved and would 
have to be modeled conditional on the value at year h (v,,~). 
Form the column vector vk, in which element i for tree i is 
equal to v , + , ~  - v,,~ if the corresponding row in +h con- 
tains a 1. Given an unbiased estimator of vb, $:, H,+,,,+, 

- be obtained 'h+,h+l - 'Iz+,h+l + 'f+f,h+l, 
where fii+f,hCl = (IIZ#H)l~E. AS with the previous two 
estimators, if Hi+,,+, is unbiased, then H~~+, ,+  , is a biased 
estimator, because it cannot include trees that became eli- 
gible, and were subsequently harvested, between observa- 
tion instances. 

Live Growth 
Define the true value matrix for panel remeasurement z 

(V,) from the values of the population of trees at times h + 

t and h, by selecting the two corresponding columns from V. 
That is, row i represents tree i, and column j represents time 
j = h + t and h: 

Additionally, we define the panel difference vector with 1 
column and 2 rows: d = [!,I. 
An estimator for live growth per panel would be 

Again, as with the previous estimators, L,+t,h+l will be 
biased by the value of growth on trees that became eligible 
and then died or were harvested between observation 
instances. 

The bias in each of these components will often be small 
for two reasons: (1) the contribution to the bias comes from 
relatively small trees, and (2) trees within 5 years of having 
reached eligibility that die or are harvested are a relatively 
small component of many forest populations. The smaller 
the investigator's area of interest and the stronger the mar- 
ket forces to harvest trees in that area of interest, the greater 
will be the risk in ignoring the bias in these components. 

Combining Panels.-The overlapping panels in the ro- 
tating panel design facilitate many options for estimating 
the component change vectors by combining the within- 
panel estimates. Additionally, the observation that sample 
sizes within panels are often too small to provide low 
variance estimates within many geographic subareas of in- 
terest leads to the question of how we might draw strength 
from adjacent time intervals by combining panels. We will 
discuss two approaches, an exponentially weighted differ- 
ence (EWD) estimator and a mixed estimator. 

Exponentially Weighted Dzjference 
One possible strategy I'll dub an exponentially weighted 

difference (EWD) estimator, owing to its similarity in con- 
cept to the exponentially weighted moving average 
(EWMA) estimator common in the quality control literature 
(i.e., Chandra 2000) and the econometrics literature (i.e., 
West and Harrison 1989, p. 55). In this proposed EWD 
estimator, a series of differences (i.e., a series of change 
component panel sums) within panels is calculated. The 
EWD gives larger weights to the interval observations clos- 
est to being centered on the interval of interest, allowing 
more local variation than if equal weights are used. In the 
EWD estimator (d;) below, the panel difference is centered 
on the interval and combined with the rn - 1 adjoining 
interval differences. The supporting panels are down- 
weighted exponentially with each step away from the cen- 
tral panel. 
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Let Assume an observation model for time t. 
- 
dh+t,h+l = the mean of a remeasured panel difference, 

such as t-lLh+i,h+l 

r = (m - 1)/2, m is odd and is the number of 

remeasured panels used 

in the estimator, and 

The EWD estimator, applied to year k, is 

One can see that the EWD estimator discounts distant 
panels exponentially because increasing values of /il result 
in the weight being smaller, since rl(r + 1) is less than 1. 
One method of assuring compatibility when using this es- 
timator would be to estimate entry, live growth, mortality, 
and harvest separately, and then use the sum of these 
component vectors to estimate the total value vector. Al- 
though the resulting system would be compatible, the indi- 
vidual estimators would not be optimized in any way. Ad- 
ditionally, the EWD provides no estimates for m years on 
each end of the time string. In practice, an ad hoc variation 
would have to be incorporated to provide some or all of 
these estimates. 

Mixed Estimation 

The mixed estimator (e.g., Van Deusen 1996, Theil 
1963) can also be used to draw strength from overlapping 
panels. Korhonen (1993) used mixed estimation for cali- 
brating tree volume functions. Van Deusen (1996, 1999, 
2000) showed mixed estimators for annual forest inventory 
designs. In this work, we use mixed estimation to simulta- 
neously estimate the trends for the four components of 
change and constrain the sum of the changes to equal the 
estimate for total change. The components of change esti- 
mators are compatible if, for any initial year i and any time 
interval t, 

A rotating panel design (with k panels) is conducive to a 
model in which the observed midpoint values for the total 
change are used to constrain the component estimates. For 
k, an integer, and t 2 k + 1, let 

and form a five-row column vector such that: 

if k is odd 

if k is even. 

where pt is a column vector of five coefficients, (where 
i = 1, . . . ,5),  with a column for each component in and 
e, is a five-row column vector of ef that are iid (0, $~m,), 
and combine it with a set of constrained compatibility and 
transition models, such as 

where E ~ , ,  is iid (0, $jmt). Compatibility between the com- 
ponents and total change is constrained with (2a), and the 
transition from year to year for each component, in turn, is 
constrained with Equations 2b through 2e. 

Form a vector x from the values having ((T - k) * 5) 
rows. Concatenate successive elements of the column vectors 
fit into the column vector 

Form vectors by stacking the successive vectors of error 
terms: 

e = [ek+,, . . . , eT]' and E = [ E ~ + ~ ,  . . . , E~] ' .  

Represent Equation 1 with 

Represent the covariance matrix of x with z. The con- 
straints can be re-expressed 

where R is the matrix of constraints for the compatibility 
and transition models. 

Combining the models results in the solution set for a 
mixed estimator, 

In this formulation, we can use the same assumptions as 
Van Deusen (1999). Applying the constraints strictly, the 
mixed estimator is 13 = x - ~ R ' [ R ~ R ' ] - '  Rx. 

Simulation 

The Population Simulations.-FIA data from field in- 
ventory plots measured in 1968 and remeasured in 198 1 in 
Hancock County, Maine, were used as seed data for four 
artificial populations of species group, dbh, life stage, and 
location attributes. The four populations are intended to 
represent a realistic diversity in relationships between the 
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components rather than to represent any specific real pop- 
ulations. The species groups are defined in Table 1. The 
temporal dimension of each of the populations was 25 years. 
The remeasurement data were used to establish initial tree 
basal area (ba) growth, mortality, harvest, and entry rates. 
The four populations differed in their deviance from these 
initial observations as described below. 

Initially, the individual plot data of all trees of at least 5 
inches in dbh from 1981 were coalesced into a square 
population (Popl), as described in Roesch (1993). In this 
simulation, a population area of 100 times the area of Popl 
was created by using Popl to seed each element of a 10 x 
10 matrix (Pop2). During each seed event for Pop2, a 
random variate was added to each tree's basal area and 
location in Popl. The basal area variate was drawn from a 
uniform distribution, U(0.9 ba,l. 1 ba). Each tree's x and y 
coordinates were also displaced by a uniform random vari- 
able with a range of k0.914403 meters. The final location 
of a tree would therefore sometimes be in an adjacent matrix 
"pixel" and sometimes it would be located outside of the 
population area. In the latter case, the point was wrapped 
around to the other side of the population area, as if the 
population's edges were joined. This was done four times to 
establish year 1 for each of the four populations. Species- 
group specific annual growth rates, calculated from the 
original permanent plot data (see Table 2), were applied to 
each tree annually after adjustment of the slope parameter 
by a normal zero-mean random variate. That is, for tree i in 
species group s at time t + 1, draw a variate vi from an 
N(0, 1) distribution and then calculate an adjusted slope 
parameter = a,,, + 0. lv, ( a , ,  - 1.0). Then calculate the 
basal area of tree i for time t + 1, ba,,, , = a , ,  + a,pa, , .  
Each year, in each population, harvest and mortality were 
randomly applied at differing target rates in proportion to 
live basal area [The tables of target proportions of basal area 
harvested and mortality per year for each population are 
available for the interested reader from the author]. The 
target harvest rates were generally high in populations 1 and 
2 and low in populations 3 and 4, except for an anomaly in 
year 13 in population 4. The anomaly represents a large 
salvage cut that necessitated the removal of live trees the 
year following a large mortality event. The target harvest 
rates were steadily increased in population 1, and first 
increased and then decreased in populations 2 and 3. In 
population 4, the target harvest rates were steadily increased 
until the anomaly, reduced after the anomaly, and then 
steadily increased. The mortality rates were generally high 

Table 1. Species members of the nine species groups 

Table 2. Initial parameter coefficients and number of sample trees (n) 
used to establish the 1-yr ahead basal area (m2) projections for the 
model BA,,, = b, + b,BA, 

Species 
group ( s )  ao,, a1,s n 

in populations 1 and 2 and low in populations 3 and 4, 
except for anomalies in year 12 for populations 3 and 4. The 
40% mortality events in these populations for year 12 might 
result in areas subjected to an extremely large and destruc- 
tive hurricane. The mortality rates were steadily decreased 
in population 1, and first increased and then decreased in 
population 2. In populations 3 and 4, the mortality rates 
were steadily increased until the anomaly, reduced after the 
anomaly, and then steadily increased again. Entry was as- 
sumed to lag behind harvest and mortality at the rate of 1.6 
entry trees per harvested tree and 0.5 entry tree per mortality 
tree. 

The resulting population trends are given in Figures 1 
and 2. Figure 1 graphs the total basal area for each popu- 
lation over the 25-year span. Figure 2 graphs the live 
growth, harvest, mortality, and entry for years 2 through 25 
in a separate graph for each population. The large anomalies 
in populations 3 and 4 are listed separately for clarity. 

The Sample Simulations.-Thirty random points were 
selected from the population area for each of five sample 
panels. This was done 200 times. Each point selected all 
population trees within a radius of 7.315 meters. Exact 
panel inclusion probabilities were used in all estimators for 
each sample tree. Obviously, for most trees, this was equal 
to the area of a 7.315 m radius circle divided by the area of 
the population. For trees closer to the edge of the population 
than 7.315 m, the numerator was reduced by the tree area 
falling outside of the population area, because a tree could 
only be selected from within the population area. The panels 
were applied in sequence annually, and then re-observed in 
the same sequence continuously. The simulation compared 
the exponentially weighted difference estimator and the 

Species Group Species 

1 Pinus banksiana 
2 Picea glauca 
3 Abies balsamea 
4 Larix laricina 
5 Thuja occidentalis 
6 Acer pennsylvanicum 
7 Fraxinus americana 

Populus grandidentata 
8 Fagus grandifolia 
9 Betula alleghaniensis 

Pinus resinosa 
Picea mariana 

Pinus strobus 
Picea rubens 

Tsuga canadensis 

Acer rubrum Acer saccharurn 
Fraxinus nigra Ostrya virginiana 
Populus tremuloides Tilia americana 
Prunus serotina Quercus rubra 
Betula papyrifera Betula populifolia 
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Figure 1. The total basal area (m2) for years 1 through 25 for the four 
simulated populations. 

I populatiorl I I Population 2 I 

Figure 2. The basal area of live growth, entry, mortality, and harvest 
(m2) for years 2 through 25 for the four simulated populations. 

mixed estimator for estimating the components of basal area 
change and total basal area change. There was no effort to 
enforce compatibility constraints for the EWD estimates. 
Three general candidate models were considered for the 
mixed estimator. 

For all three of the candidate models an initial estimate 
of total basal area was obtained using the sample mean for 
each of the 25 years. The series of 21 5-year equally 
weighted moving averages (EMA) was calculated from 
these initial estimates. The first differences of the EMA 
estimates were taken in succession, resulting in 20 estimates 
of change in total basal area BA(t) - BA(t - I), where t = 

4, . . . ,23. 
The 25-year series provides 20 initial estimates for each 

component, commencing with the year of the first panel 
remeasurement in year 6. From this, 16 consecutive 5-year 
equally weighted moving averages were calculated for each 
component. These were assumed to correspond to vector 
positions 3 to 18 of the basal area difference vector. The 
remaining positions were filled with the most supported 
centralized estimate available. In the cases of positions 1 
and 20, this was the corresponding initial estimate for the 
component. For positions 2 and 19, a 3-year average was 
used, e.g., initial estimates 1 through 3 for position 2, and 
initial estimates 18 through 20 for position 19. This resulted 
in 20 estimates of total basal area change and 20 estimates 

of the corresponding change components, live growth, en- 
try, mortality, and harvest. 

Constraints.-The compatibility constraints in Equation 
2a, constraint set A, were applied to all three candidate 
models. The models differed in the component transition 
constraints, constraint set B, appended to the compatibility 
constraints. Next, we give the three general models and note 
exceptions below the general models. 

In model 1, the transition constraints are identical to 
Equations 2b through 2e above, with t 2 k + 3: 

p: - 2p:-, + p:-2 = c2.1; 

P: - 2p:-1 + p:-2 = e3.t; 

p; - 2p:-, + p:-2 = E4.t; 

P: - 2p:-, + p:-2 = Es,t. 

In model 2, with t L k + 4, the transition constraints are 

P: - 3p:-, + 3P:-2 - P:-, = EZ,~; 

3 P: - 3~:-1 + 3~:-, - pt-3 = E3,t; 

P: - 3Pt-1 + 3P:-2 - p:-3 = E4,t; 

P: - 3P:-, + 3P:-2 - P:-3 = Es .~ .  

In model 3, with t L k + 5, the transition constraints are 

P: - 3 ~ : - ~  + 4 ~ : ~ ~  - 3 ~ : ~ ~  f = Ez.,; 

P: - 3 ~ : ~ ~  + 4 ~ : ~ ~  - 3 ~ : ~ ~  + ~ : - 4  = 

P; - 3 ~ f - ,  + 4 ~ : ~ ~  - 3pL3 + Pt-44 = Eql; 

P: - 3 ~ : ~  + 4p12 - 3~:-3 + P:-, = Es,~. 

Adjustments for Populations 2, 3, and 4 

It was assumed that there was some prior but incom- 
plete knowledge of the anomalies that occurred in pop- 
ulations 2, 3, and 4. In these populations, the rows in 
constraint set B corresponding to the constraints for the 
affected change components that crossed the year(s) of 
the anomaly were deleted. The anomalies adjusted for 
were the general trend reversal for harvest and mortality 
subsequent to year 13 in population 2, the large mortality 
events in year 12 in populations 3 and 4, and the large 
harvest event in year 13 in population 4. In population 2, 
it was assumed that all components were affected by the 
general change in trend for harvest and mortality in 
models 1 and 2, so all constraints in set B that crossed 
year 13 were deleted. In model 3, only the constraints for 
harvest and mortality crossing year 13 were deleted. For 
population 3, it was assumed that all components were 
affected by the large mortality event in year 12 in models 
1 and 2, so all constraints in set B that crossed year 12 
were deleted. In model 3, only the constraints for mor- 
tality, live growth, and entry crossing year 12 were 
deleted. That is, the harvest constraints were not deleted. 
In population 4, it was assumed that all components were 
affected by the large mortality event in year 12 and the 
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large harvest event in year 13 in all three models, so all 
constraints in set B that crossed years 12 and 13 were 
deleted. 

Additionally, the large mortality event in year 12 for 
populations 3 and 4, and the subsequent harvest event of 
live trees in population 4, suggest that those years should 
not be included as endpoints for the assumed affected com- 
ponents either. Therefore, those rows were also deleted. 
Data from across the anomaly years were not combined in 
the initial estimates for the affected components or total 
change in basal area. That is, a single panel's estimate was 
used in the anomaly year and surrounding years treated as 
endpoints. A 3-year average or a single-year's mean re- 
placed the 5-year moving average in the initial estimates, 
where appropriate. 

The four estimators (the EWD estimator and the three 
candidate models for the mixed estimator) for each compo- 
nent were calculated for each of the 200 sample simulations 
drawn from each population. The mean-squared difference 
(MSD) and mean difference (MD) between each of the four 
estimators and the true values for each of the 20 intervals of 
interest beginning with years 3-4 and culminating with 
years 22-23 were calculated. 

Simulation Results 

For total basal area change and the four components of 
change, Figures 3 through 7 give the mean-squared differ- 
ences (MSD) and mean differences (MD) between the four 
estimators (the EWD estimator and the three candidate 
models for the mixed estimator) and the true values for the 
four populations. For clarity, the results for the candidate 
models are shown rather than using an information criterion 
and selecting the "best" model for each sample in the 
simulation (e.g., as in Van Deusen 1999). Otherwise, sim- 
ulation estimates from the 200 samples would come from a 
mixture of model choices, rendering results that would not 
provide as much insight as the results from the individual 
models. 

Figure 3 shows the statistics for total basal area 
change; note that all three models used in the mixed 
estimator have lower values for MSD almost everywhere. 
The notable exceptions occur near the endpoints. That is, 
the first and last intervals estimated, and near the anom- 
aly years for populations 2, 3, and 4. In populations 3 and 
4, the mixed estimator results are all much better than the 
EWD results for the years adjacent to the anomaly 
year(s), but not in the anomaly years. Recall that the 
EWD is using five panels' worth of data and placing the 
most weight on the central panel in the anomaly year, 
while the adjustments to the ME models have resulted in 
one panel's worth of data being used in the anomaly 
years. It is suspected that this result concerning the 
anomalous years is not conclusive; that is, we cannot 
normally expect better results from combining informa- 
tion across anomalous years, but would rather have an 
increased sample at times of higher uncertainty. This 
suspicion is supported by the results for years adjacent to 
the anomalous years, in that the EWD estimator's MSD 

Figure 3. The mean-squared difference (left) and mean difference 
(right) calculated from 200 five-panel samples (of 30 units per panel) 
for estimates of basal area change using the exponentially weighted 
difference estimator and models 1,2, and 3 for the mixed estimator for 
years 4 through 23 for the simulated populations. 

results are much higher than those for the ME models. In 
general, the MD results show that there is some distinc- 
tion between the estimation approaches in the contribu- 
tion of bias to the MSD. Although the empirical bias in 
almost all cases is low, we note that the empirical bias 
(MD) is lower for the EWD estimator during most years 
in population 1. Extremely low bias in the EWD estima- 
tor persists for longer than the ME as the estimates 
approach the anomaly years in populations 3 and 4. This 
advantage disappears for 2 years on either side of the 
anomaly years. 

The MSD and MD results for the entry component are 
given in Figure 4. Many of the same observations can be 
made by examination of Figure 4 as were made by 
examination of Figure 3 with respect to the reduction in 
differences in MSD between the estimators near the 
temporal endpoints. It also seems clear that the propor- 
tional difference in this statistic between the EWD and 
ME is greater for longer run lengths. That is, the differ- 
ence is much less distinct in populations 2, 3, and 4, 
where the run lengths are interrupted by anomalies. 
Where there is a separation in the MSD results for the 
ME models for entry, model 2 usually has the highest 
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Figure 4. The mean-squared difference (left) and mean difference 
(right) calculated from 200 five-panel samples (of 30 units per panel) 
for estimates of entry using the exponentially weighted difference 
estimator and models 1, 2, and 3 for the mixed estimator for years 4 
through 23 for the simulated populations. 

value of the three. In population 2, model 3 has the lowest 
values for MSD across the anomaly years, where there 
was a change in direction of harvest and mortality trend 
that would also affect subsequent entry. We also note that 
bias (MD) increases significantly when the modeling 
effort approaches the anomaly in population 4. 

Figure 5 gives the MSD and MD results for the live 
growth component. Both in natural populations and in 
these simulated populations, much of the sample contrib- 
utes to the live growth component. Examination of the 
figure shows very good results for both the EWD and the 
ME by both statistics for populations 1 and 2. This same 
figure shows the EWD estimator giving better results for 
MSD and MD, beginning with the anomalous years and 
lasting until year 18 in population 3 and year 19 in 
population 4. 

The MSD results for the mortality component are 
shown in Figure 6. Many of the same observations can be 
made from Figure 6 as were made from the previous 
figures with respect to the reduction in differences in 
MSD between the estimators near the temporal 
endpoints. It again seems clear that the proportional 
difference in this statistic between the EWD and ME is 

Figure 5. The mean-squared difference (left) and mean difference 
(right) calculated from 200 five-panel samples (of 30 units per panel) 
for estimates of live growth using the exponentially weighted differ- 
ence estimator and models 1,2, and 3 for the mixed estimator for years 
4 through 23 for the simulated populations. 

greater for longer run lengths. The difference is much 
less distinct in populations 2, 3, and 4, where the run 
lengths are interrupted by anomalies. Where there is a 
separation in the MSD results for the ME models for 
mortality, model 2 usually has the highest value of the 
three. In population 2, model 1 has the lowest values for 
MSD toward the center of the run lengths prior and 
subsequent to the change in direction of the mortality 
trend. This tendency of model 1 to be lowest in MSD 
toward the center of the run length is present but less 
pronounced in population 1. 

Observe that bias (MD) is usually an insignificant error 
component with respect to its contribution to total squared 
error for the EWD estimator. Again, we see a greater 
prediction bias for the ME models in population 1. This, in 
conjunction with the lower MSD values for ME in the same 
ranges, shows a much lower variance for the ME than the 
EWD estimator, at the cost of a slight increase in bias. Bias 
becomes the overriding error component for all of the 
estimators in populations 3 and 4 in the vicinity of the large 
mortality event of year 12. 

Figure 7 gives the MSD and MD results for the harvest 
component. The majority of observations discussed above 
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Figure 6. The mean-squared difference (left) and mean difference 
(right) calculated from 200 five-panel samples (of 30 units per panel) 
for estimates of mortality using the exponentially weighted difference 
estimator and models 1, 2, and 3 for the mixed estimator for years 4 
through 23 for the simulated populations. 

for the other components can be applied directly to the 
results for harvest. Of special interest are the MSD results 
for population 3. Recall that in models 1 and 2 for the 
mixed estimator it was assumed that the large mortality 
event in year 12 would also affect all of the other com- 
ponents. In model 3, that assumption was not made for 
harvest, and its constraint rows crossing year 12 were not 
deleted. Additionally, the full 5-year moving average was 
used as the initial estimate for harvest each year in model 
3, rather than treating year 12 as an endpoint. The much 
lower MSD for model 3 of the ME, as opposed to models 

I 
1 and 2, shows that the effect of the mortality event on 
harvest was not large enough to justify using fewer 
panels in the initial harvest estimates surrounding and 
including year 12. 

~ Conclusion 
Although none of the results is alarming in light of the 

underlying sample used to form the estimates, some of the 
results that favor the EWD estimator over the ME appear to 
have more to do with the choice between modeling the 
components in separate "chains" or using a more flexible 
model over the entire period, rather than with the choice of 

Year Ycor 

Figure 7. The mean-squared difference (left) and mean difference 
(right) calculated from 200 five-panel samples (of 30 units per panel) 
for estimates of harvest using the exponentially weighted difference 
estimator and models 1,2, and 3 for the mixed estimator for years 4 
through 23 for the simulated populations. 

estimation approach. This simply illustrates the basic tenet 
that there can be a fairly high cost to using a smaller sample, 
so one should have good reason to choose to define separate 
subpopulations for estimation. Once that choice has been 
made, the adequacy of each subpopulation's sample must be 
addressed. In the case of populations 3 and 4, the best 
solution for improving estimates in (and close to) the anom- 
aly years would be to augment the sample with additional 
data. 

There are no strictly design-unbiased estimators for 
the annual components of change available for tempo- 
rally rotating panel designs with an observation period 
longer than 1 year. The mixed estimation technique al- 
lows us to use simple models to make well-supported 
estimates at varying scales for designs of this type by 
drawing strength from measurements made on temporal 
"neighbors." The EWD estimators used here also draw 
strength from temporal neighbors for the individual com- 
ponents. The significant advantage of the ME technique 
is that it allows the formal consideration of theoretical 
relationships between the components in the form of 
constraints. We did not explore the additional advantage 
to the ME in that it provides an obvious framework for 
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the use of an information criterion to choose between 
different candidate models, as shown by Van Deusen 
(1999). In practice, an operational inventory should in- 
clude that capability. 

It is often assumed, in practice, that a compatibility 
requirement will bear some cost in suboptimization of 
one or more of the component estimates. This study did 
not attempt to quantify that cost. We note that all of the 
ME models contained the compatibility constraints (con- 
straint set A), while the EWD estimates were not con- 
strained. The ME models usually performed better in 
terms of the mean-squared difference statistic but had 
slightly elevated values for the mean difference statistic. 
Any cost of compatibility might be assumed to be a 
component of the latter. Since mean-squared error equals 
the variance plus bias squared, and the squared error 
statistic was quite favorable for models enforcing com- 
patibility, we can assume that the cost of compatibility 
has not been shown to be a significant consideration in 
this study. 
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of the period and harvested during year 4. Tree 5 enters during 
year 5. We write the population matrix as 

year = 

I, = 

Tree 
1 
2 
3 
4 
5 

In turn, we then define each component. The entry matrix is 

year = 

IE = 

Tree 
1 
2 
3 
4 
5 

The live matrix is 

year = 5 4 3 2 1 Tree 

The mortality matrix is 

year = 5 4 3 2 1 Tree 
0 0 0 0 0  1 
0 0 0 0 0  2 

IM = 1 0 0 0 0  3 
0 0 0 0 0  4 
0 0 0 0 0  5 

Appendix Finally, the harvest matrix is 

The following is an example of the population component 
matrices and the estimands that arise from them. Assume that 
we have of interest a population consisting of five trees over a 
period of 5 years. Tree 1 is alive and in the population for the 
entire period. Tree 2 enters during year 3 and survives for the 
rest of the period. Tree 3 enters during year 1, survives through 
year 4, and dies during year 5. Tree 4 is alive at the beginning 

year = 

IH = 

Tree 
1 
2 
3 
4 
5 
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To show that the components completely and uniquely partition the population, we show the population as the simple 
addition of the four component matrices: 

We define a value matrix of arbitrary units: 

In this population, trees always enter with a value of 1, therefore: 

The resulting population estimands are: 

I 
1 0 0 0  

-. 0 1 0 0  
Entry: e,,2 = S' ( I~ 'V~)=  0 0 1 0 

0 0 0 1  
0 0 0 0 

Live growth: 

I,,, = [([I, ** (VD)] + [I, ** (V - vE)])s] ' 1 
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Mortality: 

Harvest: 

The total value vector at times P to 1: 

The estimands are compatible because: 
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