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Abstract: A generalized three-dimensional concept of continuous forest inventories applicable to all common
forest sample designs is presented and discussed. The concept recognizes the forest through time as a
three-dimensional population, two dimensions in land area and the third in time. The sample is selected from a
finite three-dimensional partitioning of the population. The partitioning is analogous to carving the volume into
pieces like a three-dimensional jigsaw puzzle. Each puzzle piece is defined by the selection volumes of
observation sets on the individual trees existing in the forest during the period of interest. The concept is a
temporal extension of an alternative view of forest sampling offered in Roesch et al. (1993, Sur. Methods
19(2):199–204) and results in a finite number of independently selected three-dimensional sample units. FOR.
SCI. 54(4):455–464.

Keywords: spatial-temporal sample design, estimation, forest change

CONTINUOUS FOREST INVENTORIES and monitoring
efforts are concerned with evaluating the dynamic
state of the targeted forest populations. The inven-

tories rely on a continuous sampling of the forests that can
usually be described as a three-part process. First a set of
random points is located in two-dimensional space, second
a set of times of observation is determined, and third, at
each selected time, a cluster of trees in the vicinity of each
point is selected for measurement by some rule. Often the
set of times of observation define periods of a specific
length, initiating in a specific year. In this article, I address
the fact that when the determination of the set of observa-
tion times is also random and the observations on the
sample selected are dependent on the time of observation,
the sampled population and the sampling frame are three-
dimensional. Such is the case in the US Forest Service’s
Forest Inventory and Analysis rotating panel sample design
(Reams et al. 2005).

Notation

The notational conventions used in this article are as
follows. Scalar variables are italicized. If the variable relates
to a specific population element it will be upper case and
indexed with one or more subscripts defined on the popu-
lation. If the variable is a sample observation of the popu-
lation parameter, it will be shown in lower case and indexed
with a subscript indicating sample position. Matrices are
represented by bold upper case characters. Necessary indi-
ces are given in subscripts. Vectors are represented by bold
lower case characters. Each vector is defined the first time
as either a row or a column vector, depending on its primary
use. If a vector is a row or column from a corresponding
matrix, the appropriate index is given as a subscript. A
transposed vector or matrix is indicated by a prime (�). For
the reader’s convenience, values defined in the article are
collected in Table 1.

Area-Based Forest Sampling

A short review of area-based forest sampling will facil-
itate the discussion. The two most common temporally
specific forest sampling rules are (circular, fixed-area) plot
sampling and (horizontal) point sampling. In the former, all
trees for which the center of the cross-section of the tree
bole, at a fixed height above the ground (e.g., 1.37 m), is
within a constant horizontal distance (d) of the random point
are included in the sample. In the latter, tree i is selected for
the sample if the center of the cross-section of the tree bole,
at a fixed height above the ground (e.g., 1.37 m), is within
a horizontal distance �ri of the random point, where ri is the
radius of the cross-section (in meters) and � is a constant.
The constant � is chosen such that �2 � baf�1, where baf
is the basal area factor, or the number of square meters of
basal area per hectare represented by each sample tree.
Therefore, tree i is selected with probability proportional to
the plot size, �d2, in plot sampling and with probability
proportional to tree basal area, �ri

2, in point sampling (e.g.,
see Roesch et al. 1993). By definition, these areal-based
designs are two-dimensional because the sample frame par-
titions a two-dimensional population resulting from a pro-
jection of the earth’s surface to a plane. There are many
variations of these and other areal sampling schemes, some
of which can be found in Avery and Burkhart (2002), Shiver
and Borders (1996), and Husch et al. (2003).

Roesch et al. (1993) review descriptions of the sample
unit in the forestry literature for the various methods of
temporally specific forest sampling. For instance, in point
sampling the tree is sometimes considered the sample unit
(e.g., Oderwald, 1981), whereas at other times the point
itself is considered the sample unit (e.g., Husch, 1955). The
cluster of trees associated with the point was considered the
sample unit in Palley and Horwitz (1961). Roesch et al.
(1993) showed an alternative conceptualization that was
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applicable to all area-based forest sampling schemes. They
explain the idea as the jigsaw puzzle view of forest sam-
pling in which the sample units are the mutually exclusive
sections of ground resulting from the overlapping selection
areas of the individual trees in the forest. These are the same
areas as the regions of Palley and O’Regan (1961). Palley
and O’Regan (1961), however, treated these regions as
elements of the fundamental probability set for selecting
clusters of trees, with the population of individual trees
comprising the primary population of interest. In the jigsaw
puzzle view, the land area is the primary population of
interest. The population (or the puzzle picture) is partitioned
into mutually exclusive, exhaustive sample units (the puzzle
pieces), which together comprise the sample frame. Figure
1 gives a simple illustration for areal-based sampling, sim-
ilar to that found in Roesch et al. (1993). In that view, each
segment, or puzzle piece, is a sample unit because a random
point landing in each segment (a through h in Figure 1)
would result in a unique set of observations. A probability
sample exists because each puzzle piece has a defined

probability of selection, proportional to its size, and the total
of these probabilities over all puzzle pieces is equal to 1.
This allows the construction of unbiased estimators for any
attribute of interest that can be observed in association with
the ground segments.

Roesch et al. (1993) also showed that the theory is appli-
cable to remeasured samples for two specific points in time. In
Figure 2, the area depicted in Figure 1 is remeasured at a
subsequent time from the same points creating a new sampled
population or puzzle picture, formed by intersecting the tree
selection areas of times 1 and 2. Trees 1, 2, 3, and 4 are
centered at their respective numbers. Tree 4 is new at time 2.
The solid circles represent the unconditional selection areas of
the trees at time 2, and the dashed circles represent the uncon-
ditional selection areas at time 1. Each of the segments created
by overlapping the two sets of unconditional probabilities is a
sample unit. A sample unit created from the joint distribution
of time 1 and time 2 probabilities is selected in proportion to its
size and is associated with a unique set of measurements
jointly spanning times 1 and 2.

Table 1. Notation used in the manuscript

Variables

d Horizontal distance
baf Basal area factor
� baf�1/2

ri Radius of the cross-section of tree i at a height of 1.37 m
Ki,o K-circle of tree i at time o
Yi,o Value of an attribute of interest for tree i at time o
yi,o Observed or measured value of Yi,o

Y*,o Total value of interest over all trees at time o
Ỹ*,o Total value of interest at time o across all segments
ỹs,o Weighted total value of interest at time o for segment s
nc Number of cycles
g Number of panels
P ncg, length in years of the temporal dimension of the population
A Area of the areal dimension of the population
VT P � A, the total areal-temporal volume of the population
vi,o Spatial-temporal sample volume for tree i at time o
�i,p Probability that tree i is assigned to panel p
�i,p,S Probability of selection for a specific set, S, within panel p, of observations on tree i
�ip Probability of selection for any observation from panel p on tree i
�i,p Probability of observing the attributes associated with tree i in year o
p̃s(i,o) Proportion of vi,o intersecting with population segment s, corresponding to observation set S

Vectors
yo Column vector of length N, containing the time o value of yi,o for each tree i in the population
�i the g-length row vector for tree i of the �i,p in order p � g to 1
��,o the column vector extracted from column o of �, corresponding to year o
�i,� the row vector extracted from row i of �, corresponding to tree i
�̃ Column vector of length M, with row s containing the probability of selecting segment s, �̃s

zi,o Column vector of length M, containing a 1 for each segment that partitions the selection volume for tree i at time o,
and a 0 otherwise

p̃s(o) Column vector of length N, containing p̃s(i,o) in position i
1r Summation column vector of ones of length equal to the subscript (r)
w Vector of length M, with each element containing the number of times the corresponding segment s appears in the

sample (Ws)
ÿo Vector of length m containing the values of ỹs,o for each segment in the sample
ỹo Vector of length M containing the values of ỹs,o for each segment in the population

Matrices
V Matrix consisting of N rows and P columns containing vi,o in row i and column o
� (N � P) matrix consisting of nc copies of �i in each row i
� (N � P) matrix in which row i, column o contains the probability of observation for tree i at time o
�̈ (m � m) diagonal matrix in which row i, column i contains �̃s for observation i
�̃ (N � N) diagonal matrix in which row i, column i contains element i from �̃
P̃o (N � M) matrix with column s containing p̃s(o)

wo (N � N) diagonal matrix in which element i, i is the number of times tree i is selected at time o
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Area-Based Forest Sampling Through Time

When considering horizontal point samples that have
been measured at two specific points in time, Van Deusen et
al. (1986, Figure 1) implicitly gave a conditional probability
of selection for membership of an individual tree in cate-
gories defined by whether it will be measured once or twice.
This should give one pause, for it illustrates that if a tree is
selected at sample time t1 from a permanent point and it
lives until sample time t1 � k, most forest sampling rules
would result in it also being measured at time t1 � k.

Therefore, the probability of selection of the tree at time t1
� k (conditional on its selection at time t1) is equal to 1, a
fact that is of primary interest owing to the dependence on
the time t1 sample. Therefore, successively applying the
two-dimensional design while considering only the uncon-
ditional, temporally specific, probabilities is erroneous, be-
cause new, independent samples are not taken each time.
One could attempt to sidestep the issue by arguing that the
population is an infinite set of points within two-dimen-
sional space, with a point being the sample unit and there-
fore the same sample is merely reobserved for associated
characteristics. However, when the observations of the as-
sociated characteristics are temporally dependent and the
times of observation are randomly assigned, the potential
sets of observation times must be considered in the defini-
tion of the sampled population for a probability sample to
exist.

Three-Dimensional Sampling of Forest
Populations

Alternatively, one could argue that the set of trees oc-
curring over the area of interest throughout the period of
interest is the biological population of interest, rather than
the set of trees (and associated measurements) occurring at
each specific point in time. To make estimates for the target
population, the sampled population must be identifiably
associated with the target population. This requires knowl-
edge of the probability of inclusion for the realized set of
observations on each tree in the sample over the course of
the period of interest. Because there are potentially many
sets of observations realizable for each tree in the popula-
tion, we are led to a reconsideration of the sampled popu-
lation and the sample unit.

The Three-Dimensional Jigsaw Puzzle View

In this article, I extend the jigsaw puzzle view of Roesch
et al. (1993) to include time as a third dimension of the
sample frame, facilitating a conceptualization of samples
measured at randomly selected times or sets of times. I will
show that this conceptualization provides a finite number of
mutually exclusive and independently selected sample units
for continuous forest inventories. The theory given here is
quite robust, whereas a specific heuristic example is given
in the Appendix.

The Sample Unit

Each sample unit is a three-dimensional puzzle piece
resulting from partitioning the population volume with a
solid of revolution for each tree i, created by integrating ai

over time. The individual tree spatial-temporal volumes
may be truncated on the sides when adjacent to an areal
edge of the population and on the tops and bottoms by time
limits of the population. Some designs, such as the panel
design discussed below and in the Appendix, will require
the union of disjoint pieces of the volume to form a single
sample unit. The volume of a sample unit (in area � time
units) is divided by the volume of the population to deter-
mine the probability of selection for the unit. Although time

Figure 1. The two-dimensional population as a jigsaw puzzle.
Trees 1, 2, and 3 are centered at their respective numbers. The
surrounding circles represent the selection areas of the trees.
Each lettered segment (puzzle piece) represents a sample unit,
selected in proportion to its size.

Figure 2. The remeasured sample as a jigsaw puzzle. The
same area depicted in Figure 1 is remeasured at a subsequent
time from the same points, creating a new sampled population
or puzzle picture, formed by intersecting the tree selection
areas of times 1 and 2. Trees 1, 2, 3, and 4 are centered at their
respective numbers. Tree 4 is new at time 2. The solid circles
represent the unconditional selection areas of the trees at time
2, and the dashed circles represent the unconditional selection
areas of each tree at time 1. Each of the segments is a sample
unit selected in proportion to its size and is associated with a
unique set of measurements jointly spanning times 1 and 2.
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is a continuous variable, the treatment of time as discrete
will often be found to be facilitative. This description en-
sures a perfect correspondence between the population,
sampling frame, and sample unit: the population is divided
up into mutually exclusive, exhaustive sample units (the
three-dimensional puzzle pieces) which in toto comprise the
sample frame. Each unit has a definite probability of selec-
tion and the total of these probabilities is equal to 1. I will
call this the three-dimensional jigsaw puzzle view of con-
tinuous forest inventory.

A major advantage of the three-dimensional view as
opposed to the two-dimensional view stems from the ob-
servation that the inclusion probability arises from a single
selection probability that is clearly assigned to each sample
unit. Deriving the inclusion probabilities in the two-dimen-
sional view requires recognition of conditional and joint
selection probabilities. Any change that would appear to
change a selection probability through time in the two-di-
mensional view actually defines a separate subpopulation or
sample unit by the three-dimensional definition. Note that
subpopulations may be defined by land area and/or by time.

If time is treated as discrete, the sample unit appears as
a set of puzzle pieces created by partitioning the area by
overlapping sets of discs, one set for each tree in each panel.
In point sampling, the disc size varies through time with tree
size, whereas in fixed-area plot sampling the disc size is
constant. Time can be partitioned into units of any length.
Without loss of generality, I will partition time by a length
of 1 year in this article and temporally extend the K-circles
of Grosenbaugh and Stover (1957) into cylinders. The K-
circle of tree i at time o, Ki,o, is an imaginary circle, centered
at tree center, with radius d in plot sampling and radius �ri,o

in point sampling. Palley and O’Regan (1961) clarified
earlier work by pointing out that these K-circles were trun-
cated for trees at the edge of the sampled area.

Suppose that there are N trees, with labels 1, 2, . . . , N,

associated with the three-dimensional population of tempo-
ral length P starting in year 1. That is, N is the number of
distinct trees that are alive in the land area of interest during
at least 1 year of the period of interest. In some inventories,
the land area of interest can change over time. This treatise
assumes that areas that are not of interest during the entire
span of P years constitute separate populations of interest.
The spatial-temporal sample volume for tree i at time o, of
size vi,o (in acres � year), is the portion of tree i’s K-cylinder
(or stack of K-cylinders) that is within the population at
time o and is the volume from within which a random point
will select the associated observations of tree attributes for
the sample. To index vi,o annually is equivalent to assuming
that vi, o is discrete and remains constant for an entire year.
The vi,o can be collected into the matrix,

V��
v1,P v1,P�1 · · · v1,1

v2,P v2,P�1

···
· · ·

···
vN,P

··· vN,1

� .

To estimate change over a defined area (A) and temporal
period, I assume a continuous forest inventory using a
rotating panel design and leave the simplification to a single
panel (or nonpaneled design) to the reader. An example of
a rotating panel design is in use by the Forest Inventory and
Analysis units of the US Forest Service (e.g., see Roesch
and Reams, 1999). Designs of this type consist of g mutu-
ally exclusive temporal panels. One panel per year is mea-
sured for g consecutive years, after which the panel mea-
surement sequence reinitiates. Each complete set of mea-
surements on all panels is often referred to as a cycle. As an
example, Table 2 shows the nine potential sets (excluding
the null set) of observations on a single live tree over two
cycles of a three-panel rotating panel design. Assume that

Table 2. Marginal and conditional probability expressions for the nine possible sets of observations of a single live tree i over two
cycles (6 years) of an annual rotating panel design consisting of three consecutive panels and a permanent placement of sample
points

Year 1 2 3 4 5 6 �̃

VT
�1Vi,� p1 p2 p3 p4 p5 p6

Panel 1 2 3 1 2 3
�i,�

1⁄3 1⁄3 1⁄3 1⁄3 1⁄3 1⁄3
Set Unrestricted case Increasing probability

1 X p̃1(1,1) (p1/3) 0
2 X X p̃2(1,1) (p1/3) (p1)/3
3 X ((1 � p1)(p(Y4�Ỹ1)))/3 (p4 � p1)/3
4 X p2(1 � p(Y5�Y2))/3 0
5 X X p2(p(Y5�Y2))/3 (p2)/3
6 X ((1 � p2)(p(Y5�Ỹ2)))/3 (p5 � p2)/3
7 X p3(1 � p(Y6�Y3))/3 0
8 X X p3(p(Y6�Y3))/3 (p6)/3
9 X ((1 � p3)(p(Y6�Ỹ3)))/3 (p6 � p3)/3

�i,� p1/3 p2/3 p3/3 p4/3 p5/3 p6/3
Probability of

observation
during cycle

(p1 � p2 � p3)/3
Cycle 1

(p4 � p5 � p6)/3
Cycle 2

Matrices from the text are subscripted to indicate a single row for tree i. The case of increasing probability assumes that a tree has positive growth from
year to year and is selected with probability proportional to size. The case of unrestricted probability assumes that negative growth is possible, and the tree
is observed with probability proportional to size. Set refers to the collection of years of observation. The “Cycle 1” observation could be made during years
1, 2, or 3. The “Cycle 2” observation could be made during years 4, 5, or 6.
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the continuous inventory consists of nc cycles and therefore
P � ncg years. That is, if panel 1 is measured in year y, it
will also be measured in years y � g, y � 2g, and so on,
through to year y � (nc � 1)g. Panel 2 would then be
measured in years y � 1, y � 1 � g, y � 1 � 2g, etc.

To define the matrix of selection probabilities, we must
incorporate the probability of each tree’s assignment to a
potential measurement panel. Represent the probability that
tree i is assigned to potential measurement in panel p as �i,p

and ensure that �p�1
g �i,p � 1. Although there are a number

of ways that this can be done, the simplest way would be to
divide the land area into “panels” using a randomly-placed
grid with cells of known size, and assign trees to panels
based on their basal centers. For each tree, form a g-length
row vector �i of the �i,p in order p � g to 1. Concatenate
nc copies of �i into an ncg-length row vector. Order the N
resulting row vectors from 1 to N to form the matrix �.
Often, the rows of � will be identical, as would be the case
if panel assignment were area-based. If it were further true
that a tree had the same probability of being assigned to
each panel, then the elements of � would all be equal. In all
cases, the elements of each row will sum to nc, and the
elements over all rows and all columns will sum to ncN. The
unconditional probabilities of observation owing to a ran-
dom point in three-dimensional spatial-temporal volume
can be then be represented by the matrix,

� � VT
�1(� �* V)

��
�1,ncg �1,(g�1)�(nc�1)g · · · �1,1

�2,ncg �2,(g�1)�(nc�1)g

···
· · ·

···
�N,ncg

··· �N,1

�
where VT is the total areal-temporal volume of the popula-
tion, and � * indicates element-by-element matrix multipli-
cation, that is, each element (i, p) in � is multiplied by the
corresponding element (i, p) in V. A vector equal to a
specific column of �, corresponding to a specific year o
will be denoted ��, o. A vector equal to a specific row of �,
corresponding to a specific tree i will be denoted �i, �.

Often, the probability of selection for a specific temporal
set of observations on the tree is of interest; that set is a
subset of all potential observation times within the panel. By
the most common forest sampling rules, there are poten-
tially nc sets of observations on each tree for each panel.
Using the standard notation of probability theory as can be
found in Olkin et al. (1980), the probability of selection, by
a random point in three-dimensional space for a specific set
S within panel p, of observations on tree i (�i,o,S) is �i,p,S �
�i,pp(S) � �o�1

nS �i,o�S, where p(S) is the probability that
set S of panel p is selected and ns is the number of obser-
vations in the set.

The joint probability of selection, by a random point
in three-dimensional space, for a set, S1, of observations

(indexed by time of observation o) on tree i and a set S2

on tree j is

�iS1,jS2��
i,j
��

o�1

nS1

�i,o�S1, �
o�1

nS2

�j,o�S2�.

Assuming that tree centers do not move through time �i,p,S

� min(�i,o�S). If we further assume that the selection areas
do not shrink: �i,p,S � �i,min(o)�S. For completeness, ex-
press the probability of having made any observation from
panel p on tree i as �ip � �S�1

nipS �i,p,S, where nips is the
number of sets of observations on tree i within panel p.

When one considers all of the possible intersections of
all observation sets for all trees associated with the popu-
lation, one has fully defined all sample units and the sample
frame. That is, the spatial-temporal volume (or statue) has
been carved into pieces that are selected with probability
proportional to their size. Each piece is associated with a
unique set of observation times on trees in the forest.

A random point selected from the surface of a forest can
be used with any function to observe tree attributes through
time. If the function is temporally dependent, then one must
integrate over time to determine a probability of inclusion.
The probability of observing the attributes associated with
tree i in year o is �i,o � �̃�zi,o, where zi,o is an indicator
column vector of length M (the number of segments in the
population), containing a 1 in the position corresponding to
each segment s that partitions the selection volume for tree
i at time o and a 0 otherwise; and �̃ is a column vector of
length M, with each row containing the probability of se-
lecting each segment �s, corresponding to observation set S.
For later use, I also define the m � m diagonal matrix �̃
containing element s from �̃ in position (s, s) and zeros
elsewhere.

Let p̃s(i,o) be the proportion of vi,o intersecting with
population segment s, corresponding to observation set S.
Note that

p̃s�i,o� � � �̃s if tree i can be observed
�i,o from segment s at time o, and
0 otherwise.

Also, note that the sum over all segments s of p̃s(i,o) is 1. For
each segment at each time of observation, collect the N
values of p̃s(i,o) into a column vector of length N, by the
index i, denoted p̃s(o). Let Yi,o represent the value of an
attribute of interest for tree i at time o, and let yi,o represent
the sample measurement or observation of Yi,o. For time o,
collect the N values of Yi,o into a column vector of length N,
by the index i, denoted yo. I can now write a temporally
specific observation for each segment as a sum of weighted
tree values:

ỹs,o � p̃s(o)'yo. (1)

Represent a column vector of ones of length equal to its
subscript r as 1r. The temporally specific total value of
interest over all trees is then (Y*,o � 1�Nyo). For simplicity,
assume that the focus of interest is on the estimation of Y*,o,
using m random points to select m segments from the
population volume with the same assumptions as above
(that is, sampling is with replacement). Collect the m sample
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values of �̃s
�1 into an m � m diagonal matrix, denoted �̈�1.

Collect the m sample observations of ỹs,o into a column
vector of length m, denoted ÿo.

A naive estimator for attributes at a specific time o is one
that is calculated without the benefit of strength (or knowl-
edge) drawn from observations on other panels and is often
used to initialize more efficient estimators (e.g., Roesch,
2007). An unbiased, naive estimator of Y*,o for this sample,
selected with probability proportional to size, is

Ŷ*,o � m�1�̈�1ÿo � m�1(w'�̃�1)ỹo. (2)

where w is a column vector of length M, with each element
containing WS, the number of times the corresponding seg-
ment s appears in the sample, and ỹo is a vector of length M
containing the time o values of ỹs,o for each segment in the
population. Note that WS is a random integer between 0 and
m, inclusive, and all other quantities are fixed.

I represent a column vector of ones of length M as 1M

and define the total time o value of interest across all
segments as Ỹ*,o � ỹ�o1M. As in Roesch et al. (1993), to
show that Ŷ*,o is an unbiased estimator of Y*,o, I will first
show Ŷ*,o to be unbiased for Ỹ*,o and then show that Ỹ*,o

equals Y*,o. Following Cochran (1977, p. 252–255), I can
show Ŷ*,o to be unbiased for Ỹ*,o:

E�Ŷ*,o	 � E�m�1�w'�̃�1�ỹo	

� m�1ỹo' E��̃�1w	

� m�1ỹo' 
�̃�1�E�w	��.

Because w is a vector of multinomial random variables,
with expected value equal to m�̃, the result is

E�Ŷ*,o	 � m�1ỹo' 
�̃�1�m�̃��

� �m�1m�ỹo' 
�̃�1�̃�

� ỹo' 1M

� Ỹ*,o.

Substituting the right-hand side of Equation 1 for ỹs,o in
the definition of Ỹs,o and collecting the M column vectors
(p̃s(o)) into the N row by M column matrix P̃o:

Ỹ*,o � ỹo' 1M � �P̃o' yo�'1M. (3)

Therefore,

Ỹ*,o � yo' P̃o1M

� yo' 1N

� Y*,o Q.E.D. (4)

Expanding Equation 2 to include the definition of ỹo and
subsequent rearrangement gives

Ŷ*,o � m�1�w'�̃�1�ỹo

� m�1�w'�̃�1� �P̃o' yo�

� m�1�w'�̃�1P̃o' �yo

� m�1�Wo' ��,o
�1 �'yo (5)

where Wo is an N � N diagonal matrix in which diagonal
element i, i equals the number of times tree i is selected for
observation at time o and ��,o

�1 is an N � 1 column vector
with each element being the inverse of the corresponding
element of ��,o, previously defined as column o of �. The
final expression in Equation 5 is the three-dimensional
probability proportional to size estimator, in that it uses the
three-dimensional probability of inclusion to formulate tem-
porally specific estimates. The variance of Ŷ*,o is

Var(Ŷ*,o) � m�1��̃��̃�1ỹo � Ỹ*,o � 1M��'

� ��̃�1ỹo � Ỹ*,o � 1M�

� m�1�ỹo � Ỹ*,o � �̃�'��̃�1ỹo � Ỹ*,o � 1M�.

(6)

The sample estimate of the variance is then (Cochran, 1977)

var(Ŷ*,o) � m�1�m � 1)�1��̈�1ÿo � Ŷ*,o � 1m�'

� ��̈�1ÿo � Ŷ*,o � 1m�. (7)

Conclusion

The description of continuous forest inventories as a sample
of a three-dimensional finite population given above is
uniquely informative. It arose from the recognition of the
importance of the time of observation on the outcome of the
sample. This finite population view is useful in at least the
same two ways that the two-dimensional jigsaw puzzle view
was considered useful for forest inventories by Roesch et al.
(1993). Those uses were education and the construction of
sampling simulations to test sample design parameters and
estimation methods. With respect to education, students should
readily grasp the idea that regardless of the method used to
determine the observation points in space or time (e.g., remea-
sured plot sampling or point sampling, with or without tem-
poral panels), all continuous forest inventory schemes could be
thought of as cutting the puzzle volume up into pieces and
selecting the pieces with probability proportional to their size.
The simulation advantage is obvious: one must simply define
all of the sample units as well as their associated attributes of
interest and then select from the finite number of units as many
times as one chooses, rather than selecting from an infinite
population of points and determining all of the attributes as-
sociated with each point drawn in each and every iteration.

Another very practical advantage of this three-dimensional
jigsaw puzzle view of continuous forest inventories is that it
clearly defines the database structure necessary for any specific
spatial-temporal design. That is, the general development
above in Equations 1 through 7 can applied to any areal-
temporal forest sampling design to determine the appropriate
database structure for subsequent analyses. Although a thor-
ough discussion of database design is beyond the scope of this
article, the point is simple: databases work best when they are
organized in accordance with the most commonly performed
tasks. When temporal partitioning is required to calculate in-
clusion probabilities for estimation from a continuous forest
inventory, then a database that uses temporal partitions as a
dimension, rather than as a field or group of fields in the areal
dimension will usually be more efficient.
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Appendix

The following is a heuristic example of a population and sample matrices that arise from it. Assume that we have a population
consisting of N � 5 trees labeled A, B, C, D, and E, respectively, in a square area of 40 m on a side, over a period of P � 10 years.
Each tree occupies a row in an attribute matrix, and each year occupies a column. Tree A is alive and in the population for the entire
period. Tree B enters during year 3 and survives for the rest of the period. Tree C enters during year 1, survives through year 9, and
dies during year 10. Tree D is alive at the beginning of the period and harvested during year 4. Tree E enters during year 10. Define
an attribute matrix, consisting of the collected vectors, yi,o, of attributes for each tree i at each time o:

Assume that horizontal point sampling with a basal area factor of 3 m2/ha will be used to determine sample trees for
measurement in a continuous forest inventory using an annually rotating panel design in which there are five panels, each
applied with equal probability. If tree radius is in cm, then � � 0.57735. Therefore,

For p � 1 to 5�i,p � 0.2, and 	i � [0.2 0.2 0.2 0.2 0.2], and

V���2 * �
rA,10

2 rA,9
2 · · · rA,3

2 rA,2
2 rA,1

2

rB,10
2 rB,9

2 · · · rB,3
2 0 0

0 rC,9
2 · · · rC,3

2 rC,2
2 rC,1

2

0 0 · · · rD,3
2 rD,2

2 rD,1
2

rE,10
2 0 · · · 0 0 0

� � �
vA,10 vA,9 · · · vA,3 vA,2 vA,1

vB,10 vB,9 · · · vB,3 0 0
0 vC,9 · · · vC,3 vC,2 vC,1

0 0 · · · vD,3 vD,2 vD,1

vE,10 0 · · · 0 0 0
�.

���
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

�.

year � 10 9 · · · 3 2 1 Tree

Y��
yA,10 yA,9 · · · yA,3 yA,2 yA,1 A
yB,10 yB,9 · · · yB,3 0 0 B

0 yC,9 · · · yC,3 yC,2 yC,1 C
0 0 · · · yD,3 yD,2 yD,1 D

yE,10 0 · · · 0 0 0 E
� .
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The probability matrix of observing the attributes of each tree i during each year o is

This particular design has 15 potential temporal partitions of the population for the observation sets. These include the five
partitions (T1, T2, T3, T4, and T5, below) corresponding to the respective events ({E1,6}, {E2,7}, {E3,8}, {E4,9}, and {E5,10},
where the subscripts indicate years of panel measurement) that a tree (or set of trees) is observed in both years of each panel,
and the 10 partitions (T6, T7, T8, T9, T10, T11, T12, T13, T14, and T15) corresponding to the respective events ({E1}, {E2}, {E3},
{E4}, {E5}, {E6}, {E7}, {E8}, {E9}, and {E10}) that a tree (or set of trees) is observed in only one of the subscripted population
years 1 through 10. The 15 temporal panels into which the population is divided are then

T1 � 
E1,6� T6 � 
E1� T11 � 
E6�
T2 � 
E2,7� T7 � 
E2� T12 � 
E7�
T3 � 
E3,8� T8 � 
E3� T13 � 
E8�
T4 � 
E4,9� T9 � 
E4� T14 � 
E9�
T5 � 
E5,10� T10 � 
E5� T15 � 
E10�

Additionally, a tree (or set of trees) might not be observed at all. If all trees had been alive for all periods, this would lead to ( 1
16)5 �

1,048,576 potential observation sets. However, in this example tree A is eligible for all 15 temporal partitions, tree B for 11 temporal
partitions, tree C for 13 temporal partitions, tree D for 3 temporal partitions, and tree E for 1 temporal partition, leading to

�16
1 ��12

1 ��14
1 ��4

1��2
1� � 21,504 potential combinations.

Under the common sampling rules, we can assume that once a tree is measured, it will be measured at each successive occasion as
long as it exists. Under this assumption tree A is eligible for 10 temporal partitions, tree B for 8 temporal partitions, tree C for 9
temporal partitions, tree D for 3 temporal partitions, and tree E for 1 temporal partition, which leads to at most

�11
1 ��9

1��10
1 ��4

1��2
1� � 7,920 potential combinations.

Knowledge of the spatial clustering of the trees is necessary to define the potential sets of observations.
Under the same assumptions as above, recall that tree A is eligible for 10 temporal events, tree B for 8 temporal events,

tree C for 9 temporal events, tree D for 3 temporal events, and tree E for 1 temporal event, The sets of tree observations
potentially associated with each of the 15 temporal events would then be

S�T1� 
 
A1,6, C1,6, AC1,6, A1,6� S�T9� 
 
A4�

S�T2� 
 
A2,7, C2,7, AC2,7, A2,7� S�T10� 
 
C5,A5�

S�T3� 
 
A3,8, B3,8, C3,8, AB3,8, AC3,8, BC3,8, ABC3,8, A3,8� S�T11� 
 
A6, B6, C6, AB6, AC6, BC6, ABC6, A6�

S�T4� 
 
A4,9, B4,9, C4,9, AB4,9, AC4,9, BC4,9, ABC4,9, A4,9� S�T12� 
 
A7, B7, C7, AB7, AC7, BC7, ABC7, A7�

S�T5� 
 
A5,10, B5,10, AB5,10, A5,10� S�T13� 
 
A8, B8, C8, AB8, AC8, BC8, ABC8, A8�

S�T6� 
 
D1,, A1� S�T14� 
 
A9, B9, C9, AB9, AC9 BC9, ABC9, A9�

S�T7� 
 
D2, A2� S�T15� 
 
A10, B10, E10, AB10, AE10, BE10, ABE10, A10�

S�T8� 
 
D3, A3�

� � VT
�1(� �* V)

� �
0.2VT

�1�rA,10 0.2VT
�1�rA,9 · · · 0.2VT

�1�rA,3 0.2VT
�1�rA,2 0.2VV

�1�rA,1

0.2VT
�1�rB,10 0.2VT

�1�rB,9 · · · 0.2VT
�1�rB,3 0 0

0 0.2VT
�1�rC,9 · · · 0.2VT

�1�rC,3 0.2VT
�1�rC,2 0.2VT

�1�rC,1

0 0 · · · 0.2VT
�1�rD,3 0.2VT

�1�rD,2 0.2VT
�1�rD,3

0.2VT
�1�rE,10 0 · · · 0 0 0

�
� �

�A,10 �A,9 · · · �A,3 �A,2 �A,1

�B,10 �B,9 · · · �B,3 0 0
0 �C,9 · · · �C,3 �C,2 �C,1

0 0 · · · �D,3 �D,2 �D,1

�E,10 0 · · · 0 0 0
�.
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where the letters within brackets indicate the tree or combination of trees potentially observed at the subscripted times relevant
to the temporal partition (one or both times of potential panel measurement). Conventionally, the empty set is indicated by
A, which is also subscripted to indicate the times relevant to the temporal partition.

Given the potential observation sets above, for the five-tree population, this results in at most

3��2
2� � �2

1� � �2
0�	 � �0

0� � 7��3
3� � �3

2� � �3
1� � �3

0�	 � 4��1
1� � �1

0�	
� 3�� 2!

2! � 0!�� � 2!

1! � 1!�� � 2!

0! � 2!�	� � 0!

0! � 0!�� 7�� 3!

3! � 0!�� � 3!

2! � 1!�� � 3!

1! � 2!�� � 3!

0! � 3!�	� 4�� 1!

1! � 0!�� � 1!

0! � 1!�	
� 3(4) � 1 � 7(8) � 4(2)�77 potential spatio-temporal combinations.

The matrix of dbh values (cm) for each tree at each time is

Year 10 9 8 7 6 5 4 3 2 1 Tree

5,10D � �
29 28 27 26 25 24 23 22 21 20 A
20 19 18 17 16 15 14 13 0 0 B
0 21 20 19 18 17 16 15 14 13 C
0 0 0 0 0 0 0 37 35 33 D
13 0 0 0 0 0 0 0 0 0 E

.

Assume also that the bole centers of trees A through E, respectively, within the 1,600 m2 area had coordinates (in m) of (12,
12), (19, 15), (23, 32), (23, 20), and (30, 20). Figure A1 shows the three-dimensional population highlighting a panel 1
selection. From this figure, all sampling probabilities can be derived for this population. Figure A2 gives the simplest
two-dimensional depiction of the probability space in this probability proportional to size sample design for the three-di-
mensional population. The map of the tree bole centers is in the upper left graph and the probability spaces for each outcome

Figure A1. The probability volumes within the three-dimensional population described in this Appendix.
The population consists of potential observation sets on five trees labeled A, B, C, D and E, in a 1,600 m2

area over a period of 10 years. The figure highlights a panel 1 selection, which is specific to years 1 and 6.
Depending on the context, the joint, marginal, or conditional probabilities may be of interest. The single ray
passing through time and partitioned by panel is “selecting” A1,6, D1, and B6. Note that A1,6 is selected from
temporal partition S(T1), whereas D1 is selected from temporal partition S(T6) and B6 is selected from
S(T11), all described in the text.
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for each of the 15 temporal partitions in the population appear in the succeeding 15 graphs. Incorporating knowledge of the
spatial distribution, we see that the potential outcomes for each partition are reduced to

S�T1� � 
A1,6, C1,6, A1,6� S�T6� � 
D1, A1� S�T11� � 
A6, B6, C6, AB6, A6�

S�T2� � 
A2,7, C2,7, A2,7� S�T7� � 
D2,A2� S�T12� � 
A7, B7, C7, AB7, A7�

S�T3� � 
A3,8, B3,8, C3,8, AB3,8, A3,8� S�T8� � 
D3, A3� S�T13� � 
A8, B8, C8, AB8, A8�

S�T4� � 
A4,9, B4,9, C4,9, AB4,9, A4,9� S�T9� � 
A4� S�T14� � 
A9, B9, C9, AB9, A9�

S�T5� � 
A5,10, B5,10, AB5,10, A5,10� S�T10� � 
C5, A5� S�T15� � 
A10, B10, E10, AB10, A10�

This results in M � 54 spatial-temporal combinations. The entire three-dimensional sample frame consists of the union of the
sets in S(T1) through S(T15).

Figure A2. The tree centers (upper left) and K-circles for each set of outcomes for each
of the 15 temporal partitions of the population in the Appendix.
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