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Abstract: The sample design of the USDA Forest Service's Forest Inventory and Analysis Program (FIA) with 
respect to a three-dimensional population (forest area X time) of tree attributes is formally defined and evaluated. 
The definitions for both the traditional components of growth, as presented by Meyer (1953, Forest Mensura- 
tion), and a discrete analog to the time invariant redefinition of the components of change given by Eriksson 
(1995, Forest Sci. 41(4):796-822), are compared and contrasted. Special problems in the application of the 
traditional definitions due to the continuous and overlapping temporal intervals featured in the sample design are 
explored. This exploration supports a contention that the traditional definitions are at a theoretical disadvantage 
because they are not based purely on the population(s) of interest, while the redefinitions dubbed the components 
of change by Eriksson (1995) were based solely on population attributes. The temporally discrete analog to the 
Eriksson definitions are used in this article to define the three-dimensional populations in terms of a set of 
mutually exclusive component matrices that can be summed to represent the entire population, independently of 
the sample design. FOR. SCI. 53(3):406-413. 

Keywords: sampling, forest change, volume growth 

T HE USDA FOREST SERVICE'S Forest Inventory and 
Analysis Units (FIA) report on the condition of 
forests within the United States and its temtories. 

To this end, the Forest Service uses a temporally rotating, 
panelized forest inventory sampling design to estimate both 
the current resource inventory and changes in the resource. 
The sample plots are located relative to a systematic trian- 
gular grid consisting of g mutually exclusive interpenetrat- 
ing panels. If the number of sample plots equals n, then each 
panel consists of approximately n/g plots. One panel is 
measured per year for g consecutive years, after which the 
panel measurement sequence reinitiates. That is, if panel 1 
was measured in 1997, it will also be measured in 1997 + 
g, 1997 + 2g, and so on. Panel 2 would then be measured 
in 1998, 1998 + g, 1998 + 2g, etc. (Figure 1.) The panels 
are assigned to plots in a spatially systematic manner. Since 
the initiation of the rotating panel design for FIA, there have 
been quite a few articles focusing on the combination of 
panels for the purpose of improving value per area esti- 
mates. Fewer focus on the improvement of value estimation 
temporally. Some exceptions have been Van Deusen (1996, 
1999) and Roesch et al. (2003). 

For simplicity, I will restrict this discussion to the case of 
five annual panels (g = 5) sampling a fixed area through 
time. Considering a fixed area allows us temporarily to 
ignore land entering and exiting the area of interest, as may 
occur in actual inventories. This can be a practical problem; 
however, it is not a theoretical problem. A practitioner must 
simply keep in mind that if land is allowed to enter and exit 
the population of interest, then either the conditional inclu- 
sion probabilities must be treated as temporally specific or 
those areas that were not in the population during the entire 
period of interest must be treated as subpopulations. As 
stated above, it is intended that a panel be measured each 

year. Ideally, starting with year 6,20% of the plots (i.e., one 
panel) will be remeasured each year. Roesch and Reams 
(1999) give one explanation of the current sample frame, as 
it applies to implementation of the design by the Southern 
Research Station (SRS) for the interested reader. 

In this article assume that the entire sample frame is a 
three-dimensional volume, two dimensions constitute the 
land area and the third dimension is time. One could con- 
sider the sample unit to be a series of line segments, linear 
in time. That is, when the time dimension is collapsed onto 
the area dimensions, each series of line segments collec- 
tively appear as a single point on the area. Each line seg- 
ment within a series is of an appropriate length to the 
question being addressed. For discussion, I will begin with 
a line segment of length 1 year. Individual segments occur 
every g years within each series. In the case we consider, the 
entire series of segments constitutes the sample unit. The 
temporal slices of interest could be of any height; however, 
the thinner the slice, the smaller the sample per land area of 
interest and the taller the slice, the greater the number of 
sample subpopulations due to potential changes in both the 
land area of interest and the biological subpopulations of 
trees within the land area. In this case, the entire series of 
line segments within the panel (one segment for each time 
the panel is measured within a period of interest) constitutes 
the sample unit within an infinite population. The role of 
this linear sample unit in the three-dimensional population 
is analogous to the role of the sample point in the two-di- 
mensional populations usually considered in the forestry 
literature. Likewise, a three-dimensional finite population 
sampling unit can be defined by collecting sets of these 
series of line segments in the same way that Roesch et al. 
(1993b) defined a two-dimensional (areal) finite unit by 
collecting sets of points. For most forestry purposes, annual 
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5-Panel interpenetrating Design 

Figure 1. A temporal rotating panel design with five panels. 

slices will constitute the minimum height for the line seg- 
ments to achieve a reasonable compromise between tempo- 
ral specificity and land area generality. 

FIA's bi-areal plot design (Bechtold and Patterson 2005, 
p. 29) consists of fixed area plots of two sizes resulting in a 
reduced but similar problem for estimating the components 
of growth to those that occur on variable-radius plots. The 
latter have received much discussion in the literature, owing 
to the phenomenon that trees cross thresholds of inclusion 
probability as they grow, e.g., Flewelling (1981), Martin 
(1982), Flewelling and Thomas (1984), Van Deusen et al. 
(1986), Roesch (1988, 1989), Roesch et al. ( 1989, 1991, 
1993a), Thomas and Roesch (1990), Roesch and Van 
Deusen (1993). This is not a concern here because we 
consider only the population of trees above the merchant- 
ability limit of 12.7 cm dbh and leave the obvious exten- 
sions to the cases of other (or multiple) merchantability 
limits to the reader. Specifically, only the population being 
sampled by the larger of the two plots in the bi-areal design 
is considered here. 

The remainder of the article is arranged as follows. First, 
I show the traditional components of growth as presented by 
Meyer (1953), and show estimators that have been used 
with analogous designs to estimate those components for 
this design. Not considered here are the many potential 
subcategories of these components, such as those owing to 
changes of tree class over time. Next, I show the intuitively 
appealing redefinition of the components of change given 
by Eriksson (1995), and explain how a temporally discrete 
analog to those components is related to an annual inventory 
design. 

The Traditional Components of Growth 
Traditionally, the components of forest growth have been 

expressed as: 

where Vi = the total value at time i, i = 1, 2; S = survivor 
growth; I = ingrowth; M = mortality; and C = cut. 

Estimators for the components of growth are considered 
compatible if they can replace the population parameters in 
Equation 1 without destroying the equality. Equation 1 was 
presented by Meyer (1953), and used in related contexts by 

Beers and Miller (1964), Flewelling (1981), Martin (1982), 
Flewelling and Thomas (1984), Van Deusen et al. (1986), 
Roesch (1988, 1989), Roesch et al. (1989, 1991, 1993b), 
Thomas and Roesch (1990), and Roesch and Van Deusen 
(1993), to name a few. 

Survivor growth is the growth in value that occurs on 
trees that are above some minimum merchantability limit at 
both measurement times 1 and 2, while ingrowth is the time 
2 value of trees that are below the merchantability limit at 
time 1 and above the limit by time 2. Mortality is the time 
1 value of trees that die during the measurement interval. 
Similarly, cut is the time 1 value of trees that are harvested 
during the measurement interval. 

Define the indicator column vector for ingrowth trees, i,, 
of length equal to the number of trees alive at either time 1 
or 2. Each row corresponds to an individual tree in the 
population and contains a 1 if the corresponding tree is an 
ingrowth tree and a zero otherwise. Similarly define the 
analogous indicator vectors for survivor trees, is, mortality 
trees, i,, and harvest trees, i,, utilizing the same indices 
as i,. 

The four indicator vectors are of equal length and can be 
concatenated into the population indicator matrix of four 
columns, P = i,: i,: i,: is. Each row of P sums to 1 
because, by definition, all trees in the population belong to 
one, and only one, of these four categories. Likewise, define 
the parameter matrix for the values of the population of 
trees at times 2 and 1, again using the same row indices as 
i,. That is, row i represents tree i, and column j represents 
time j = 2, 1: 

v 1 . 2  "1.1 

v2.2 "2.1 

Let v, represent the first column of V,,,, and v1 represent 
the second column of V,,,. Also, let i, = is + i, + i,, and 
i, = is + i, represent the merchantable population members 
at times 1 and 2, respectively. Additionally, we define the 
difference vector with one column and two rows: 

The change components to be estimated are: 

Ingrowth: I = i;v2; 
Survivor growth: S = iXV,,,d); 
Merchantable mortality: M = ihv,; 
Merchantable cut: C = i&v,. 

The instantaneous volumes to be estimated are 

Merchantable volume at time 1: V, = i;vl; 
Merchantable volume at time 2: V, = iiv,. 

For simplicity, we will assume a population of N trees, 
indexed with k = 1 to N,  with each tree having a known 
probability of inclusion for each random point, .rr, = aJA, 
where a, is the selection area of tree k, and A is the total area 
of the population. These assumptions disallow any potential 

Forest Science 53(3) 2007 407 



for edge bias because exact inclusion probabilities are 
known. Although the consideration of edge bias is beyond 
the scope of this article, a quite thorough treatment of the 
topic can be found in Ducey et al. (2004). The sample is 
represented by a diagonal matrix, W, indexed as above for 
each tree, k = 1, . . . , N, such that row k, column k contains 
a 1 if tree k is selected for the sample, and a zero otherwise. 

Let the expansion constant for tree k be C, = m,(n.rr,)-', 
where n is the number of points and m, is number of points 
from which tree k is selected for the sample. Note that in the 
FIA design m, may only take on the values of 0 or 1. Collect 
the expansion constants into an N X N diagonal matrix, II, 
indexed as above for each tree in the population, i = 1, . . . 
, N, such that row k, column k contains C,. 

Survivor Growth 

The sample of survivor trees can be represented by the 
vector +s = Qi,. The estimator for a sample of size n plots 
for the total value of survivor trees at time 1 can be ex- 
pressed as 

Likewise, the value of survivor trees at time 2 can be 
expressed as 

An estimator for the traditional definition of total survivor 
growth is simply the difference between 3, and 9,: 

growth model. Assuming this is not done, the sample-based 
estimator would be 

M = (n+M)rvl .  

Cut 
Trees that were alive and above minimum dbh at the first 

measurement but are harvested before the second measure- 
ment belong to the cut population. The sample of this 
population is represented as &- = qic .  

As with mortality, trees that were not sampled and below 
the minimum dbh at the first measurement but are cut before 
the second measurement will be treated as unobserved (even 
if, in fact, there is some evidence of their existence). As with 
mortality, growth on cut is sometimes estimated with the 
use of a model. When this is not the case, the sample-based 
estimator of cut would be 

Instantaneous Estimates of Volume 

The sample of trees at time 1 can be represented by the 
matrix JI, = Qi,. An estimator for a sample of size n plots 
for the total value at time 1 can be expressed as 

Likewise, the estimator for value at time 2 can be ex- 
pressed as 

Q2 = (III,b2)'v2, where &=!Pi2. 

Compatibility 

Ingro wth 

The traditional definition of ingrowth is the value at time 
2 of trees that were below the merchantability limit at time 
1 and above the limit by time 2. The sample of ingrowth 
trees can be represented by the vector JI, = Qi,. 

Several partitions of this sample category may be recog- 
nized, however we will not discuss them here because we do 
not need them for the most common estimator of ingrowth, 
which ignores any observations that were made on ingrowth 
at lime 1. The estimator for a sample of size n plots for the 
total value of ingrowth trees at time 2 can be expressed as 

Mortality 

Trees that were alive and above minimum dbh at the first 
measurement but die before the second measurement belong 
to the mortality population. The sample of this population is 
indicated by JIM = Qi,. 

The growth on trees that were not sampled and below the 
minimum dbh at the first measurement, become eligible but 
die before the second measurement, regardless of their final 
diameter, will be ignored (even if, in fact, there is some 
evidence of the existence of these trees). Growth on mor- 
tality is sometimes estimated through application of a 

The estimator for the merchantable value at time 1 can be 
re-expressed as Q, = 9, + M + e, while that for the 
merchantable value at time 2 is re-expressed as p2 = 3, + 
9. This leads to the compatible grouping, p2 - GI = S + 1 
-M-t. 

Above, we gave the simple sample based estimators for 
the components of growth by the traditional definitions of 
those components. The weakness of the traditional defini- 
tions of the components of growth lies in their inherent 
dependence on the length of the measurement interval. That 
is, the definition of the components of growth for the 
population of trees is dependent on the time that the relative 
sample stages are executed. Therefore, by this definition, 
these components are not strictly population parameters to 
be estimated. Rather, they are a convenient marriage of a 
population and its sample. Unfortunately, the marriage only 
remains convenient as long as the sample design does not 
change in any significant way. To relate the data to the 
population, the following two criteria must be met: (1) the 
time interval must be fixed, and (2) the duration of each 
measurement period must be sufficiently small so that 
growth within the measurement period can be ignored. 
Unfortunately, forest inventories often result in significant 
variance in the length of measurement interval and therefore 
growth data are usually "annualized" by simply dividing by 
the measurement interval for each plot. 

Previously, during the hlstoric periodic H A  inventories, 
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the average annual growth was estimated over a relatively 
long remeasurement interval. In the southern United States 
it was usually between 7 and 12 years. The estimate of 
average annual growth calculated over a shorter growth 
interval is actually a measure of a different population 
parameter, because tree growth is nonlinear with respect to 
time. Therefore, estimates from different measurement in- 
tervals are not readily comparable. For example, let us look 
from the population perspective and consider at first a single 
condition class. We will define a condition class as a group 
of stands similar enough to be modeled by a common yield 
curve. For discussion purposes, I will use a "typical" yield 
curve for cubic volume, specifically the one given in Avery 
and Burkhart (1983, p. 277), converted to cubic meters per 
hectare: 

where A = age of the stand. The graph for Equation 2 is 
given in Figure 2. 

When we calculate the average annual cubic meter ac- 
cretion from a series of t-year lags, (where t = 1, 2, 5, 10, 
and 20), by differencing the model in Equation 2 from itself, 
we obtain the five curves in Figure 3. That is, the curve for 
the t-year average accretion (R,) is 

If our sample design had a 2-year measurement interval 
(a 2-year lag), we would be selecting our estimates of 
average annual cubic meter accretion from the curve 
weighted the most toward the actual annual cubic meter 
accretion curve (the 1-year lag curve). If we used a 5-year 
measurement interval, we would be selecting our annual 
cubic meter accretion estimates from the curve weighted 
more toward the right. The 10- and 20-year curves are still 
further toward the right, and therefore "smoother." These 
curves are the sampling distributions from which we sample 
growth given a particular measurement interval. Given this, 
coupled with the fact that we sample many condition classes 
concurrently, all following different initial growth curves, 
the usual indifference assumption with respect to measure- 
ment interval length is ill advised. These observations sug- 
gest that the traditional definitions are inadequate for con- 
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Figure ?. The graph of a "typical" yield curve (Y = 0.0699726 * 
e10-3U- ), converted to cubic meters per hectare from Avery and 
Burkhart (1983, p. 277). 
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Figure 3. The average annual cubic meter accretion from a I-year lag, 
a 2-year lag, a 5-year lag, a 10-year lag, and a 20-year lag, using the 
model in Figure 2. 

tinuous forest inventories, such as the USDA Forest Ser- 
vice's annual inventory design. 

A Discrete Analog to the Components of 
Change 

Eriksson (1995) recommended a new set of definitions 
and labeled them the components of change, applicable over 
a temporal continuum as opposed to the traditional sample- 
based definitions defined over discrete periods. Eriksson 
(1995) took the position that the traditional growth compo- 
nent definitions do not allow estimators that are time-addi- 
tive over multiple period lengths. For example, if a 10-year 
period was of interest and all plots were measured in years 
0, 5, and 10, then the sums of the expected values of the 
estimators of each component over the two intervals (years 
0-5 and 5-10) would not equal the expected value of the 
estimators sans the year 5 measurement. The components of 
change given by Eriksson (1995) are defined by population 
attributes and are therefore not sample-dependent. Nonad- 
ditivity is a valid concern due to a fundamental flaw in the 
original definition of the components of growth. Addition- 
ally, the redefinitions become extremely compelling in the 
realm of annual inventories. A mild criticism of Eriksson's 
work that could be raised by adherents to design-based 
estimation is that for the time additivity argument to be true, 
one must somehow have knowledge of unobserved events. 
Specifically, the series of events in which a tree becomes 
eligible to be measured and subsequently dies or is har- 
vested between observation instances must be known. 
Eriksson (1995) points out this problem and offers a partial 
solution. A full solution is not possible. However, I might 
remind the reader that sampling is, by definition, a subset of 
the potential observations on a natural system. The discus- 
sion above at least suggests that the traditional definitions 
are inadequate for time-interpenetrating sample designs, 
such as FIA's rotating panel design. 

The traditional component of ingrowth consists of (1) the 
value of the ingrowth trees when they reach the minimum 
merchantability limit, and (2) the value growth subsequent 
to attaining the minimum merchantability limit. Eriksson 
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(1995) identified this latter component as a component of 
survivor growth, using the argument that the tree is a 
survivor once it has passed the minimum merchantability 
threshold (or "entered" the population), regardless of 
whether or not the entry was observed. 

To apply the time invariant definition of the components 
of change and to properly partition the population, the 
traditional ideas of ingrowth and survivor growth become 
less useful, and all growth occurring after a tree's entry into 
the merchantable size class would more properly be referred 
to as live merchantable tree growth. Following the work in 
Eriksson (1995), live tree growth is the growth in value that 
occurs on trees after the minimum merchantability limit has 
been achieved. Entry is the value of trees as they attain the 
minimum merchantability limit. Mortality is the value of 
trees as they die, while Cut is the value of trees as they are 
harvested. Eriksson's (1995) definitions were purposefully 
continuous; however, I will use a discrete analog with a 
small (1-year) interval length. I am doing this for two 
reasons: (1) I am making an assumption that 1 year is about 
the minimum interval length, in most forest conditions, 
required for each of the respective change signals to over- 
power measurement error; and (2) to allow some reasonable 
temporal partitioning of the observations. The discrete in- 
tervals allow the definition of a set of indicator matrices, 
one for each component, having one row for each tree in the 
population during the forest inventory. To estimate the 
components of change for intervals of any length, let N = 

the total number of live merchantable trees that are in the 
population during a specific temporal period, h = the initial 
year in the period of interest, t = the number of years 
of interest, and P = the number of years in the population 
(t 5 P). 

Define the (N X P) indicator matrix for trees as they 
enter the merchantable population during the forest 
inventory: 

time= P P -  1 . . .  1 tree 

In I, and all subsequent population matrices, each col- 
umn represents a year, the first column being the most 
recent year of the inventory (or the present, P), and each 
successive column 1 year before the previous column. Each 
row corresponds to an individual tree in the population. A 1 
in row i and column j indicates that tree i entered the 
population in year j. All other entries in row i are zeros. 
Similarly define the analogous indicator matrices for tree 
mortality year, I,, and tree harvest year, I,. The indicator 
matrix for the live category also has one row for each tree 
and contains a 1 in the column for each year that a tree is 
alive and in the population of interest subsequent to the 
entry year and before its year of harvest or death, and a zero 

otherwise: 

t ime= P P -  1 . . .  1 tree 

The four indicator matrices are of equal dimension and 
sum to the population indicator matrix, I,. Observe that, by 
definition, the elements of I, consist solely of ones and 
zeros. The value matrix is analogously structured in that row 
i represents tree i, and column j represents time j in reverse 
annual order from the present year back: 

Entry value can be represented in the column vector 

In general, when used independently, we will index 
column vectors of V with the year represented, that is the 
column of V corresponding to year h will appear v,. Usually 
a specific period of length (t) beginning in year h within the 
length of the continuous inventory (years 1 through P) will 
be of interest. To effect the partitioning of V and derived 
matrices, we form the column vector y,,,, with a row for 
each year in reverse annual order from the last year to the 
first year of the inventory. A position contains a 1 for all 
years of interest (h + t through h) and a zero otherwise. 

The temporal selection operator f,+,,(.) selects the col- 
umns from a row vector or matrix that falls in the range h + 
t to t. For instance, the value matrix of interest may actually 
be a temporal partition of V: 

We should mention that by only partitioning V tempo- 
rally, there will be some rows of Vh+,, in which all values 
are zero because of trees not being in the merchantable 
population during the period of interest. 

We define a temporally inferior selection matrix, 5, 
having P columns and P rows, such that in the last P - 1 
columns, i, row i + 1 contains a one and all other entries are 
zero. The first row and last column contain all zeros. 

We also define the first difference matrix, D, with P 
columns and P rows, such that in the first P - 1 columns, 
i, row i contains a one and row i + 1 contains a negative 
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one, and all other entries are zero. The final column contains 
all zeros. 

We might be interested in estimators of the sum of the 
temporal vectors of population change components: 

Entry: Eh,h+i = ( ~ k @ ) ' y h + , h + ~ ,  

Live growth: 

Lh,h+t = { [ ( [ I L  ' * (VD)I  + [ I E  . * (V - ~ ~ ) ] ) 1 ' ~ ) ' ~ h + r . h + l ?  

where .* represents element-by-element matrix multiplica- 
tion and 1 is an ( N  X 1 )  summation vector of ones. When 
the negation operator (-) occurs between a matrix and a 
column vector, as in the above equation ( V  - @), and later 
in this article, it indicates subtraction of the column vector 
from each column of the matrix. Additionally, we have 

Mortality: M h , h + ,  = [ ( I M  -* ( ~ S ) ) ' l l ' y ~ + ~ , ~ + , ,  

and Harvest: H h , + ,  = [ ( I ,  a* ( V S ) ) ' ~ ] ' ~ ~ , , ~ ,  ,. 
Alternatively, we might be interested in estimators of the 

temporal vectors of population change components: 

Entry vector: e h + , h +  1 = ( I L v E )  .* [ yh+ , . ,+  ,I, 
Live growth vector: 

l h + t , h + l  = { [ ( [ I L  -* ( V D ) I  

+ [ ( I ,  '* (V - v ~ ) ] ) ] ' ~ }  ** [ ~ h + r , h + l l ,  

Mortality vector: mh+t,h+, = [ ( I ,  -* ( v S ) ) ' ~ ]  -* [ y , + , , , +  ,I, 
and Harvest vector: 

h h + r , h + l  = [ ( IH .* ( v ~ ) ) ' ~ ]  '* [ ~ h + t , h + l l r  

We also seek estimators of the total value vector at times h 
+ t to h: 

Yh+r,h = [ ( I P  .* ' ) I 1 ]  '* [ ~ h + r . h l .  

Sample-Based Estimators 
Again, we will assume a population of N trees, indexed 

with k = 1 to N ,  with each tree having a known probability 
of inclusion for each point, .rr, = aJA, where a, is the 
selection area of tree k and A is the total area of the 
population. Again, these assumptions disallow any potential 
for edge bias because exact inclusion probabilities are 
known. Also, without loss of generality, assume that a tree's 
assignment to temporal panel p is random, with probability 
equal to l l g .  In this case, the joint probability of selection of 
tree k in panel p from a single point is then .rr = ?I;Cg. k!' 

Let the sample panel be represented by a diagonal ma- 
trix, 3, indexed as above for each tree in the population 
during the inventory, k = 1, . . . , N, such that row k, column 
k contains a one if tree k is selected for the sample panel, 
and a zero otherwise. The time dependant representation of 
the sample 9, = 3 1 , .  

Let the expansion factors of the panel sample be repre- 
sented by an N X N diagonal matrix, H,, indexed as above 
for each tree in the population, i = 1, . . . , N, such that row 
k, column k contains rn,,(n.rr@)-', where m,, is the number 

of times tree k is selected for sample panel p from the n 
points. Again mg, like m, above, will only take on the 
values of 0 or 1 in the FIA design. 

The panel sample of merchantable trees living until the 
next year can be represented by the matrix W, = *I,, 
while the panel sample of entry trees since the previous year 
is represented by 3, = 31, .  Following suite, represent the 
panel sample of trees that will die before the next year as 
WM = *I,, and the panel sample of trees that will be 
harvested before the next year as W H  = *I,. Unfortu- 
nately, the panel design does not allow W,, VrE, VM, or qH 
to be uniquely observed because of the remeasurement 
interval of t years. Rather, what we observe are the vectors 

@E = * I E ~ h + ~ , h + l ,  #M = * I M Y ~ + ~ , ~ + I >  and JI', = 
W I H y h + t , h + ,  for entry, mortality, and harvest, respectively. 
For live growth let f  = 31gh+t,h+l, where f  is a column 
vector of length N .  Form another column vector of length N,  
J/,, the observation vector due to the sample. For i = 1 to 
N, let @,[i] = 1 if f [ i ]  = t .  

We will use the assumption that no growth occurred on 
mortality and cut trees during the year of death or harvest. 
During the time interval of interest, a tree can contribute to 
multiple components of change. For example, an individual 
may enter the population, live for 2 years, and then die 
between observation instances. 

With an overlapping panel design, not all of the events 
are observable because the measurement interval is t years 
and the minimum growth period that we are recognizing is 
1 year. However, it is important to distinguish clearly the 
attributes that truly belong to the population from those that 
are artifacts of the sample design. Any suggestion for esti- 
mation must recognize and efficiently use (1) a measure- 
ment interval length that is longer than the minimum growth 
interval of interest, and ( 2 )  annually overlapping measure- 
ment intervals that result from the rotating panel design. 

Within Panels-The New in Terms of the OM 
The relationship between the period of interest and the 

measured data can be quite complex under the new defini- 
tions of the components of change. The traditional defini- 
tions conveniently assumed that the period of interest cor- 
responded to the times of measurement. I will first consider 
the simple case in which the number of years of interest (t) 
equals the measurement interval for a single panel. This 
simple case illustrates the relationship between the tradi- 
tional estimators and the new estimators. 

Entry 

The traditional ingrowth component consists of both the 
entry value of the ingrowth trees between years h and h + 
t ,  Eh+,,+ , ,  plus the growth on the ingrowth trees ( a + , , +  , )  
subsequent to entry. Subsequent to the first cycle of mea- 
surements, each year's measurements provides change es- 
timates over the interval t .  The strictly sample-based per- 
panel estimator for Eh+, ,+ ,  would be 

The per-panel estimator for growth on ingrowth 
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( I i+ t ,h+l )  Can then be expressed as $+r ,h+ l  - I - Eh+, ,+ , .  

Note that kh+t,h+, is an unavoidably biased estimator of 
Eh+r,h+l, as mentioned above, because it cannot include 
trees that became eligible and subsequently died or were 
harvested between observation instances. The longer the 
interval between observations relative to the expected rota- 
tion age of the forest type (or life expectancy of the forest 
stand), the more significant this bias becomes. 

Mortality 

The mortality component (Mh+t,h+l)  consists of the tra- 
ditional mortality component plus the growth on the mor- 
tality trees (Mg,,,,,,). The strictly sample-based per-panel 
estimator for Mh+r,h+,, h > t, could be expressed as 
M ~ + ~ , ~ + ]  = ( I Ip#M)'~ i  = M .  AS mentioned earlier, the 
value is unobserved for mortality trees past year h and the 
value at the year of death (h  + 6) for tree i (v ,+&~)  would 
have to be modeled conditional on the value at year h (vhVi). 

For a model-based estimator, form the column vector v:, in 
which element i for tree i is equal to v,+,,~ = v,,,, if the row 
i in a,I(, contains a 1. Assuming an unbiased estimator of v:, 

- 
Mh+t,h+l be &+t,h+l - Mh+z,h+l + 
M : + ~ , ~ + ~ ,  where ~ f , + ~ , , + ,  = ( I I  # )'vs. Even if an unbi- 

P .M A 

ased estimator exists for Mh+t,h+l ,  llke Eh+,,,+,, Mh+t,h+, is 
a biased estimator because it cannot include the unobserved 
subpopulation of trees that became eligible and subse- 
quently died between observation instances. 

Harvest 

As with mortality, the harvest component (Hh+r,h+l)  
consists of both the traditional cut component plus the 
growth on the harvested trees (H2+, ,+ , ) .  The strictly sam- 
ple-based per-panel estimator for Hh+r,hA+l could be ex- 
pressed as Hh+, ,+ ,  = (IIpa,I(H)'vh = C .  Also, as with 
mortality, the value at the year of harvest ( h  + c), for tree 
i (v,+,,~) is unobserved and would have to be modeled 
conditional on the value at year h (vhXi)  Form the column 
vector v$, in which element i for tree i is equal to v,+, ,~ - 
v , ,~  if the corresponding row in #, contains a 1. Assuming 
an unbiased estimator of y$, fib+,,+, could be partitioned 

- - 
~ h + t , h + l  - Hh+r,h+l + @+r,h+l, where @+t,h+l - 

(IIp#H)'v$. As with the previous two estimators, even if an 
unbiased estimator exists for HE+,,+,,  &+,,+, is a biased 
estimator because it cannot include trees that became eligi- 
ble, and were subsequently harvested, between observation 
instances. 

Live Growth 

Define the true value matrix for the values of the popu- 
lation of trees at times h + t and h by selecting the 
corresponding columns from V .  That is, row i represents 
tree i, and column j represents time j = h + t ,  h, 

Additionally, we define the panel difference vector with one 

column and two rows, 

A simple estimator for live growth per panel would be 
equivalent to the traditional survivor growth estimator, 
where time 1 equals h and time 2 equals h + t ,  plus the 
estimators for growth on ingrowth, mortality, and cut: 

Again, as with the previous estimators, ~ h + l , h + l  will be 
biased by the volume of growth on trees that became eligi- 
ble and then died or were harvested between observation 
instances. 

Instantaneous Estimates of Volume 
Let vh+, be the first column of V , + , ,  and v, the second 

column of V,,, , .  For this simple case, the merchantable 
value at the beginning of the panel (time h),  may still be 
expressed much as it was previously in context for the 
traditional components of growth, 

The estimator for the merchantable value at the end of 
period of interest (time h + t):  

Compatibility 
Compatibility has been achieved because the sample-based 

estimate of the merchantable value at time h + t equals the sum 
of the estimates of each component plus the merchantable 
value at time h.  By construct, Equation 4 is immediately 
analogous to the compatible grouping for the traditional defi- 
nitions of the components of growth, only because the period 
of interest equals the measurement interval: 

Although the change component estimators in (4 )  are all 
biased, the grouping is nevertheless compatible because the 
bias in i,,,,,, , and ,!?h+t,h+, is complemented exactly by 
the bias in &,,+r,h+l and Ah+,,+ ,. Additionally, the bias in 
each of these components will often be extremely small for 
two reasons: ( 1 )  the contribution to the bias comes from 
relatively small trees, and ( 2 )  trees within -5 years of 
having reached eligibility that die or are harvested are a 
relatively small component of many forest populations. The 
smaller the investigator's area of interest and the stronger 
the market forces to harvest merchantable trees in that area 
of interest, the greater will be the risk in ignoring the bias in 
these components. 
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Conclusion 
If we subscribed to the traditional definitions of the 

components of growth, there would be no logical argument 
for combining panels because the panels represent overlap- 
ping but different temporal intervals. That is, by the tradi- 
tional definitions of the components of growth, altemative 
intervals are not of interest because a specific interval, 
demarked by the times of measurement, is an explicitly 
defined part of the component. 

In this article we observed and supported a contention that 
the traditional definitions of the components of growth in the 
sense of Meyer (1953) were not based purely on the popula- 
tion(~) of interest, while the redefinitions dubbed the compo- 
nents of change by Eriksson (1995) were based strictly on 
population attributes. The dependency of those original defi- 
nitions on the temporal scale of observation confounded un- 
derstanding of the measurement of basic forest dynamics under 
altemative sample designs. If we adopt these new definitions of 
the components of change, and if we can successfully estimate 
each of the annual components Lj, E,, M,, and HI, then we 
would have estimators for any interval of interest. Recall that 
the discussion above referencing Figures 2 and 3 demonstrates 
the ill-advisedness of simply assuming linearity within the 
panel and applying an annual mean to each component for 
each year in the period. In addition, sample sizes within panels 
are too small to provide good estimates within many geo- 
graphic subareas of interest. This leads to the question of how 
we might combine panels to estimate the components of 
change. It is obvious from the data structure that there are 
many potential weighting schemes to combine the information 
from temporally overlapping panels to add strength to the 
interval estimates. Van Deusen (1996, 1999) and Roesch et al. 
(2003) discuss this for general value estimation but neither 
applies those results to the components of change. This article 
establishes purely population-based definitions for the compo- 
nents of change over discrete temporal intervals. 

Adoption of the discrete analog presented here to the 
more recent definitions of Eriksson allows a clear distinc- 
tion between the effect of scale in the definition of the 
components of change from the effect on our ability to 
estimate the components of change at different scales 
caused by the sample design. Once this distinction has been 
made, it is clear that the annual estimates of the components 
of change can only be obtained through the use of models 
applied to the sample design. There are no strictly design- 
unbiased estimators for the annual components of change 
available for this rotating panel design. Although not dem- 
onstrated here for the components of change, the mixed 
estimation technique (Van Deusen 1996, 1999) was de- 
signed to use models to make improved estimates for small 
temporally specific samples by drawing strength from mea- 
surements made on temporal "neighbors." Mixed estimation 
is therefore a viable approach that bears investigation for the 
estimation of the components of change. 
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