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By Francis A. Roesch

Incorporating
Estimates of Rare
Clustered Events into
Forest Inventories

U
sually foresters are expected to
answer a diverse set of ques-

tions about the forest on a very
limited budget. The answers to

such questions are considered important
even though they often deal with condi-
tions that occur only rarely in the forest. If
a forester had the financial resources and
knew where such conditions existed, the
corresponding questions could be an-
swered by designing and conducting an in-
ventory in the vicinity of the rare occur-
rence. In most cases neither the money nor
specific enough knowledge of the condi-
tion are available to use this approach.

An alternative approach is to modify an
existing inventory to address a question by
adapting the field procedure only when
the existence of a rare condition is noted.
Naive attempts at this sort of strategy will
often lead to biased estimates of the condi-
tion, so the inventory and analysis must be
carefully designed to avoid potential bias.
Roesch (1993) showed how to do this for
forest inventories using adaptive cluster

sampling.
Adaptive cluster sampling is very effi-

cient if the rare condition occurs on clus-
tered trees, and it has two advantages over
other methods of estimating rare condi-
tions. The first advantage is that the deci-
sion to use an adaptive scheme can be
made on a condition-by-condition basis,

so adapting the sample for one condition
does not affect the cost of estimating other
conditions. The second advantage is that
only the presence of the condition triggers
additional cost. Most other solutions to
the rare event problem, such as increasing
the size or number of plots, do not have
these two desirable properties. This article
discusses in further detail the necessary
considerations when contemplating an

adaptive design and gives estimators for a
population-based mean and its variance.

Adaptive Sampling in Forest
Inventories

In adaptive cluster sampling, a sample
of units in a population is taken and then
additional units are selected near those
that display any rare condition of interest.
Roesch (1993) combined the probability
proportional to size sampling schemes
common in forestry with an adaptive sam-
pling scheme, resulting in a system that
can be applied to many in-place forest in-
ventory systems.

First, sample trees are selected by an in-
ventory rule such as those corresponding
to fixed-area plot sampling or point sam-
pling. We will assume that the initial selec-
tion of trees is by point sampling. Readers
unfamiliar with point sampling can find
explanations in standard forest mensura-

tion texts such as Husch et. al. (1982) or
Avery and Burkhart (1983). If a sample
tree displays some rare condition of inter-
est, additional trees within a fixed radius of
the sample tree are examined for that con-
dition. This is repeated for every tree dis-
playing the condition until no new trees
are found with the condition.

It is the forester’s task to determine a ra-
dius that will identify a reasonable number
of additional trees for the sample; enough
additional trees to provide an estimation
advantage and few enough to be consid-
ered during the measurement of the field
inventory plot. This requires the forester
to consider all of the available information
on the spatial distribution of the rare con-
dition. Negligence in this task could result
in unmanageably large numbers of trees
being encountered on some plots. This ex-
tra effort in the design stage will be re-
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Figrcre  1. The spatial locations of the trees on a 3.1 l-acre simulated
forest, with northern red oak trees differentiatedffom  other tree
species. The point sample selection areas at BAF  10 for the nortb-
ern red oak trees are also shown as circles around each tree. A tree
is sekctedfor the point sample  $a random point lands  within its
selection area.

warded by the increased efficiency of a well-planned adaptive sam-
pling survey.

Assume that the tree is the sampling unit and that there are N
trees in the forest with labels 1, 2, . . . . N. Associated with the N
trees are values of a specific characteristic y= /y,, y2, , yN/. Inter-
est is in estimating the population mean of the y-values (7). The
forester is interested in many different ps, such as the proportion
of trees of a particular species, the average cubic-foot volume of
wood, or the proportion

of trees supporting a par-
ticular parasite, although
we only need to consider
one J at a time.

For example, suppose
a forester is interested in
the mean percent defolia-

tion by gypsy moth on
t h e  n o r t h e r n  r e d  o a k
trees (Quercus rubra L.)
in a forest and the inven-
tory occurs in an area
where either northern red

oak trees or gypsy moths
are rare. If tree i is a
nor thern  red  oak  t ree

Figure 2. The positive
networks formed at each
search-area size. The nu-
meral in each plot is the
number of positive net-
works.
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that has been defoliated to some extent by gypsy moths, then the
condition for tree i equals 1 (Ci = 1) and y; = percent defoliated,
otherwise both Ci = 0 andyi = 0. The field crew would take the fol-
lowing steps:

1. Conduct the point sample and observe and record C; for all
northern red oak trees i,

2. For all trees with Ci = 1 conduct the adaptive part of the
sample:

a. measure yi and diameter at breast height (d&hi)
and record the location of tree i;

b. observe Ci for all northern red oak trees within a
circle of radius I from the center of tree i that have
not already been sampled;

c. i. ignore all new trees for which Ci = 0
ii. for all new trees with Ci = 1 record Ci and re-

turn to (a); and
d. stop when C; = 0 for all new trees.

A network is the set of trees such that selection of any tree
within the network by the original sample (Step 1 above) will lead
to the selection of every other tree in the network. Since selection
of trees for which Ci = 0 will not result in the selection of any
other trees, these trees are networks of size 1. This procedure maps
the population of Ntrees into a population of Mnetworks, condi-
tioned on C= {C,, C,, . , CT,/.  This can be done for as many con-

ditions as desired.
Trees for which Ci = 0 are ignored unless they are in the original

point sample, because only those northern red oak trees that were
in the initial sample (Step 1) and those additional northern red oak
trees (from Step 2) for which Ci = 1 will be used in the estimators.
This results in unbiased estimators, as shown in Thompson (1990)
and extended to point sampling by Roesch (1993). The estimators
below differ from those in Roesch (1993) in that they are popula-
tion-based rather than area-based (i.e., the mean per tree rather
than the mean per hectare is of interest).

Estimator of the Mean per Tree
The total of the observations over network Kis

“K

t, = YjF-1

where vK is the number of trees in network K
Roesch (1993) showed that the probability of tree k, in network

K being included in the sample from at least one of m random
points is:

where aK = union of the point-sample selection areas for the trees
in network Kto which tree k belongs, and L = the total area of the
forest. (Note that capitalized subscripts are used when the quantity
pertains to the network and lower case subscripts are used when
the quantity pertains to the tree.)

To calculate the joint selection areas of trees, the dot count
method, which is well known to foresters, could be used. One sim-
ply plots the selection areas of trees in the network and randomly



n

places a square grid of dots over the mapped selection areas. The
dots within the selection areas are counted, and the number of dots
is multiplied by the area represented by each dot. This method can
be used to any desired level of accuracy by adjusting the size of the
grid. Ideally the grid should be fine enough so that its error is
smaller than the area1 errors associated with the measurement error
of tree dbh and location.

A Horvitz-Thompson estimator (Horvitz and Thompson
1952) of the mean defoliation per northern red oak tree is:

K-l

where Kequals the number of distinct networks of northern red
oak trees in the initial point sample and

There is not a universally “good” estimator of the variance ofj
by the most common criteria, such as minimum mean squared er-
ror (MSE), etc. Below are two possible variance estimators. The
first can be formed by initially noting that the joint probability of
including networks /and Hat least once from the m r a n d o m
points is:

where L$, is the union of the selection areas of networks /and
Then a variance estimator is:

H.

A variance estimator that is somewhat easier to calculate be-
cause it does not require the determination of the joint network

probabilities is:

s; (9) = ($)K$ (FK -; )z*nK

where nKis the number of points from which nerwork Kis chosen
(will almost always be equal to 1) and

R=&l,
K-1

The long-run behaviors of these estimators are examined briefly in
the example below.

An Adaptive Sampling Example
The data used in this simulation were a subset of those col-

lected by the USDA Forest Service Northeastern Forest Experi-
ment Station in Hancock County, Maine. Fifty-three circular l/lO-
acre plots were established in 1968 and remeasured in 1981. All
trees that were at least five inches in dbh were measured. The azi-
muth and distance from plot center to each tree were recorded to
the nearest degree and l/10 foot respectively. Of the recorded at-
tributes species, location, and dbh from 198 1 were used. A percent
defoliation was arbitrarily assigned to each northern red oak tree
to estimate the mean percent defoliation.

For the simulation, a highly diverse “forest” was created by cut-
ting the largest square possible out of the circular l/IO-acre plots,
each side of the square facing one of the cardinal directions. The
first 49 of these squares (by plot number) were used in a 7 x 7 ar-
rangement to simulate a square forest of approximately 3.11 acres.
Figure 1 shows the spatial locations of both the northern red oak
trees and all of the other trees in the forest.

Note that in lieu of the adaptive scheme the point sample per-

tree estimator would be:

where nh is the number of trees sampled from point h. Since the
extra work involved in the adaptive sampling scheme is justified by
the estimation advantage over point sampling, we compare the re-
sulting adaptive sampling estimates with the point sample esti-
mates. Five thousand random samples of 30 points each at a basal
area factor (BAF) of 10 ft2/acre  were simulated and j was calcu-
lated for each sample. For 10 different search-area sizes i was cal-
culated using the same random points. The search-area sizes
ranged from s = 10 to 5 = 100 in increments of 10, where 1 /s equals
the area of a search circle in acres. This many search-area sizes were
used to show that there is an optimal search-area size for this prob-
lem. This will usually be the case, although the forester’s prior
knowledge will often allow only an approximation to this optimal
size. Figure 2 gives the “positive” networks (i.e., networks of trees
for which C, = 1) formed at the different search area sizes.

Results
Table 1 gives the summary statistics over the 5,000 samples.

The MSE ratios of MSE (j)/MSE (j) at each search-area size show
the general reduction in MSE due to the additional information
from the adaptive part of the sample. These are only 56% for the
larger search areas and only 60% even for the smallest search area.
In comparing this table with figure 2, we note that no difference
occurs in the MSE for the adaptive sampling estimator if the search
areas yield the same positive networks, since the estimator does not
change. The ratio between the mean of each of the two variance
estimators (s,* (j) and s2* (j)) and MSE (j) is also given, as an in-
dication of the variance estimators’ performance. This ratio should
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Tebk 1. Statistics fmm  5,ooO dmulettons  of 30 points eech,

No. A.SC
sa othersx105othersx105

1010 0.560.56 1.61.6 1.21.2 3.83.8 8.408.40
20 0.560.56 1.81.8 1.21.2 3.83.8 3.403.40
30 0.560.56 1.61.6 1.21.2 3.83.8 2.202.20
41) 0.660.66 1.61.6 t.2t.2 3.83.8 1.401.40
50 0.560.56 1.61.6 1.21.2 3.83.8 1.001.00

-60 0.560.56 1.61.6 1.21.2 3.83.8 0.520.52
70 0.560.56 1.61.6 1.21.2 3.83.8 0.490.49
80 0.580.58 1.81.8 1.71.7 3.03.0 0.280.28
90 0.600.60 1.41.4 1.31.3 2.32.3 0.120.12

too 0 . 6 0 1.41.4 3.33.3 2.32.3 0.120.12

NOTE For comparison 1. I x 18 northern red  oaks  were encOUntered  on the point S6?i??ple  &me.
a The search-area size  is t/s.
b The number of n&hem red oaks encountered in the adaptive part of the sample.
c The  number of Irees  other than northern red oaks encountered in fhe adaptive  sample.

be close to 1 over the long-run. Given the rarity of northern red
oak trees in the forest, the performance of the variance estimators
could be considered fair, although J,* (j) didn’t work quite as well
as s,* (j) in this case. Further analysis of the spread of the variance
estimates not reported here also favored sZ2 (j). This is due more
to the small sample sizes in the simulation than to any fault of xl2
(j) since reliable variance estimation requires fairly large sample
sizes.

The last two columns of table I illustrate the true advantage of
choosing a reasonably small search area. The number of trees of
other species that were encountered during Step 2 over the
150,000 points goes from the very large value of 8.4 x lo5 at a
search area of 1110 of an acre to the much smaller value of 4.9 x
lo* by l/70 of an acre, while the number of extra northern red oak
trees, and therefore the amount of additional information, re-
mained the same. This extreme difference in the number of extra
trees looked at and then ignored for different sized search areas will
be observed whenever one is adapting for a truly clustered event.
In this case the largest reduction in MSE with the least amount of
extra work would have been achieved with a search circle of 1170
of an acre.

halfway through the field season, our crew

runs into a much more concentrated occur-
rence of something we are adapting for than
we ever expected?” This large concentra-

tion might result in the field crew failing to
complete the plot. Although this situation
is best avoided, we might want an ad hoc
solution to minimize losses. A very unsatis-

factory solution would be to throw out all
of the data from the adaptive part of the
sample for this condition. A better solution
would be to adjust the search-area size
down to the largest area that would make
this problem plot manageable. Data is
eliminated from trees on this and previous
plots that would not have been encoun-

tered at the new search-area size. The field season is then finished
using the new search-area size for this condition. This solution
will result in the same estimates that would have been obtained
had the smaller search area been used from the start. The analyti-
cal expression for the variance of the estimators becomes compli-
cated, however, because there was some probability of not encoun-
tering the problem site and completing the field season with the
larger search area. This solution will be easier to implement if field
crews are in the habit of first completing the nonadaptive part of
the sample and then recording the closest trees first in the adaptive
part of the sample.

Discussion
A major concern when choosing between sampling strategies is

cost. The additional cost of the adaptive srrategy for a particular
apphcatlon depends on relative cluster size and frequency of occur-
rence in the sample. These factors can be controlled by the inven-
tory designer, given adequate prior knowledge of the population.
In the example above, the additional cost of including extra trees
was shown to be controllable by the distance examined for addi-
tional gypsy moth damage. Within this distance, a tree’s species
must be determined and, if the tree is a northern red oak with
gypsy moth damage, its dbh and location recorded. If northern red

oak trees with gypsy moth damage are truly rare and found in clus-
ters, and an appropriate search area is used, then the additional
cost will be small, due to the rareness of the species. The estimate
of the per-tree percent defoliation by gypsy moth will be im-
proved, due to the clustering of the species. The size of the search
area determines the size of the networks of interest found as well as
the number of additional trees encountered. Therefore, for any at-
tribute one would want to select a minimally sized search area de-
pendent on the expected proximity of the target trees to each other.

A question some managers may ask is, “What do we do when,
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Field foresters are often tempted to “take more data” when they
encounter something special during an inventory. This temptation
indicates a healthy concern for the resource. Foresters know that
today’s rare event could be the harbinger of tomorrow’s significant
effect. Adaptive cluster sampling provides a way for foresters to
monitor many of these rare events at once at a relatively small cost.
It allows flexibility in the inventory in that once a particular con-
dition becomes less rare, the adaptive sampling procedure can be
dropped for that condition, and other conditions can be added to
the list almost at will. Perhaps more than other sampling schemes
it imparts a responsibility to the forester because its success and ef-
ficiency is ensured by and dependent on thorough planning prior
to each season’s inventory. Some might fault this sample design on
that basis; however all inventories require careful planning, and
most foresters are up to the task. m
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