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ABSTRACT. Two estimators of the control variate type for survivor growth from remeasured point
samples are proposed and compared with more familiar estimators. The large reductions
in variance, observed in many cases for estimators constructed with control variates, are
also realized in this application. A simulation study yielded consistent reductions &ari-
ante which were often 50% and occasionally over 70%. FOR. SCI. 39(1):6&77.
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control variates.

THE GROWTH  OF FORESTS  1s OF muh4ouwr IMPomwcE in forestry, and quite
often foresters are interested in the specific components of growth be-
tween two points in time. These components of growth are ingrowth  (I),

survivor growth (S), mortality @I), and cut (C), and computing these components
from remeasured point samples has been the subject of several recent articles
(i.e., Martin 1982, Van Deusen et al. 1986, and Roesch et al. 1989). Quite often
these articles are concerned with achieving compatible estimates of these com-
ponents. Compatible estimators are those that are constrained to maintain the
equality (Meyer 1953):

Pa-&=S+i-ti-C,

where

ti = estimator of the value of interest at time i,
2 = estimator of survivor growth,
! = estimator of ingrowth,

@ = estimator of mortality, and
C = estimator of cut.

The advantages and disadvantages of compatible estimators for the components
of growth have been discussed at length in the literature. A very complete dis-
cussion can be found in Flewelling (1981),  for example. Other discussions appear
in Martin (1982),  Van Deusen et al. (1986),  and Roesch et al. (1989). While
compatibility is a highly desirable condition when estimates of all of the compo-
nents of change in a value, along with estimates of the value at each time are
desired, it is not an important consideration when only one or a few of these
estimates are desired. Even when all of these estimates are to be made, many
would argue that minimum mean squared error of each estimator, for example, is
a more important criterion than compatibility.
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When compatibility is not the major concern, it is of greater interest to obtain
the best estimator of each of the components. That is why, in this paper, we will
not be concerned with forcing compatibility and will concentrate on a method of
reducing the variance of the individual estimators. We will look specifically at
estimators of survivor growth after reviewing a general variance reduction tech-
nique found in Rubinstein (1981). A simulation comparison is made of the basal
area survivor growth estimators discussed in Grosenbaugh (1958), Van Deusen et
al. (1986),  and Roesch et al. (1989) with estimators using control variates.

ESTIMATOR CONSTRUCTION WITH CONTROL VARIATES

Rubinstein (1981) shows how a control variate (C) could be used to reduce the
variance of an estimator. The con@1 variate is correlated with and used in
conjunction*with  an estimator (say E,) of a parameter 8 to produce another
estimator (E,)  of equal bias and smaller variance. If the mean of the control variate
(p_J is known, then for any p

& =  & - p(c - p.J (I)

is an estimator of 8 with a bias equal to that of 8,.
Since

var[E,] = var[i,l  - 2pcov[i,,Cl  + @%r[C], (2)

the variance of Z?‘2  will be lower than that of ,!?‘1  if

2pcov[&,c] > p%ar[c]. (3)

When p is set equal to

p* = cov[&,c]/var[c], (4)

the variance of k2 will be minimized and equal to
n

(1 - P2hd&l, (5)

where p is the correlation coefficient between i1 and C. In most cases p* will be
estimated from the sample as outlined in Appendix 1.

SURWOR  GROWTH ESTIMATORS

The notation in this section will follow that of Martin (1982). Fist, recall that a per
acre estimate from a point sample is obtained by summing the ratio vlba (where
v and ba are the value of interest and basal area, respectively) over all trees on
the point and multiplying by the basal area factor.

For our purposes, survivor growth (S) over a specific time interval occurs on
the population of trees which were in some specific merchantability range during
the entire interval. Survivor trees are sampled in two ways on remeasured points.
The n sample is measured only at time 2 (i.e., these trees were “out” at time 1)
while the s sample is measured at both times 1 and 2.

Grosenbaugh (1958) advocated the use of only the s sample for the survivor
growth estimator:

s = s2’ - s1 (6)

since the n sample is confounded with the sample of the population of ingrowth



trees which was only collected (measured) at time 2 (we will call this sample of
ingrowth trees the o sample). In Equation (6):

5-2 ' = estimate obtained using the final values of v and the initial values of ba
for the survivor trees in the s sample; and

si = estimate obtained using the initial values of 21 and the initial values of
ba for trees in the s sample.

In addition we define:

s2 = estimate obtained using the final values of ZI and the final values of ba
for trees in the s sample;

Sl ' = estimate obtained using the initial values of u and the final values of ba
for trees in the s sample;

n2 = estimate obtained using the final values of ZI and the final values of ba
for survivor trees measured only the second time (the n sample);

n1 ' = estimate obtained using the estimated initial values of u and the final
values of bu for trees in the n sample;

Following Martin (1982) we use a subscript to refer to the time of measurement
(1 or 2) of z, and a prime (‘> to indicate that bu in the above ratio is from the time
other than that subscripted.

.!? is well defined and easy to use, but it does not fully utilize the information
available from a remeasured point sample. To use any more information in a
survivor growth estimator, an investigator must assume that (s)he can adequately
distinguish between the two populations (igrowth trees and survivor trees) in
order to separate the o and the n samples.

Van Deusen et al. (1986), recognizing the information potential of the n sample,
proposed the following estimator for S:

s = s2 - sr + nz. (7)

Another estimator,

s** = s2 - Si’ + nz - n,‘, (8)

was defended by Roesch et al. (1989) as using only the growth of the sampled
survivor trees (that measured on s and estimated on n).

To facilitate our construction of the control-variate type estimators, we recall
that Van Deusen et al. (1986) showed that 3 differed from .Y?  by an error term:

S=S+e, (9)

where

E = s, - s,’ + n2, (10)

and that E has an expected value of zero if predictions of the time 1 values of trees
measured only at time 2 are unbiased enough to separate ingrowth  and survivor
trees. In addition, Roesch et al. (1989) showed that E can be decomposed into two
components, each having an expected value of zero given the above condition:

E = El + EG, (11)

where

Ei = &’ - si + n,‘}, and (12)



EG = {(sz - Sl’) - (sz’ - s,) + (nz - n,‘)}. (13)

They then showed that S** can be written as:

S”” = s + EG. (14)

The error terms above could also  be viewed as control variates, in the spirit of
Rubinstein (1981). This leads to two new estimators for survivor growth:

S, =  S - p*‘(e - t.&), (15)

and

s ** = S - p*z(eo  - /.L,,),0 (16)

where the p*js are estimated using Equation (4), and p+ and pE, are the means
of E and l G, respectively (assumed in the sequel to be equal to zero). It can be
shown that each of the two control variate estimators above is unbiased.

We wiII conduct a simulation study to demonstrate that an appreciable reduction
in variance and mean square error could be achieved by either of the control
variate estimators in Equations (15) and (16). The study wiII show that the control
variate estimators, while not always “best” by every criterion, appear to always
be as good as or better than S, S**, and S in terms of squared error loss under
widely varying conditions. We would suspect this possibility since the information
base is smaller for S than for the other four estimators and the control-variate
estimators use this information more efficiently than their counterparts.

SIMULATION D ESCRIPTION

The data came from a mutual competition study’ of 1obloIIy  pine (Pinus taeda L.)
planted in February 1958. In March 1962, four % ac stem-mapped plots for each
of five post-thinning target densities (treatments) were established. The target
densities of treatments l-5 were lCO0,  600, 300, 200, and 100 trees/at,  respec-
tively. Each tree was measured 8 times between 1962 and 1981, inclusive (1962,
1963, 1965, 1966, 1967, 1970, 1977, and 1981).

In the simulation, we used four treatment/time interval combinations which
were known from previous simulations (Roesch 1989) to represent the four dif-
ferent relationships of variance and bias observed over aU the possible treatment/
time interval combinations between the basal area survivor growth estimators S,
S, and S**. In cases 1 and 2 the variances of S and S are about equal In case 1
the mean square error (MSE) of these twoAestimators  are also  equal, whiIe in case
2 the MSE of S is higher than that of S. In cases 3 and 4, one of the basic
estimators outperforms the other in terms of variance and MSE. Case 3 favors S

1 Hill Farm Research Station of the Louisiana Agricultural Experiment Station, Louisiana State
University Agricultural Center in Homer, LA.



over .$ and the opposite is true in case 4. We are doing this under the assumption
that the same factors which result in differences between 3, 3, and .S** will also
expose potential differences between these estimators and the control-variate
estimators. We used treatment 5 of the 11-yr growth interval from 1970 to 1981,
treatment 5 from the lo-yr growth interval from 1967 to 1977, treatment 2 of the
11-yr interval from 1970-1981, and treatment 4 of the 4-yr  interval from 1977-
1981 to represent cases 1 to 4 respectively. We used a 9 in. merchantability limit
in all four cases, corresponding to trees which qualify as softwood sawlog trees.

For each case we simulated a square 900 ac forest from the four 1/4 ac plots
randomly arranged in a line 900 times until the square was filled from the top left
to the bottom right (i.e., each arrangement forms a rectangular acre which is
104.355 ft wide and 417.421 ft long). Then we repeatedly sampled the 900 ac
forest by taking 50 sets of 50 randomly located points for every basal area factor
(BAF) divisible by 5 from 5 to 50 f?/ac inclusive. Edge bias was eliminated by
flipping the edge plots out into the border around the forest and also including any
“in’ trees from the “outside” plots while only allowing the sample points to fall
within the 900 acre forest. For each sample we calculated the mean square error,
variance and bias for the estimates of survivor basal area growth obtained from
each of the estimators above and then plotted these values against BAF for each
case. At time 2 in each case we predicted the previous time’s basal areas of the
“new” trees in the sample by using a weighted linear regression of time 1 basal
area on time 2 basal area for the “old” trees. Because “s” is a sample selected
proportional to ba,, while n is a sample selected proportional to (baa - ba,), a
weight must be applied to the regression for the “old” sample trees to obtain
unbiased predictions of time 1 basal areas of the “new” sample trees. This weight
is derived in Appendix 2. Granted, a linear model may not always be the best
model in a particular case. However, a thorough model evaluation in each case
would be extremely time consuming and not germane to this discussion. In fact,
all of the estimators of survivor growth with the exception of S are more or less
model dependent, and the cases we are presenting are at least partially artifacts
of the model selected. Therefore, we are, in part, investigating how robust each
estimator is to the model selection process.

As we mentioned above, cases 1 to 4 represent the four basic patterns observed
at the conclusion of the preliminary sampling simulations reported by Roesch
(1989). Figures 1 through 4 contain the results for cases 1 to 4, respectively.
Figures 1 and 2 represent the cases in which the variances of S and S are about
equal. Figure 1 shows the mean square error (MSE) of these two estimators to
also be equal while Figure 2 shows the MSE of 3 to be higher than that of 3. The
difference is due to bias in 3 resulting from biased predictions of the time 1 basal
areas of trees in the new sample (n). This bias occurs in some cases in spite of
the weighting described above and is due to the fact that the growth curve is at
least somewhat nonlinear. In Figure 1, we see that the two control variate esti-
mators have about the same variance as each other and S**, while all of the
estimators appear relatively unbiased. The two basic estimators (s and 2) are
performing quite well for the time interval, growth rate and BAFs  considered, but
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FIGURE 1. The mean squared error, variance, and bias of the estimators of sawlog-sized basal area
survivor growth versus BAF. The actual basal area growth was 31.18 ft’/ac.

the control variate estimators are performing even better with reductions in
variance and MSE of over 50% in many cases.

Figure 2, in which the growth interval (1967-1977) is greater than the second
half of the elapsed life of the plantation (1958-1977),  tells quite a different story,
as the previous basal areas become harder to predict. Gains using the control
variate estimators over (S) in terms of variance reduction are similar to but
slightly less than those found in Figure 1. The performances of S, and S,** are
comparable to those observed in Figure 1 overall despite the fact that prediction
bias is evident for S.

Figures 3 and 4 represent the cases in which one of the basic estimators



1 O-year growth interval  (1967- 1977), T rea tmen t  5

Sawlog Growth

E
arz 00 55 1010 1515 2020 2525 3030 3535 4040 4545 5050 5555

5:5:

-30 I 55 1010 1515 2020 2525 I3030 3535 4040
4545 5050 5555

Basal Basal Area Factor
FIGURE 2. The mean squared error, variance, and bias of the estimators of sawlog-sized basal area

survivor growth versus BAF. The actual basal area growth was 6.82 ft’/ac.

outperforms the other in terms of variance and MSE. Figure 3 favors s over 2 at
least at the larger BAFs, and the opposite is true in Figure 4. In Figure 3, the two
control variate estimators, which ,are constructed from S, perform very well in
terms of MSE when compared to S with reductions of 50% common. Results like
these could occur when data are sparse; in this instance not many of the trees had
reached the sawlog category by 1970.

Figure 4 represents cases in which the variance and MSE of s are higher than
those of S, although the prediction bias problem does not seem to be a great
concern. When the time interval is relatively short, not allowing many “new” trees
to enter the sample, and a fair number of trees were measured at time 1, results
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FIGURE 3. The mean squared error, variance, and bias of the estimators of sawlog-sized basal area
survivor growth versus BAF. The actual basal area growth was 0.66 ft’iac.

such as these will occur. In these cases the variances and MSEs  of SO, SO**,  and
S** are just a little lower than those of 3.

In this manuscipt  we have presented two control-variate type estimators, s, and
S **, which could be viewed as the “optimized” versions of 3 and S**. A simu-
la>on demonstrated the properties developed in theory; i.e., that s and S **
must be better than or equal to 3 in terms of variance (and therefore mkn squk-e
error). This simulation presents strong evidence in support of the overall useful-
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FIGURE 4. The mean squared error, variance, and bias of the estimators of sawlog-sized basal area
survivor growth versus BAF. The actual basal area growth was 14.00 ft*/ac.

ness of these control variate estimators. Substantial decreases in variance have
been realized, without the-control variate estimators being as susceptible to
prediction bias as are both S and S **. We remind the reader that our choice of a
linear model had, in this simulation, some contribution to the bias of S and to a
lesser extent S**. Our intent is not to make absolute comparisons but to show
that even when conditions make previous predictions difficult, the control variate
estimators still work well. Results like those of case 1 could be expected quite
commonly. The other three cases might be considered pathological in some
sense, although they probably occur often enough in real inventories to be of
concern.

There doesn’t seem to be a clear choice between the control variate estimators



in terms of variance or bias, although s, might be favored because it is simpler to
implement than Sp**.  S** also behaved well in terms of variance and MSE; very
often as well as S, and S,**. However, the potential for prediction bias to occur
would seem to negate the advantages of S** when compatibility is not an issue.
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The method to construct a generic controlAvariate estimator (k,) of basal area
survivor growth from another estimator (E,) of survivor growth and a control
variate (C) of known mean (pJ is given below. In the paper we use control
variates with known means of zero. The covariance@riance  ratio must be esti-
mated from the data. To do this, calculate both E, and C ,at each point and
determine the sample estimates of both the covariance of E, and C and the
variance of C:

COV@l,C)  = 5 (@Ii - 21) * (Ci - c>> / m - 1 (1.1)
i = l

and



m

v=(C) = C ((Ci - C) * (Ci - 0) / m - ‘; (1.2)
r=l

where

m = the number of sample points,
kri = the value of Z?r at point i,

i = l

Ci = the value of C at point i, and
m

C = C (Cilm).
i=l

From 1.1 and 1.2 above, an estimate of p* is obtained:

p* = cov(X@&)/var(c).

Finally, the unbiased control variate estimator is attained:

I$ = kr - p*(c).

(1.3)

(1.4)

To predict the previous basal areas of the trees measured only at time 2 (the
“new” sample) using the regression from the trees measured both times (the
“old” sample), we assume that trees do not shrink during the growth interval.
Under this assumption the old sample is weighted proportional to basal area at
time 1 while the new sample is weighted proportional to basal area growth.
Therefore, unbiased predictions of the time 1 values for the new sample require
that weighted regression be used. This appendix shows how to weight the re-
gression of basal area at time 1 (b,)  on basal area at time 2 (b,)  for the “old” sample
in order to obtain an unbiased predictor of br,  for trees in the “new” sample.

The regression of interest for the “new” sample is simply the expected value
of b,, given b,, under the sample domain. Given the large sample of all trees of a
particular merchantability class measured at time 2, the probability that a partic-
ular tree was not measured at time 1 (i.e., it is in the “new” sample) is equal to
((b, - b,)lb,).  So the expected value of time 1 basal area for trees of a particular
b, in the “new” sample can be determined using the fundamental properties of
conditional expectation:

&,,[Md = ~[W2ll”~e~“l
E[[b&],  “rzezu”]=

E[“new”]
(2.1)

Therefore, by the definition of expected value



(2.2)

after cancellation of the b, terms in the denominator of each integral. Note that Ei
indicates the expected value in sample domain i and if E is unsubscripted, the
expectation is over the entire population.

Likewise the same expectation for the “old” sample:

Equations (2) and (3) can be combined to produce:

&ew[hlbal =
bThlbz1  - HbhEodbllb21

bz - E[hlbd
E[hlbzl  (bz - &dhlb21)=

b2 - Ehlbd ’

(2.3)

(2.4)

Equation (2.4) gives us the expected value of basal area at time 1 given basal area
at time 2 for a tree in the “new” sample in terms of the same expected values for
the population and the “old” sample. The expected value of b, given b, for the
population is determined by a weighted regression over the trees in the “old”
sample with the weights being the inverse probability of inclusion (i.e., multiply
each observation by b,lb,).

We see that Equation (2.4) agrees with our intuitive expectation because, if:

bz - Eodblhl < 1
bz - E[hlb21 .

as we would expect since these trees were larger than the average tree at time
1 (selected proportional to b,), then so too is

W,lb,l  3 E,,,[b,lb,l.


