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Abstract

A system of non-linear difference equations is used to model the effects of density-dependent selection
and migration in a population characterized by two aleles at a single gene locus. Results for the existence
and stability of polymorphic equilibria are established. Properties for a genetically important class of
equilibria associated with complete dominance in fitness are described. The birth of an unusual chaotic
attractor is also illustrated. This attractor is produced when migration causes chaotic dynamics on a
boundary of phase space to bifurcate into the interior of phase space, resulting in bistable genetic poly-
morphic behavior. © 2000 Published by Elsevier Science Inc. All rights reserved.
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1. Introduction

The combined effects of natural selection and migration can significantly influence the genetic
composition and demographic properties of populations. Of particular interest in evolutionary
theory are ways that these processes concurrently act to maintain genetic polymorphisms and
regulate population growth. The simplest migration model developed to investigate genetic dy-
namics resulting from the joint action of these two evolutionary forces is the one-island or con-
tinent-isand model. In migration behavior of this form, immigrants in each generation are
contributed to a single population by a large nearby population or collection of populations.
Initial studies on the joint effects of selection and migration in this context were deterministic
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treatments and concentrated on dlde frequency equilibrium behavior in a congtant sdection
siting [1-3].

Recently, Selgrade and Roberds [4] used this migration mode! to investigate dynamica behavior
for idand populations undergoing dendty-dependent selection. Again the gpproach was deter-
minigtic but both alele frequency and population dynamics were sudied by employing a system of
two-dimensond difference equaions smilar in form to the sysem commonly used to study
density-dependent  selection in the absence of migration, eg., see [5-7]. In Selgrade and Roberds [4],
the migration rate was included in these equations as a density-dependent factor, with the number
of immigrants in each generation being treated as a congtant proportion of the idand population
gze. The genetic model andlyzed conssted of a single locus with two dlees and genotypic fitnesses
which were declining functions of population size. Conditions for the existence of polymorphic
equilibria in this sysem were determined and characteristics of these equilibria explored and
contrasted with results obtained when migration does not occur. In addition, some features of
bifurcation behavior were illustrated and a novel strange attractor for this system was described.

In this paper, we continue the exploration of dynamics resulting from the interaction of density-
dependent selection and migration which was begun in [4]. We report results for a more com-
prehensve migration trestment that includes both dendty-dependent and congtant immigration.
An additiond class of equilibria associated with complete dominance in fitness is sudied and
conditions for loca sability are described. Finaly, we illustrate an unusud chaotic attractor that
results when migration causes chaotic dynamics to bifurcate from a boundary location into the
interior of phase gpace reaulting in bistable genetic polymorphic behavior.

2. The model

We condder an idand population of diploid individuas that undergoes density-dependent
sdection. Individud fithesses are assumed to be controlled by genotypes a a single autosomal
locus having two alees, A and a, and thus the population conssts of individuas with genotypes
AA, Aa or aa a this locus. Sdlection is consdered to occur only in the idand population. In our
treatment, x representsidand population size or density and p - denotes frequency of the A dldein
the idand population prior to sdlection, with 0 <p < 1. Genotypic fitnesses in the idand popu-
lation are represented by £, f4., ad f,, and are assumed to be non-negative per capita growth
functions of x. Allelic fitnesses are defined by £, = pfuy + (1 = p)fye A fo = pfua + (1= p)fia.
Clearly then the population mean fitnessisgivenby /1 = pf, + (1~ p)s,. Following sdlectionin
each generaion, suppose g gametes are contributed to the idand population by immigration from
a continental population or collection of populations. Let the frequency ¢ of the A dlde in the
population of migrant gametes be congtant over generations with 0 < ¢ < 1. If random mating
occurs following migration, the number of gametes tha unite to produce zygotes in the next
generdion is given by

29 fuax +4p(1 = p)faex + 2(1 = p)’fuex + g.
Furthermore, the number of gametes carrying the A dlee is seen to be
20 faax + 2p(1 = p)fuax + qg.
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Therefore, the frequency of dlde A in the next generation is

Pl pll=p)fux v g2
Plaax + 20(1=p)fux + (1= p)fuux + /2

Hence we have the following system of difference equations that describes changes in dlde fre-
quency and population size between generations:

ﬂ:mﬁ+w
xf+y ! (1)
¥ =xf+y.

Here, y = ¢/2 is the number of additional zygotes in the next generation produced as a conse-
quence of immigration and p' and X' represent dlele frequency and population size in the next
generation. When y = 0, this system dearly is identicd to the sysem previoudy sudied for
density-dependent selection, e.g., see[7].

The equations displayed in (1) depict changes produced by postsdection migration. A con-
parable system of equations has been developed that describes changes for a presdection mi-
graion modd. This latter system differs from (1) in form and its dynamics will be investigated in
future research.

It is convenient both mathematicaly and biologicdly to introduce the per capita migration rate
for x > 0 given by

h(x) = Y
X
which measures the per cgpita migraion per generation relaive to the idand population size x. It
is biologicdly reasonable to assume that h(x) is a non-increasing function of population sze, i.e,
h'(x) < 0. There are two standard examples of migration in this form. The smplest case occurs
when the same amount of migration takes place in each generation so tha y is condant and
h' (X) = —y/x? < 0. The second type occurs when the amount of migration increases linearly with x
in each generation as discussed in [4]. Here y = mx, where m, 0 < m < 1, is a congtant. Immi-
gration proportiond to populaion Sze may occur in a biological setting if migrants are atracted
by pheromones released by the idand population. Furthermore, activities in the idand population
may lead to a sequence of events which causes immigration to increase with population size.
Tonkyn [8] discusses such a Stuation involving phloem-feeding aphids where the feeding activity
of atacking gphids simulates an increase in the flow of phloem sgp to feeding Stes, which ul-
timady may aitract more gphids (immigrants). In this case dthough the number of migrants is
increasing as x increases, the per capita migration rate h(x) = m is congtant. With our approach,
both these types of migration are included.
After replacing y by xh(x) in (1), the trandtion equations become

) _DPlatah
P @
X =x(f+h).

Since (1) and (2) are equivaent for x > O, henceforth we study (2).
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3. Properties of equilibria

The phase space for system (2) is the dot in the (p, x)-plane designated by
H ={(p,x): 0<p< L 0<x}.

Wheny =0 (i.e, h = 0), the boundary linesof #, {p = 0} and {p = 1}, represent dlede fixation
and, therefore, are invariant. If y > 0 (i.e,, h > 0) then this is not usudly the case. In fact, for
0 < g < 1, points on the boundary of # are mapped via (2) into the interior of . If = 0 then
the line {p = 0} is invariant, but points on the line {p = 1} are mapped into the interior of #. If
q = 1 then the line {p = 1} isinvariant, but points on the line {p = 0} are mapped into the interior
of . Repeated iteration of (2) yields an orbit which we denote as {(p,,x,): n =10, 1,2,.. .},

An equilibrium E is an dlde frequency p, 0 <p < 1, and a population density x > O which
remain constant across generations, i.e, p,= pand x, = x for dl »n. Such an E is sad to be
polymorphic if 0 < p < 1. From (2), an equilibrium E = (p,x) satisfies the system:

p=pfa+aqh
1= f+h. G)

To determine the loca dability of E = (p, ¥)we need the Jacobian matrix, D(E), of the right
sde of (2

fo+p(%-%) B -P(E-%) +H(X)(g-P)
e 1+%(L+H(x))

E is gable if both eigenvaues, 4, and 7,, of (4) lie indde the unit circle.

The detrimentd effects of population crowding can lead to a reduction in fitness. Thus, we
assume that genotype fitnesses, f;; where i, j = A, @, are decreasing functions of the population
dengty x, i.e, 9f;;/dx < 0. Borrowing from ecology, we refer to such functions f;; as pioneer fitness
functions [9]. Exponential (see [10]), rational (see [ 1 1]), and linear (see [ 12,131) functions have been
used as pioneer fitnesses in modding research. Henceforth, we assume that genotype fitnesses are
of pioneer type for dl (p,x) € 4. This assumption implies certain geometric properties for the
functionsiin (3). For dl (p,x) € # we have df,/dx < 0 and 81 /ax < 0. Since h'(x) £ O, theimplicit
function theorem asserts that the curves defined by (3)

€4 ={@.x) : plfalp,x) = 1] +ah() = 0} and 4 ={(p,x): f(p,x) * h(¥) = 1}

may be considered as the graphs of x as functions of p, which will be denoted by , (p) and x(p),
respectively. We compute that

D(E) = 4)

dis 1~ f; —p(@f/op) (5)
dp = " pOfafax) + i

and
& —(//op)

dp= (of jox)+ b ' (6)
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Since we assume that population fertility and survivd ae high & low dengty, we have
f(p, x)>1for small x. This can be guaranteed by assuming f;;(p, 0) > Lfor dl pwherei,j = A, a.
Hence, for smdl x, we have

f@.x) + h(x) > f(p,x) > 1

Also, as a consequence of crowding, we assume that each f;(p, x) approaches zero as x getslarge.
Furthermore, we assume that h(x) is a congtant less than 1 (for the case that y = mx) or ap-
proaches zero as x becomes large. It follows that for each vaue of p thereisan x so that
Sf(p,x) +h(x) = 1. Fence, for each p, 0 < p <1, thefunction x(p) exists and the curve ¢ separates
A into two subsets. A similar argument may be gpplied to the function x,(p). First, note that for
gndl x we have f,(p, x) > 1 s0

plfa(p,x) = 1] + gh(x) > 0.

If both f4(p,x) and h(x) approach zero as x gets large then, for each p > 0, the quantity
plfa(p,x) 1]+ gh(x) becomes negdive as x getslarge. Consequently, for each p > 0, the function
%4(p) exigs. Notice that as p — O the function x4(p) approaches infinity because h(x) must ap-
proach zero for the equation defining ¢, to be satisfied. In the case, where y = my and so
h =m <1, Selgrade and Roberds [4] show that %,(p) exists only for p > gm and has a vertical
asymptote a p = gm

In addition, for 0 < ¢ < 1, a p = 1 we obtain the inequdity

S(L,x) + h(x) = fua(L,x) + h(x) > fua(1,x) + gh{x) = f4(1,x) + gh(x). (7)
Since both sides of inequality (7) are decreasing functions of x, it followsthat ¥( 1) > %, (1). Hence,
the curve ¢, is above the curve ¢ near p = 0 or near p = gm (When h = m) and the curve ¢, is
below % at p = 1. Therefore, these curves must cross at least once. We have established the fol-
lowing result:

Theorem 3.1 (Existence of a polymorphic equilibrium). Fix 0 < ¢ < 1. Assume that each genotype
fitness f;; wherei, j = A, aisdecreasing in x with f;(p, 0) > 1 for all p and that f;;(p, x) = O as
x — 00. Assume that h'(x) < 0 and that either h is a congtant less than 1 or h(X) — 0 as x — oc. Then
(2 has at least one polymorphic equilibrium E = (p,x), ie, 0 < 5 < L

>

In the case, where h(x) = m, a constant, Selgrade and Roberds[4] obtain precise bounds for z of
the form

gm<p<gm+1—m

4. Density-dependent  behavior

In the remaining sections, we assume that genotypic fitnesses f; where i, j = A, a, are inde-
pendent of the dldle frequency p. Taking the derivative of

f.x) = Pfas) + 2p(1= p)faalx) + (1= p)’fual®) (8)
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with respect to p produces
of *
o 2(fa — fo)- )

It follows from (6) and (9) that criticd points dong % are points where the dlee fitnesses are
equal and, becausefis quadratic in p, there are a most two vaues of p where the horizontd line
determined by x meets €. Clearly then ¢ has & most one local maximum and one loca minimum
for0<p<1l.

Now we assume that 0 < ¢ < 1. Multiplying the second equation in (3) by p and subtracting
from the firg equation in (3) gives

p(1 = p)lfalp,x) = fulp,¥)] = h(x)(p - 9). (10)
Hence from (9), & an equilibrium E = (,%), we obtain
0371 -7) &£ = o7 - o (1)

which indicates that a polymorphic equilibrium is a criticd point dong ¢ if add only if 7 =g, i.e,
the dlde frequency a equilibrium eguals the dlde frequency in the migrating populaion. From
(10), we see that the fitnesses f, f4, and £, dl have the same vaue 1 - 4(x) a E = (¢,x)and 0 <
1 ~ h(x) < 1 because of (3). Therefore, the genotype fitnesses have three possible orderings a
x=T.

(i) faa(®) > 1 ~ h(Z) > fua(X), faa(X) (heterozygote superiority);

(i) fua(®) <1~ h(F) < fua (%), foal®) (heterozygote inferiority); or

(III) an(Y) = fAA ()—C) = faa(x) =1~ h()_c) (na'ltrdlty)-

The derivative D(E) given by (4) may be rewritten as

I —h+q(faa - fau) q(1 -(1)6(%%—%’) :
0 1+%(L+n) |
Clearly the eigenvalues of (12) are 4, =1 ~ h+ g(fu« ~ fq,) and A2 = 1 + 3 ((8f/0x) + ). To
obtain bounds for 4;, we set the alele fitnesses equal to 1 ~ h and solve for ¢ in terms of the
genotype fitnesses at x = ¥ giving
qzl-hﬁfm_lnh-ﬂfaa
fAA —an an"‘faa .
From (13) we see that 4, = 2( 1 - h) = f4, and that

(12)

(13)

. fja - fAAfda
S T S (14)
From (14) we find that
F1al2(0 = 1) = fua] = fasll = b = foo] + (1 = 1) faa. (15)

If the heterozygote is superior in fitness (i) then the right Sde of (15) is postive and we conclude
thet £y, < 2( 1 ~ h). Thus with (13) we have

0<i=21—=h)—fiu<1—h<l (16)
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Furthermore, if -2 < %(@f/dx) + ') then -1 < 4, < 1 and E = (¢,%) is locdly asymptoticaly
gable. The concavity of ¢ at E isfound by differentiating (6) with respect to p which yidds

&5 _ 22fie = fua= fod
AT

Hence, heterozygote superiority in fitness implies that E is alocd maximum dong ¢ and het-
erozygote inferiority implies that E is a locd minimum. These conclusions agree with those in
[7,14] for the no migration casg, i.e,, h = 0.

An important difference occurs between the cases £ = 0 and 4 > 0 when the heterozygote is
inferior (ii). If # =0 then 4, > 1, which implies that E = (¢,%) is unstable. On the other hand, if
k> 0 then it is possible to choose genotype fitnesses so that /4, < 1. Selgrade and Roberds [4]
provide an example of densty-dependent migration with a globdly stable equilibrium at which
heterozygote inferiority occurs.

The preceding discusson establishes the following result.

Theorem 4.1. Assume 0 < / < 10 < ¢ < 1, and that each genotype fitness f;;(x) where i, j = A, a is
a decreasing function of x with £;;(0) > 1. The point E = (g, i(q) is an equilibrium of (2) if' and only
if E is a critical point of %. At such an equilibrium E, the genotype fitnesses exhibit:

() heterozygote superiority (E is a local maximum of %),

(i) heterozygote inferiority (E is a local minimum of &), or

(i) neutrality (% is a horizontal ling).
In addtion, if-2 < ¥(q) ((0f /ox) + K'(%(q))) then E is locally asymptotically stable in cases (i) and
(iii).

5. Completedominancein fitnessat equilibrium

The degree of dominance with respect to genetic control of fitness has been shown to be an
important determinant of dlee frequency equilibrium behavior resulting from the joint effects of
gene migration and congtant sdection, see [15]. In this section, we explore some properties of
equilibrium behavior when sdection is dendty-dependent and when genotypic fitnesses exhibit
complete dominance at equilibrium (see Eq. (17)). Equilibria of this type do not exis for pure
density-dependent selection (no migration) or for dengty-dependent sdection with migration
when 3 = . At equilibrium in these cases, the heterozygote fitness must be ether superior or
inferior to the homozygote fitnesses or else al genotypes must have equd fitness (see [7] and
Theorem 4.1 in Section 4). Here we assume that dlele A is dominant to dlde a and thus

fua(®) = fua(X) > faal®), (17)
where E = (p,%) is a polymorphic equilibrium. Such an ordering of the genotype fithesses & E is
conggent with conditions given in Theorem 3.1 for the exisence of a polymorphic equilibrium.
As a consequence of (17), a E we have f, = f,, which implies with (9) that

- 21 Bl ~ ) >0 (13)
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Hence, from (18) and (11) it follows that 7 > g. Using the fact that 1 — 2p( 1 - p) > 0.5 with (4)
and (18), we conclude that the upper left entry ¢y, (E) of the derivative matrix D(E) may be re-
written in terms of genotype fitnesses and lies between 0 and 1, i.e,

0 <du(E) = fu(x) = 25(1 = P)(fu(X) — faua(X)) < 1. (19)
A tedious computation shows that the determinant of D(E) is

det[D(E)] = fua (%) = 25(1 = P) (fus %) = fua B)) + 255( 1 = P) foa (%) 14 (%) + X(1
= D)’ fua R)fy (X) + TP faa ()34 (%) + 28g(1 = D) fuw (B)H (%) + X[ 1-- 29(1
= D)|faa () (). (20)

Since the only positive term in (20) is the first term and since f,,,(x) < 1 because of (17) and (3), we
have established the following result.

Lemma5.1. If E= (p,x)isa polymorphic equilibrium exhibiting complete dominance, i.e.,

fu @)= f1a(®)> foa (%), then
det [D(E)] < L

A consequence of Lemma 5.1 isthat if the eigenvadues of D(E) are complex then E is a stable
focus. Hence, a Hopf bifurcation cannot occur a an equilibrium exhibiting complete dominance.

Additiond properties of the eigenvaues, i, and 4,, of D(E) may be obtained from the deter-
minant and trace of D(E). The product 4,4, is given by (20), and from (4) and (19) the trace of
D(E) may be written as

A+ iy = dy(E)+ L4+3p(2 = P)fa(®) +X(1 = P)foa(®) + X0 (). (21)
Subtracting (21) from (20) and rearranging terms gives

(1-/11)(1"/12)=f{21‘?(1—‘)[f (®) = Ufy® + (1 =) Vuu® = 11/3a®) + P fs (5)
= 1f3u(®) + [faa(®) = UH ) + 24(1 = P){fau(X) — L4 ®)IH ()} (22)

Since £, (%) < fus (X) <1, theright Sde of (22) is positive. Lemma 5.1 and (22) guarantee that if
the eigenvdues of D(E) are red then they must both be less than 1. Hence, an equilibrium with
non-negative eigenvalues is dways a sable node. Lemma 5.1 dso implies that complex eigen-
vaues have moduli less than 1. Furthermore, since (1 - 4,)(1 - 4,) >0 and since 4, + 4, =
1+ My~ (1 = 4)(1 = Jy), we have the following result.

Proposition 5.2. IfE = (p, %) is a polymorphic equilibrium exhibiting complete dominance, then real
eigenvalues of D(E) are less than 1 and complex eigenvalues are insde the unit circle. In addition,

trace [D(E)] < 1 + det [D(E)].

More generd stability results cannot be obtained without lower bounds on the eigenvalues of
D(E). However, we are able to derive inequdities relating quantities associated with the matrix
D(E) which, when stisfied, are equivdent to the egenvaues lying ingde the unit cirde. Asin
Theorem 4.1, it is important to control the Sze of the term
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X ’a;—l— h (X) = trace [D(E)] -1~ dlla (23)
and so our conditions involve bounds for this term. Using (23) and Proposition 5.2, we obtain the
following upper bound:

Lemma5.3. If E= (p,%) is a polymorphic equilibrium exhibiting complete dominance, then

X [%% + h’(‘x)] < det[D(E)] — dy(E).
Our inequdities are summarized in the following theorem.

Theorem 5.4. Assume that E = (p,x) is a polymorphic equilibrium exhibiting complete dominance.
Then the eigenvalues of D(E) are inside the unit circle if and only if

-1 < det D(E) and (242)
o -
—2 —det D(E) —di(E) < % a+h(x) . (24b)
In addition, bounding intervals associated with the type of eigenvalues are as follows:
(1) If 0 < det D(E) then
(@) bhoth eigenvalues are negative if and only if’

—2 —det D(E) — dy (E) <7c[%+h’(rc) §.- 1 - 2/det D(E) — dy\(E),

(b) both eigenvalues are complex if and only if

-1 —2+/det D(E) — dy(F) <f[%§+h’(}‘c)}< -1 +2+/det D(E) — dy,(E), or

(c) both eigenvalues are positive if and only #f
off
—1+2+/det D(E) — dy(E) <X [g;«Jrh’p"c)} < det D(E) — dy(E).

(i) 1 -1 < det D(E) < 0 then the eigenvalues have opposite signs.

Proof. Assume that (24a) and (24b) hold. Trangposing dl the termsin (24b) to the right Sde of the
inequaity and rewriting in terms of the eigenvadues, we obtain

0 <a + /12+ 1+ }.1/12: (1+ /11)(1+ /12)

Because of (24a), we conclude that read egenvalues are greater than -1. Then Propostion 5.2
implies thet al eigenvaues lie ingde the unit cirde.

Proving the necessity of (24) involves the inequdities of (i) and (ii) in a naturd way. For in-
gance, the eigenvalues of D(E) being complex is equivaent to the square of the trace being less
than four times the determinant. This inequality is equivadent to those of(i), (b). Then (24a) and
(24b) follow eadly. The remainder of the argument is Smilar. O
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Recdl that without migration the eigenvalues of a polymorphic equilibrium are dways red.
Here we present an example of a polymorphic equilibrium exhibiting dominance with complex
eigenvaues and, hence, this equilibrium is a stable focus. Consider dengty-dependent immigra
tion, i.e., y = mx, where m = 0.7 and g = 0.1 with exponentid genotypic fitnesses of the form
fi =e%~bi* where g, b; > 0. Following van Coller and Namkoong [16}, in this and subsequent
examples, we choose b vaues congstent with genotypic carrying capecities K; smaler than or
equd to 10. This results in smal population sizes which easly can be smulated and grgphed on
a scae with dlee frequency. However, vaues may be suitably scaed to achieve any carrying
capecity (hence, any population size) snce K; = a;/b; for exponentid fitnesses and
Ky = (a; ~ 1)/by; for linear fitness functions. Specificaly, we study the genotypic fitnesses:

Fua(x) = fralx) = €2 2 ™ and  f,(x) = '™ (25)
For (25), faa (x) > fu(X) for dl x. A unique polymorphic equilibrium occurs & E & (0.215, 3.706)
and its eilgenvalues are 0.322815 + 0.41017%. Numerica smulationsindicate that this equilibrium
is globdly, asymptoticdly stable. The inequdities of Theorem 5.4 (i) (b) are obtained by com-
puting the quantities 4, (E) ~ 0.4692, det D(E) ~ 0.27245, and 0f /0x ~ 0.22228. Hence, we have

d
—1=2/det D(E) ~ dy(E) < X gxff < -1+ 2y/det D(E) - dyi(E) - 2.51314

< -0.82377 < -0.42526.

As g increases, the right bound in this inequdity and the term (9 /dx) move closer together and
codesce a g ~ 0.69 as the equilibrium becomes a stable node. Then the inequdlities of (i) (C) in
Theorem 5.4 gpply and are computed below for g = 0.7 where E =~ (0.724,4.758).

~142+y/det D(E) - d\1(E)< g< det D(E) - d)1(E) = 1.0177 < -1.0014 < -0.1945.

Examples can be congructed where both e genvaues of E are negative. Take density-dependent
immigration with y = mx where g = 0.05 and al€le fitnesses:

Ju() = faalx) =" and f, () = (26)
If m = 0.6 then there is an ungtable equilibrium E ~ (0.2597, 3.5614) with eigenvalues
A~ -0.1462 and 1, ~ -1.521. This system has an attracting two-cycle and another attractor
conggting of three arcs. Attractors of a amilar nature are illugtrated in Fig. 3. As mincreases, a
reverse period-doubling bifurcation occurs resulting in a stable node a m = 0.62. Here the in-
equalities of Theorem 5.4 (i) (a) are satisfied. For m > 0.64 the eigenva ues become complex. For
vaues of m between 0.6 and 0.645, two attractors exist.
We conclude this section with an example of a sysem with a saddle point equilibrium exhibiting
dominance but where the system has a strange attractor. Our example has density-dependent
immigration, where m = 0.2 and g = 0.75 with linear dlele fitnesses of the form f;; = a;; = byx

fua(®) = f1a(x)=38=08x ad f(x) =3 ~ 065~ (27)

Clearly, f,,(x)> f.(X) for dl x. A polymorphic equilibrium occurs a E ~ (0.791, 3.737) with ei-
genvalues 4, = 07307 and 4, = — 1.9674. The srange atractor for this system is depicted in Fig. 1.
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Fig. 1. Strange attractor for (27) with » = 0.2 and g = 0.75.

6. Bistability and a chaotic attractor

Here we present an example which illugrates the richness of the dynamica behavior for this
selection-migration model and which demondrates the interplay between sdlection parameters
and migration parameters. Consder exponentid alde fitnesses of the form

Fu () =6 f(x) = @5 and fulx) = &0, (28)

The parameter 5 measures the sdective pressure of population density on the AA genotype. In-
creasing b decreases the fitness of the AA genotype. We take y = mx so the migration parameters
are the migration rate m and the frequency ¢ of the A dlde in the migrant pool. Increasing ether
migration parameter will increase the numbers of AA genotype in future generations. If 5 = 0.15,
m = 0.03 and g = 0.95 then a surprisng polymorphic bistability occurs. There is an asymptoti-
caly gable equilibrium (“«> in Fg. 2) with dlele frequency p dightly less than 1 and a chaotic
attractor resembling a fish-hook with alele frequency in the range O < p < 0.35, see Fig. 2. The
domains of dtraction are separated by the stable manifold of a saddle point a p ~ 0.768. The
fish-hook attractor is the unstable manifold of a saddle point (7,x) ~ (0.029, 9.907). Hence there
are three polymorphic equilibria athough two of these are ungable.

The mathematicd origins of these attractors are quite interesting. The fish-hook attractor bi-
furcates from the line {p = 0} as mincreases from zero. When m = O the line {p = 0} isinvariant
and the dynamicd behavior of (1) on this line is given by iteraing the map

g(x) = fala) = 3670 (29)
This map is a one-hump map with its critical point a x = £ and unstable fixed points (equilibria)
at x =0 and x = 10. The map is chaotic on the atracting interva [g2(4), g(19)] ~ [0.3057,24.630),

which is the ungtiable manifold of the nonzero equilibrium (eg., see [17]). As m becomes positive,
the line {p = O} losesiits invariance, and the atractor bifurcates into the interior of # and forms
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20 T T T T T T —

0 0.1 0.2 0.3 04 05 0.6 0.7 0.6 0.9 1
P

Fig. 2. Fish-hook attractor and three polymorphic equilibriafor b = 0.15, m = 0.03 and g = 0.95. A denotes a saddle
point and «x denotes a stable focus.

a fish-hook by spreading apat the fold which occurs a its maximum. The equilibrium
A ~(0.029,9.907) in FHg. 2 is the continuation, as m increases to 0.03, of the equilibrium at (0, 10)
for m = 0 and the fish-hook is the unstable manifold of A. As m continues to incresse, first the
fish-hook attractor becomes disconnected (Fig. 3(a)) and then a reverse period-doubling cascade
occurs resulting in the attracting two-cycle denoted by ‘+’ in Fg. 3(b) and, findly, resulting in the
stable node when m = 0.15 pictured in Fig. 3(c). This node and the remaining saddle annihilate

20 20
|
15
\ 15 +
x 10t A X1 A
* *
5 \ A 5 4+ A
S
0 0
02 04 06 08 0 02 04 06 06 [
(a) P (b) p
20 20
15 15
x 10 o) x 10 *
*
5 A 5

02 04 0.6 0.8 0.2 0.4 0.6 0.8 1

0 1 N 0
(c) p (d) p
Fig. 3. Sequence of attractors as m increases. + denotes a point on a two-cycle. A denotes a saddle point, x denotes a
stable focus and ¢ denotes a stable node: (a) m = 0.05; (b) m = 0.09; (c) m = 0.15; (d) m = 0.34.
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each other in a saddle-node bifurcation when m a 0.305 and the focus becomes globaly, as-
ymptoticaly stable (Fig. 3(d)). Notice that Fig. 3(c) depicts two stable polymorphic equilibria, i.e.,
‘+” isadable focus and ‘o’ is a stable node.

Although this sequence of dtractors seems unredigtic biologicaly, it does have a reasonable
biologica interpretation. Without migration (m = 0), solutions to Eq. (1) approach dlee fixation
except for a polymorphic saddle point and its stable manifold. On the line {p = O}, the behavior is
chaotic because when dengty is small the aa fitness is large and decreases rgpidly as dendty in-
creases. Hence, if dendty is smdl during a generation then there tends to be a large increase in
populaion for the next generation. But the fitness a large dengty results in a significant drop in
population in the subsequent generation. These two effects cause ungable fluctuations in popu-
lation dendity from one generation to the next. On the line {p = 1}, there is a sable equilibrium
because the AA fitness is not large when x = 0 and decreases dowly as a function of x when
b = 0.15. Since ¢ = 0.95, the migrants have AA genotype predominantly. With smal migration,
the dynamica behavior is affected only dightly, see Figs. 2 and 3(a). However, as m increases, the
presence of additiona numbers of AA genotype diminishes the chaotic influence of the aa ge-
notype on the tota population until a balance is reached. For 0.143 < m < 0.305, the system
exhibits bistable equilibrium behavior, i.e., there is a stable node where the aa genotype dominates
and a stable focus where the AA genotype dominates (Fig. 3(c)). Asm continues to increase, the
chaotic influence of the aa genotype is overwhemed by the stabilizing effect of the AA genotype
and a sngle globdly stable, polymorphic equilibrium is maintained with large A frequency (Fig.
3(d)).

Increasing b, which is the crowding parameter for the AA genotype, has an effect on the dy-
namica behavior which is oppogite tha for increesng m. The domain of attraction of the fish
hook becomes larger as the saddle moves toward the stable focus, which becomes anode (Fig. 4).
As b continues to increase, the stable node and saddle codesce and annihilate each other in a
saddle-node bifurcation a b ~ 1.2. For larger values of b, the fish-hook is a globa attractor.

20— T T T T -

2r A O

0 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1
p

Fig. 4. Attractors for b = 0.6, m = 0.03 and q = 0.95. Whenb increases further, saddle A and node ¢ coal esce.
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Decreasing q results in a amilar saddle-node bifurcation snce the dabilizing effect of the AA
genotype is being diminished, eg., if » = 0.6 and m = 0.03 then the saddle-node bifurcation
occurs at g~ 0.665.

7. Summary

We explore dynamicad behavior resulting from the interplay of density-dependent sdlection and
migrétion in a discrete, one-idand, migration modd. In this modd, fitness is assumed to be under
the control of a single gene locus with two dleles and the phase variables are dlele frequency pin
the idand population and idand population dendty x. Genotypic fitnesses are taken to be de-
creasing functions of x and, in each generation, migration into the idand population takes place
following sdection. Allde frequency in the population of migrants is assumed congtant over
generations.

A per capita immigration rate, h(x), is defined relative to the idand population and is assumed
to be a non-increasing function of x. Thus two common types of immigration are included, im-
migration that is condant in each generation and immigration that is proportiona to x in each
generaion. Under naturd crowding assumptions on the genotypic fitnesses and on h(x), we prove
that at least one polymorphic equilibrium exists. If genotypic fitnesses are independent of p andf
represents mean fitness then the polymorphic equilibrium occurs a a critical point dong the curve
defined by 1+ & = 1if and only if alee frequency at equilibrium equals that in the migrating
population.

Stability properties of equilibria which exhibit complete dominance in fitness are dso invedti-
gated. We show that if an equilibrium of this type has complex eigenvaues then it is asymptot-
icdly stable and, hence, cannot undergo Hopf bifurcation. Conditions for loca dability are
edablished in terms of quantities that can be determined from the derivative matrix a equilib-
rium.

Findly, we present an example which illusirates the rich dynamica behavior that is associated
with the occurrence of migration. Without migration, the only polymorphic equilibrium in this
example is ungable. At fixation of one dlele, say A, there is a stable equilibrium. But a fixation of
the other dlde, say a, fitness decreases rapidly as dengity increases which results in dengity varying
cheoticdly over generations. With even the dightest immigration, the resulting dynamicd be-
havior exhibits polymorphic bistability because a chaotic fish-hook attractor coexists with a stable
polymorphic equilibrium. If the immigrating population conssts predominantly of the AA ge-
notype then, as immigation increases, the gabilizing influence of the AA genotype diminishes the
chaotic influence of the aa genotype. The sequence of bifurcations occurring in this example has
both biologicad and mathematica interes.

With respect to biologica implications, our results suggest that immigration broadens the range
of genetic behavior associated with stable genetic polymorphisms when density-dependent se-
lection occurs. Furthermore, our examples displaying chaotic attractors demonstrate that such
higher levd attractors must be consdered as possble mechanisms for maintaining genetic poly-
morphisms in populations subject to density-dependent selection and migration. In this regard,
our find example illugtrates a way by which grictly demographicaly associated chaotic behavior
can be modified by the action of immigration so as to yield genetic polymorphisms.
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