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Abstract The perceived realism of simulated maps

with contagion (spatial autocorrelation) has led to

their use for comparing landscape pattern metrics and

as habitat maps for modeling organism movement

across landscapes. The objective of this study was to

conduct a neutral model analysis of pattern metrics

defined by morphological spatial pattern analysis

(MSPA) on maps with contagion, with comparisons

to phase transitions (abrupt changes) of patterns on

simple random maps. Using MSPA, each focal class

pixel on a neutral map was assigned to one of six

pattern classes—core, edge, perforated, connector,

branch, or islet—depending on MSPA rules for

connectivity and edge width. As the density of the

focal class (P) was increased on simple random maps,

the proportions of pixels in different pattern classes

exhibited two types of phase transitions at threshold

densities (0.41 B P B 0.99) that were predicted by

percolation theory after taking into account the

MSPA rules for connectivity and edge width. While

there was no evidence of phase transitions on maps

with contagion, the general trends of pattern metrics

in relation to P were similar to simple random maps.

Using an index P for comparisons, the effect of

increasing contagion was opposite that of increasing

edge width.

Keywords Pattern analysis � Neutral model �
Percolation theory � Phase transition �
Simulation � Threshold

Introduction

It is necessary to test new pattern metrics and

applications of them on neutral maps because testing

a pattern-process hypothesis requires knowledge of the

expected pattern without the process (Gardner et al.

1987; With and King 1997; Gardner and Urban 2007).

The pattern metrics developed by Vogt et al. (2007a, b)

from mathematical morphology (Serra 1982; Soille

2003) have been tested with simple random neutral

maps (Riitters et al. 2007). The objective of this study

was to extend those tests to more realistic neutral maps

that exhibit contagion (spatial autocorrelation), while

incorporating improvements to the pattern metrics

(Soille and Vogt 2009). Of particular interest were
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comparisons of the phase transitions (abrupt changes)

of pattern metrics which occur on simple random maps

(Riitters et al. 2007). That is of interest because phase

transitions of landscape patterns may be linked to

phase transitions of ecological functions that depend

on patterns (O’Neill et al. 1988; Gardner et al. 1989).

Knowledge of the associated thresholds for landscape

patterns on neutral maps with contagion may help to

predict critical thresholds in many ecological phenom-

ena in real landscapes (With and King 1997) which is a

central problem in ecology (Burkett et al. 2005;

Groffman et al. 2006).

Keitt (2000) defined a neutral map as a stochastic

model of a spatial pattern where the value assigned to

any location in the pattern is a random variable,

regardless of any constraints placed on that variable.

The most common neutral map in landscape ecology

is a simple random map, but neutral maps with

contagion are also popular because contagion is a

fundamental aspect of landscape pattern. Neutral

maps exhibiting a range of contagion have been used,

for example, as test-beds for comparing landscape

pattern metrics (Gustafson and Parker 1992; Neel

et al. 2004; Ferrari et al. 2007), and as habitat maps

for models of organism movement (With and King

2001; King and With 2002). We included both simple

random maps and ‘multifractal’ maps produced by

the RULE software (Gardner 1999) in this study. The

maps are ‘neutral’ in the sense that they are random

ensembles of maps whose properties are described by

statistical averages (Keitt 2000), and the ‘multifrac-

tal’ maps are ‘with contagion’ in the sense that

different values of the RULE parameters P (propor-

tion of the map that is the focal class) and H (Hurst

exponent) produce maps with varying degrees of

focal class clumping (Gardner 1999).

We applied percolation theory (e.g., Stauffer 1985)

as a framework for interpreting the analyses of

neutral maps. Percolation theory considers the prob-

ability of a connection between any two locations,

which depends on the density of locations (P), the

relative positions of the two locations (e.g., indepen-

dent vs. spatially correlated placement), the lattice

geometry (e.g., hexagonal vs. square locations), and

the connectivity rule (e.g., 4- vs. 8-neighbor). Overall

connectedness is indicated by the existence of a

percolating state, defined as the existence of a map-

spanning connected cluster of focal class locations.

The transition between a non-percolating state and a

percolating state is a phase transition, and it occurs at

a threshold P that is determined by the other system

parameters (e.g., Plotnick and Gardner 1993).

With (2002) provided an ecological review of the

concepts and applications of percolation theory

which, like the early applications by O’Neill et al.

(1988), Gardner et al. (1989), and O’Neill et al.

(1992), have mainly addressed landscape connected-

ness as it affects resource utilization and population

dispersal. Applications of percolation theory are

relatively easy in the case of simple random maps,

but maps with contagion present the more difficult

problem of ‘correlated percolation’ (e.g., Essam

1980) which remains an active research topic (e.g.,

Frary and Schuh 2007).

We examined the pattern metrics which come

from the application of morphological spatial pattern

analysis (MSPA) to raster maps (Soille and Vogt

2009). Briefly, the set of focal class (e.g., ‘habitat’)

pixels is separated into mutually exclusive subsets

according to the structural roles that the subsets play

on a map. For example, the subset of ‘connector’

pixels forms structural paths between the subset of

‘core’ pixels. We refer to those subsets as ‘pattern

classes’ and we consider the six MSPA pattern

classes called ‘core,’ ‘edge,’ ‘perforation,’ ‘connec-

tor,’ ‘branch,’ and ‘islet’ (Soille and Vogt 2009).

MSPA has two parameters to define focal class

connectivity and analysis scale.

Earlier analyses of MSPA pattern classes on

simple random neutral maps (Riitters et al. 2007)

considered 4-neighbor focal class connectivity and

varied the analysis scale by changing the size of the

‘structuring element’ (Vogt et al. 2007a). There were

two phase transitions involving MSPA pattern classes

that were explained by percolation theory in light of

the definitions of the pattern classes and the MSPA

parameters. The first type of phase transition signaled

a change in overall connectedness by shifts of pixels

between the ‘patch’ and the ‘connector’ plus ‘branch’

pattern classes, and corresponded to the classical

phase transition of the percolating state of all focal

class pixels. The second type of phase transition

signaled a change in edge context from interior to

exterior, by shifts of pixels between the ‘edge’ and

the ‘perforated’ pattern classes, and corresponded to a

phase transition of the percolating state of the

complement of the ‘core’ pattern class pixels includ-

ing the pixels that were not in the focal class. In this
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study, we considered 8-neighbor focal class connec-

tivity and varied the analysis scale by changing the

‘edge width’ (Ostapowicz et al. 2008; Soille and Vogt

2009). Since those differences were likely to affect

the phase transitions and threshold values that were

observed before, we included both simple random

maps and maps with contagion for comparisons.

Comparisons of different types of neutral maps in

a percolation theory framework require methods to

detect phase transitions and to estimate the associated

threshold densities. On infinite maps, phase transi-

tions are defined mathematically by the probability

that a given location is connected to an infinite

cluster. As the density is increased while holding

other system parameters constant, a threshold density

is reached at which that probability changes from

zero to non-zero, which can only occur at the phase

transition corresponding to the emergence of an

infinite cluster. As a practical matter, phase transi-

tions on finite maps are usually detected by direct

observation of the emergence of a map-spanning

cluster, or by indirect observation of an abrupt change

in an ‘order parameter’ which is simply a pattern

metric (e.g., the size of the largest cluster, or the

correlation length) that is sensitive to the existence of

a map-spanning cluster.

The problem in the analysis of neutral maps is to

identify phase transitions and thresholds based on the

statistical properties of random samples of finite maps

that differ only in the focal class density (P). In the

case of simple random maps, a phase transition

always occurs near the same threshold density for all

maps because all finite simple random maps are a

sample from the same infinite map. That means that

an abrupt change in either the proportion of maps that

exhibit a map-spanning cluster, the mean value of an

order parameter, or the between-map variance of an

order parameter are all robust indicators of phase

transitions and thresholds on simple random maps.

The estimation problem is more difficult in the case

of RULE-generated maps with contagion because all

finite sample maps do not come from the same

infinite map. As a result, the map-spanning cluster

does not usually emerge near the same threshold

density on all maps in a sample.

In that case, a common convention is to estimate a

threshold density as the value of P at which 50% of

the maps exhibit a map-spanning cluster (e.g., With

2002, 2004). While that estimator is robust on simple

random maps, it is biased on maps with contagion

(e.g., Chaves and Koiller 1995; Frary and Schuh

2007). Another problem is that threshold estimates

can vary substantially if the convention is that 100%

(instead of 50%) of the maps exhibit a map-spanning

cluster (Ferrari et al. 2007). While such estimates can

be used as ‘index values’ to compare maps exhibiting

a range of contagion (e.g., With 2002), they can not

be compared directly to thresholds for simple random

maps. Considering the use of order parameters to

detect phase transitions and estimate thresholds,

abrupt changes in the means or variances of pattern

metrics are not typical for samples of neutral maps

with contagion. For example, Neel et al. (2004)

reported ‘‘threshold-like behavior’’ and ‘‘nonlinear

behavior associated with the percolation threshold’’

for several pattern metrics, but concluded that abrupt

changes indicating phase transitions were ‘‘damp-

ened’’ by contagion.

Since our objective was to compare maps with

contagion to simple random maps, we were compelled

to use the same methods for both. Furthermore, since

we also wanted to compare results to earlier analyses of

simple random maps, it was necessary to use the same

methods as before. The proportions of focal class

pixels in the six MSPA pattern classes were considered

to be order parameters, and inferences about phase

transitions and thresholds were based on abrupt shifts

in those proportions in relation to P, accompanied by

‘variance spikes’ (abrupt increases followed by abrupt

decreases in the between-map variances of those

proportions) (Riitters et al. 2007).

While we do not expect to observe phase transi-

tions occurring at well-defined thresholds on maps

with contagion, it is possible that the MSPA pattern

classes are more sensitive than other pattern metrics

to any phase transitions that do occur. In that case,

our approach could be considered along with regres-

sion approaches (e.g., Filho and Metzger 2006) as an

alternative to the conventional approach to estimating

threshold values on maps with contagion. In any case,

like With (2002) we can define ‘index values’ for

comparisons, and like Neel et al. (2004) we can make

inferences about the effects of contagion on MSPA

pattern classes by examining the trends of order

parameters in relation to P and H. Knowledge of such

effects on neutral maps is needed in order to advance

the use of MSPA in application to real landscape

problems.
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Methods

Generation of neutral maps

Let ‘foreground’ refer to a focal class of interest, let P

be the proportion of a map occupied by foreground,

and let H be the measure of contagion of foreground.

We used the RULE software (Gardner 1999) to

generate neutral foreground maps of size 1,024 9

1,024 pixels. For simple random neutral maps, the

presence of foreground was assigned to each pixel

independently with probability equal to P. Fifty

replicates were considered for each target value of P

from 0.01 to 0.99 in steps of size 0.01, providing

4,950 simple random maps for analysis.

Maps with contagion were generated by using the

‘multifractal’ option in RULE for different combina-

tions of P and H. To generate a ‘multifractal’ map,

RULE first creates a three-dimensional, continuous,

fractional Brownian surface by the mid-point dis-

placement algorithm (Fournier et al. 1982; see also

Saupe 1988) for a specified H (0 B H B 1), standard

deviation of the displacements (in RULE, the stan-

dard deviation is always equal to 1.0), and random

seed value. The surface is then segmented into

foreground and background by selecting a surface

‘elevation’ in the third dimension for which the

proportion of pixels above that elevation is approx-

imately equal to P. The pixels above that elevation

are called ‘foreground’ and those below it are called

‘background.’ For a given P, a larger value of H

produces a map with more clumping of the fore-

ground (Fig. 1). While such maps are directly

comparable to earlier studies in landscape ecology

that used the RULE software, the algorithm generates

non-stationary surfaces that only approximate frac-

tional Brownian surfaces (Mandelbrot 1983, p. 263),

which prevents comparisons with exact fractal sur-

faces (Keitt 2000).

Following preliminary analyses (see below), a set

of 11,880 neutral maps with contagion was generated

by using the RULE software, consisting of 30

replicates for each combination of P (0.01–0.99 in

steps of size 0.01) and H (0.00, 0.10, 0.20, and 0.40).

The values of H were in logarithmic progression and

did not span the full range of H because there was not

much differentiation among MSPA pattern classes for

large H (Fig. 1). The actual P on neutral maps

differed by a small amount from the target P, and we

used the target P when summarizing results later. A

Pattern map

Background

Branch

Edge

Islet

Core

Connector

Perforated

Input map

Background

Foreground

H = 0.00 H = 0.25 H = 0.50 H = 0.75 H = 1.00

D = 1

D = 5

Fig. 1 The top row shows examples of maps with 50%

foreground (black pixels; P = 0.5) for five values of the RULE

contagion parameter H (contagion increases from left to right).

The middle and bottom rows illustrate the MSPA pattern

classes for those example maps for two edge widths (D = 1, 5)
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surrounding buffer of background pixels was added

to each map before performing the pattern analyses

and was subtracted before analyzing the results.

Analyses of maps with P = 0 and P = 1 had trivial

results and were not included.

Pattern analysis

The foreground pixels on each map were assigned to

one of six mutually exclusive pattern classes (Fig. 1)

by using the MSPA algorithm (Soille and Vogt 2009;

Vogt 2009). Let D define the edge width, measured in

integer multiples of the unit pixel. ‘Core’ pixels are

more than the distance D from background pixels,

and are surrounded by ‘edge’ pixels which form

4-neighbor connected exterior perimeters of width

D. Similarly, ‘perforated’ pixels form 4-neighbor

connected interior perimeters of width D that sur-

round holes (background inclusions) in clusters of

core. Considering the clusters of foreground that do

not contain core, ‘connector’ pixels form 8-neighbor

connected clusters that are 8-neighbor connected to

core (through edge or perforated pixels) in at least

two places, ‘branch’ pixels are like connector pixels

except the cluster is connected in only one place, and

‘islet’ pixels are the remaining disjoint clusters of

foreground that are too small to contain core pixels.

Following preliminary analyses (see below), the

MSPA pattern classes were labeled on each simple

random map for four edge widths (D = 1, 2, 4, and 5)

and on each map with contagion for two edge widths

(D = 1 and 5). Note that an increase of the edge

width is directly related to a decrease of the

remaining core area. As will be discussed later, that

is important because pattern classes are defined

relative to the core pattern class, so the value of D

can affect the observation of phase transitions among

pattern classes on neutral maps.

Pattern comparisons

For each map, we calculated the proportions of all

foreground pixels in each of the six types of pattern

classes, and those proportions were the order param-

eters that were examined for evidence of phase

transitions. The sum of all six proportions equaled

one for each map, which permitted comparisons of

maps with different values of P, H, or D. For the

simple random maps, the mean and standard

deviation (n = 50 maps) of the proportions were

calculated for each target P, for a given D. For

the maps with contagion, the mean and standard

deviation (n = 30 maps) of the proportions were

calculated for each combination of H, D, and target

P. The trends of those means and standard deviations

in relation to P were then examined for evidence of

phase transitions. The criteria for declaring a phase

transition was the observation of an abrupt change in

one or more of the mean values, accompanied by the

observation of between-map variance spikes.

Preliminary and supplementary analyses

Several preliminary and supplementary analyses are

summarized briefly here. It was mentioned that the

MSPA algorithm (Soille and Vogt 2009) differed

from the algorithm (Vogt et al. 2007a, b) that was

used for the earlier neutral model analysis of simple

random maps (Riitters et al. 2007). As a preliminary

analysis to identify the impacts of those changes on

previous results, we repeated the earlier analysis of

simple random maps. Apart from the differences

between 4-neighbor connectivity (previous study)

and 8-neighbor connectivity (present study) that are

expected from percolation theory, changes to the

MSPA definitions of the ‘structuring element’ and the

perforated pattern class shifted the phase transition

between the edge and perforated pattern classes to

larger threshold P values.

A supplementary analysis of maps with contagion

considered two more edge widths (D = 2 and 4) and

two more levels of contagion (H = 0.05 and 0.80).

Those results were omitted to save space. In addition,

because Mandelbrot (1983, p. 266) suggested that

phase transitions may occur at threshold values of H

(not P), we evaluated a set of maps with contagion

comprising 30 replicates for each combination of H

(0.00 to 1.00 in steps of size 0.01) and P (0.10, 0.20,

0.40, 0.50, 0.60, and 0.80). The results of that

analysis did not substantiate phase transitions at

threshold H values.

Finally, for RULE-generated maps with contagion,

maps with the same values of P and H differ because

the value of the random seed defines a unique three-

dimensional surface (see above). Because such sur-

faces are not stationary (Keitt 2000), raising or

lowering the ‘elevation’ on the same surface (i.e., by

using the same seed value) could precipitate phase
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transitions that are masked by varying the elevation

on an ‘average surface’ (i.e., by using different seed

values). Since we used a different seed value for each

map, we evaluated that possibility by generating

maps using the same seed value while varying P for a

given H, essentially changing the ‘elevation’ on the

same surface as P was varied from 0.01 to 0.99 in

steps of size 0.01. We repeated that procedure for 30

seed values for H = 0.00, 0.10, 0.20, and 0.40 and

visually inspected the resulting trends of the MSPA

pattern classes in relation to P for each surface. The

trends for each surface were similar to the average

trends as reported in this study.

Results and discussion

Phase transitions on simple random maps

On simple random maps, the occurrence and relative

abundance of different pattern classes were strongly

related to P and D, and phase transitions were

signaled by abrupt shifts in the proportions of pixels

in different pattern classes and by variance spikes

(Fig. 2). The phase transition between the islet

pattern class and the connector plus branch pattern

classes was interpreted by using the same logic as

Riitters et al. (2007) as follows. By definition in

MSPA, connector and branch pixels do not exist

unless core pixels exist, and therefore the existence of

core pixels is a prerequisite to phase transitions

involving the connector and branch pattern classes.

On the sample maps, the first core pixels emerged at

P & 0.20, 0.55, 0.78 and 0.87 for D = 1, 2, 4, and 5,

respectively. A larger P was needed for a larger D

because the existence of core required larger clusters

when the edge width was wider. In comparison,

percolation theory guaranteed the formation of a

map-spanning cluster of 8-neighbor connected fore-

ground at P & 0.41 (e.g., Plotnick and Gardner

1993). Therefore, for D = 2, 4, and 5, the phase

transition from the islet pattern class to the connector

plus branch pattern classes was precipitated by the

first emergence of the core pattern class on maps that

already contained a map-spanning cluster, and

threshold P values corresponded to the emergence

of the core pattern class. For D = 1, the same phase

transition was precipitated by the emergence of the

map-spanning cluster on maps that already contained

the core pattern class, at a threshold P & 0.41 as

predicted by percolation theory.

The phase transition between the edge and perfo-

rated pattern classes was also interpreted by using the

same logic as before. Let Pc be the proportion of the

map (foreground plus background) that comprises the

core pattern class. With increasing P, the phase

transition occurred at the value of P for which Pc first

exceeded 0.41, which corresponded to the formation

of a (4-neighbor connected) map-spanning cluster of

non-core foreground plus non-foreground pixels. At

the phase transition, the local context of the back-

ground pixels changed abruptly from exterior to

interior. The foreground pixels that were formerly in

the edge pattern class (i.e., perimeter of core adjacent

to exterior background) became the perforated

pattern class (i.e., perimeter of core adjacent to

interior background). Variance spikes were evident

(Fig. 2) only for D = 1 and 2. For D = 4, the phase

transition occurred at P = 0.99 and the variance

spike was not visually evident. There was no phase

transition for D = 5 because Pc did not exceed 0.41

when P = 0.99.

In summary, two types of phase transitions among

MSPA pattern classes occurred on simple random

neutral maps at threshold P values expected from

percolation theory in light of the connectivity rule

and edge width employed in the MSPA algorithm.

For later comparisons to maps with contagion, note

that a phase transition implies the intersection of two

trend lines (Fig. 2) at some threshold P value. Also

note that with increasing P, the progressions of map

dominance by different pattern classes were similar

for all D. As P increased from zero, maps that were

dominated by small and disconnected clusters of

foreground (islet pattern class) became dominated by

the pattern classes that form paths between clusters of

the core pattern class (connector and branch pattern

classes) at intermediate values of P, and ultimately by

the pattern classes associated with large clusters of

foreground (core, edge, and perforated pattern clas-

ses) at high values of P.

Neutral maps with contagion

The occurrence and relative abundance of MSPA

pattern classes on maps with contagion were related

to P, H, and D (Fig. 3). For relatively large contagion

(H = 0.40), the maps tended to be dominated over
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Fig. 2 Summary of MSPA pattern classes on simple random

neutral maps. Left: the mean proportions of the foreground in

each of the six pattern classes. Right: the standard deviations of

those proportions. The horizontal axes are the proportion (P) of

the map that is foreground. From top to bottom, the edge width

(D) indicates the four scales of analysis. The mean and

standard deviation for a given value of P are based on 50 maps
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Fig. 3 Summary of MSPA pattern classes on neutral maps

with contagion. The mean proportions of the foreground in

each of the six pattern classes are shown for four values of

contagion (H; top to bottom) and two edge widths (D; left to

right), in relation to the proportion of the map that is

foreground (P; all horizontal axes). Each data point is the

mean of 30 maps
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the full range of P by the core, edge, and connector

pattern classes, consistent with earlier observations

that such maps contain a few large, tightly packed,

and connected clusters of foreground (e.g., Ferrari

et al. 2007). With increasing D for large H, the core

pattern class was replaced by the edge and connector

pattern classes because an increase in the edge width

necessarily resulted in a larger edge-to-core ratio, and

because the wider edges subdivided some of the core

clusters into pieces that were still connected to each

other.

Maps with smaller contagion (H B 0.10) exhibited

more differentiation of pixels among pattern classes

over wider ranges of P (Fig. 3). When H and P were

both small, the maps were dominated by the islet

class which indicated that the clusters of foreground

were relatively small and disjoint. With increasing P,

the connector class became more abundant at the

expense of the islet class. The connector-to-core ratio

was relatively large, indicating that only a small

number of the islet clusters of foreground became

large enough to be core, and when that occurred,

there was usually a pathway between those clusters.

Additional increases in P resulted in the formation of

more of the core class and its associated edge class,

which tended to replace the islet class instead of the

connector class. For the largest values of P, the

foreground typically formed a single large cluster that

occupied most of the map, and as a result, the maps

became dominated by the core class which replaced

both the connector and edge classes. Increasing D for

small H affected primarily the pixels that were in the

core class when D = 1, which became connector and

edge pixels when D = 5, for the same reasons as

mentioned earlier. The perforated and branch classes

were minor components of pattern in all but a few

cases, which indicated that maps with contagion did

not typically exhibit holes in clusters of foreground,

or incomplete paths between clusters of core.

Unlike simple random maps, there was no com-

pelling evidence of phase transitions on maps with

contagion. The transitions among the pattern classes

on maps with contagion were gradual (Fig. 3), not

abrupt (Fig. 2), and there were no variance spikes

(results not shown). At the same time, the shifts in

map dominance by different pattern classes with

increasing P were similar to the characteristics of

simple random maps. That suggested the possibility

of using index values for the purpose of comparing

the effects of contagion and edge width. For example,

With and King (1997) reported that ‘threshold values’

of P (i.e., their index values) decreased with H,

occurring at P = 0.50 for H = 0.01 and at P = 0.44

for H = 0.99 for the maps that they tested. In

contrast, Ferrari et al. (2007) examined similar maps

with a different order parameter and reported that

‘threshold values’ increased with H, from P = 0.15

to 0.30 for H = 0.00, to P = 0.50 to 0.70 for

H = 1.00.

We defined index P values for comparing the

effects of contagion and edge width as follows.

Recall that for simple random maps, the phase

transitions were either precipitated by the formation

of a map-spanning cluster, or they were translated to

a larger threshold P at which the core class first

emerged within a map-spanning cluster. For the maps

with contagion, the core class was always present at

all values of P (Fig. 3), and as a result, threshold P

values (if any) depended only on H and D. Noting

that a phase transition implied the intersection of two

trend lines (Fig. 2), and that there were two phase

transitions, we defined one index as the value of P at

which the proportion of the islet class equaled the

proportion of the connector class, and another index

as the value of P at which the proportion of the edge

class equaled the proportion of the perforated class.

In comparison to simple random maps (Fig. 2),

those index values occurred at lower values of P on

maps with contagion (Fig. 3). Furthermore, with H

increasing from 0.00 to 0.10, the intersections

occurred at even smaller values of P for a given D,

and if H became large enough for a given D, then the

intersections were not obtained (Fig. 3). Our obser-

vation that index values decreased with increasing H

was consistent with the findings of With and King

(1997). Furthermore, if contagion ‘‘dampened’’ phase

transitions (Neel et al. 2004), and even the smallest

value of contagion (H = 0.00) reduced threshold P

values (compare Figs. 2 and 3), then it was logical

that larger values of contagion should result in more

‘‘dampening’’ and thus, lower index P values as we

observed.

In contrast, the index values increased with D for a

fixed H (Fig. 3), which means that the effect of a

wider edge width was opposite the effect of higher

contagion. That explains why the results for the

simple random maps appeared to be most similar to

the results for the maps with the least contagion
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(H = 0.00) and widest edges (D = 5). Thus, it may

be anticipated that phase transitions could be

obtained on maps with contagion if the edge width

is ‘large enough,’ reasoning that no matter how the

foreground pixels are distributed, the distribution of

the core pattern class can appear to be random (and

thus, potentially involved in a phase transition) if the

individual clusters of the core are ‘small enough.’

That could have ecological implications if, for

example, organism movement through ‘core habitat’

is functionally different from movement through

‘edge habitat’ (Malanson 2003).

Conclusion

Gardner and Urban (2007) stated that inferences

about landscape pattern and process will not be very

satisfying at high values of P, in part because

‘‘percolation theory defines a boundary above which

few differences exist between random and real

landscapes.’’ They suggested that studies of land-

scape patterns would be more productive at lower

values of P and that if the foreground P was large,

then the patterns of the background should be

examined instead. In contrast, our investigations of

landscape patterns from MSPA showed clear and

large differences between foreground patterns on

maps with large P. Furthermore, we have shown that

percolation theory defines several ‘boundaries’ and

that one of them is located at high values of P.

Inferences about landscape pattern and process are

potentially satisfying only if the landscape pattern

metrics are sensitive to changes in pattern and phase

transitions in the range of P that is of interest, which

is not the case for many classical pattern metrics

when P is large (Neel et al. 2004). Pattern metrics

from MSPA should prove useful for investigating

ecological processes even when P is large, if those

processes depend on connectedness as influenced by

the existence of core, edge, perforated, connector,

branch, and islet patterns, which is likely the case for

the classical ecological problem addressing organism

movement within and between landscapes.

Neutral maps with and without contagion will

continue to be useful as test-beds for exploring

differential sensitivities and responses of pattern

metrics within the metric space defined by P and H

(e.g., Neel et al. 2004), but samples of real maps are

sometimes advocated to extend results to more

aspects of pattern (e.g., Cushman et al. 2007). In

the real world, phase transitions are contingent on

initial conditions and are driven by the pattern of

changes from foreground to background (Filho and

Metzger 2006). If the MSPA pattern metrics were

applied (with an appropriate edge width) to a

temporal series of real maps, we expect that land-

scapes experiencing a random pattern of change will

exhibit phase transitions among the MSPA pattern

classes, irrespective of initial conditions. The thresh-

old values will be as described in the present study,

except they will apply to the proportion of the

original foreground, instead of the proportion of the

entire map. On the other hand, we do not expect to

observe phase transitions of MSPA pattern classes on

any map, irrespective of initial conditions, if the

patterns of change are clumped, contagious, linear, or

otherwise not random.
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