Factor levels for density comparisons in the split-block spacing design
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The split-block spacing design is a compact test of the effects of within-row and between-row spacings. But the some-
times awkward analysis of density (i.e., trees/ha) effects may deter use of the design. The analysis is simpler if the
row spacings are chosen to obtain a balanced set of equally spaced density and rectangularity treatments. A spacing
study in poplar (Populus spp.) illustrates the approach.
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Un modele d’espacements en split block est un test compact des effects d’espacements intra-rangée, et inter-rangées.
Mais quelquefois, les effets imprévisibles de ’analyse de densité (nombre d’arbres & I’hectare) peuvent détourner ’emploi
du modele. L’analyse est simple si les espacements des rangées sont choisis pour obtenir un ensemble balancé de traitements
rectangulaires et de densité également répartie. Une étude d’espacements de peupliers ( Populus spp.) illustre I’approche.
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Introduction

Many experimental designs may be considered for forestry
spacing trials (e.g., Cochran and Cox 1957; Nelder 1962).
There is no single best design because there are trade-offs
between statistical, biological, and cost considerations
(Smith 1959; Curtis 1983). Lin and Morse (1975) introduced
the split-block spacing design by randomizing within-row
and between-row tree spacings in a split-block design
(e.g., Steel and Torrie 1980). The design is attractive because
plots are compact and easily maintained in the field. They
retain statistical validity and accommodate biological
considerations.

One drawback of the split-block spacing design is that
although individual plots are characterized by a particular
density (trees per hectare) and rectangularity (ratio of within-
row to between-row spacings), a convenient set of densities
and rectangularities is not necessarily obtained. If interest
centers on density, the row spacings could be chosen so that
density comparisons are not conditioned upon rectangularity.
This report illustrates the approach.

Design and analytical approach

We shall illustrate the general split-block design with two
experimental factors, denoted R; (i = 1,...,r levels) and
C; (J = 1,...,clevels). The r X ctreatments are a factorial
combination of the levels of the two experimental factors.
Each treatment may be denoted as {R;, C;}. The split-
block nomenclature refers to the randomization of treat-
ments to experimental units in the field. Suppose that a
matrix with r rows and ¢ columns has cells to be filled with
these treatments. In a completely random design, the
{R;, C;} would be assigned at random to the cells in the
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matrix. In a split-block design, the R; are assigned at
random to the rows, and the Cjto the columns.

When R; and C; are, respectively, defined as within-row
and between-row spacings of trees, the split-block spacing
design is obtained (Lin and Morse 1975). For R; and C; in
metres, the density of { R;, C;} in trees per hectare is given
by Dy = 10 000/(R; X C;), and the rectangularity is
L; = R;/C;. When the spacing is square, L;; equals 1.0.
For other rectangular spacings, L; will be less than or
greater than 1.0. L; measures the deviation from
squareness and reflects the orientation of the long axis of
each plot.

In the analysis of variance, the main effects of R and C
test the significance of within-row and between-row spac-
ings (see Lin and Morse 1975). Comparisons of particular
density and rectangularity treatments are then obtained via
contrasts of the individual { R;, C;}, accounting for within-
row or within-column correlations (if necessary) to compute
standard errors. The drawback of this approach is that the
density (D) and rectangularity (L) treatments do not
necessarily have a factorial structure. Thus, some com-
parisons of D may not be independent of L. To overcome
this, the analyst must compare subsets of density treatments
that have the same rectangularity, or ignore rectangularity
altogether. -

A better alternative is to choose the levels of R and C such
that the interesting contrasts of D are independent of L.
One possible design has equal numbers of levels for R and
C (i.e., r = c), the same levels for the two factors

(i.e., R; = C; for i = j), and the levels in geometric pro-

gression (i.e., R; = f X R;_; fori = 2,...,r, where fis a
convenient constant). This choice results in geometric pro-
gressions for both density and rectangularity treatments.
Orthogonal polynomials may be used to find their sums of
squares and to partition their regression components
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TABLE 1. Density and rectangularity treatments in a poplar spacing trial
(X indicates that the treatment was tested)

Density”

Rectangularity? 748 1057

1495 2114 2990 4228 5980 8456

11960

0.25
0.35
0.50
0.71
1.00
1.41
2.00
2.83
4.00

XX XX

XX XX

ET T e

“Number of trees per hectare.

bRatio of within-row spacing to between-row spacing.

TABLE 2. Plot means of the logarithm of stem diameter used in the numerical example

Between-row spacing (m)

Within-row
spacing (m) 0.914 1.293 1.829 2.586 3.658
0.914 0.96 0.95 1.00 0.76 1.14 1.01 1.22 1.01 1.22 1.17
0.69 0.84 0.80 1.12 0.98 1.20 1.06 1.25 1.01 1.16
1.293 1.08 1.04 1.14 1.02 1.32 1.09 1.32 1.20 1.35 1.22
0.64 0.76 0.58 0.88 0.85 1.11 1.08 1.11 090 1.27
1.829 1.12 0.94 1.31 1.03 1.39 1.27 1.28 1.27 1.40 1.40
0.89 1.19 0.83 1.20 0.63 1.27 0.79 1.43 0.84 1.29
2.586 0.86 1.15 1.24 1.24 1.37 1.32 1.49 1.31 1.46 1.36
1.01 1.20 096 1.15 0.72 1.01 1.01 1.44 099 1.15
3.658 1.29 1.12 1.40 1.28 1.39 1.33 1.44 1.21 1.39 1.28
092 1.13 0.96 0.91 0.96 1.08 1.05 1.16 1.18 1.46

Note: The data are scaled to an arbitrary zero. Each treatment was replicated four times.

WITHIN=ROW SPACING (R)

1.3 5.7 1.8
BETWEEN—ROW SPACING (C)

F1G. 1. Field plot layout for one replication of the split-block
spacing experiment. The spacings are rounded to the nearest 0.1 m.

2.6 0.9

(e.g., Kendall and Stuart 1973). Although not a full facto-
rial, the resulting structure of the density and rectangularity
treatments provides some contrasts of density that are inde-

TABLE 3. Standard split-block analysis of variance of
the example data

Source df MS F-ratio P(>F)
Replications 3 0.6199 — —
Within-row

spacing (R) 4 0.1133 3.74 0.03

Linear 1 0.4287 14.16 <0.01

Quadratic 1 0.0033 0.11 0.75
R xreplications 12 0.0302 2.38 0.02
Between-row

spacing (C) 4  0.2097 19.25 <0.01

Linear 1 0.8141 74.73 <0.01

Quadratic 1 0.0057 0.52 0.48
C x replications 12 0.0109 0.86 0.59
RxC 16 0.0097 0.76 0.72
Error 48 0.0127 — —
Total 99

-

pendent of rectangularity, as illustrated later in this paper.

The analysis of density and rectangularity proceeds by
pooling the sums of squares for R, C, and R x C into
treatments and pooling the interactions with replications into
error. This collects all information about density and
rectangularity, including that contained in within-row and
between-row spacings, into the treatment effect. The pool-
ing of error terms is valid if within-row and within-column
correlations are judged unimportant. The validity of the
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TABLE 4. Coefficients of orthogonal polynomials used to partition the treatment sums of
squares in the examples (lin and quad denote linear and quadratic contrasts, respectively)

Coefficient
Treatment R C D L

R C D L Lin Quad Lin Quad Lin Quad Lin Quad
0.914 0.914 11960 1.00 -2 2 -2 2 4 12 0 —4
1.293 8456 0.71 -2 2 -1 -1 3 5 -1 -3

1.829 5980 0.50 -2 2 0 -2 2 0 -2 0

2.586 4228 035 -2 2 1 -1 1 -3 -3 5

3.658 2990 0.25 -2 2 2 2 0 —4 —4 12

1.293 0914 8456 1.41 -1 -1 -2 2 3 5 =1 -3
1.293 5980 1.00 -1 -1 -1 -1 2 0 0 —4

1.829 4228 0.71 -1 -1 0 -2 1 -3 -1 -3

2.586 2990 0.50 -1 -1 1 -1 0 —4 -2 0

3.658 2114 035 -1 -1 2 2 -1 -3 -3 5

1.829 0.914 5980 2.00 0 -2 -2 2 2 0 2 0
1.293 4228 1.41 0 -2 -1 -1 1 -3 1 -3

1.829 2990 1.00 0 -2 0 -2 0 -4 0 —4

2.586 2114 0.71 0 -2 1 -1 -1 -3 -1 -3

3.658 1495 0.50 0 -2 2 2 -2 0 -2 0

2.586 0.914 4228 2.83 1 -1 -2 2 1 -3 3 5
1.293 2990 2.00 1 -1 -1 -1 0 —4 2 0

1.829 2114 1.41 1 -1 0 -2 -1 -3 1 -3

2.586 1495 1.00 1 -1 1 -1 -2 0 0 —4

3.658 1057 0.71 1 -1 2 2 -3 5 -1 -3

3.658 0.914 2990 4.00 2 2 -2 2 0 —4 4 12
1.293 2114 2.83 2 2 -1 -1 -1 -3 3 5

1.829 1495 2.00 2 2 0 -2 -2 0 2 0

2.586 1057 1.41 2 2 1 -1 -3 5 1 -3

3.658 748 1.00 2 2 2 2 —4 12 0 —4

TABLE 5. squares for D, L, R, or C may be obtained in this fashion,

A. Treatment means from the split-block analysis of variance

Between-row spacing (m)

Within-row

spacing (m) 0914 1.293 1.829 2.586 3.658 Mean
0.914 0.86 0.92 1.08 1.14 1.14 1.03
1.293 0.88 0.91 1.09 1.18 1.19 1.05
1.829 1.04 1.09 1.14 1.19 1.23 1.14
2.586 1.06 1.15 1.11 1.31 1.24 1.17
3.658 1.12 1.14 1.19 1.22 1.33 20
Mean 0.99 1.04 1.12 1.21 1.23

B. Standard errors from the split-block
analysis of variance

SE df
Between-row spacing mean  (0.023 12
Within-row spacing mean 0.039 12
Mean in body of table 0.056 48

pooling can be gauged by the significance of R X replica-
tions and C X replications in the analysis of variance, or
by other considerations. The total sum of squares for the
r X ctreatments is then partitioned into the sums of squares
for the 2r — 1 densities and the 2¢c — 1 rectangularities.
(Theextra(r X ¢) — @2r — 2) — (2c — 2) — 1 degrees of
freedom may be used to repartition the main effects of
R and C if that is desired.) In general, the total sums of

but they are not necessarily orthogonal.

Numerical example

In a poplar spacing study, the split-block design was laid
out in four replications with r = ¢ = 5, and levels of R and
C equal to 0.914, 1.293, 1.829, 2.586, and 3.658 m.
The geometric constant f equals the square root of 2.0.
This design gave nine densities ranging from 748 to
11 960 trees/ha and nine rectangularities ranging from 0.25
to 4.00 (Fig. 1). The balanced structure of density and
rectangularity treatments obtained for each replication is
evident in Table 1.

Scaled measurements of 3rd-year stem diameter were used
for this illustration. Each plot contained 81 trees, of which
25 were measured. The variances of plot means for these
unequal-area plots were judged homogeneous in the loga-
rithmic scale. Plot means of transformed data were used in
the analysis of variance (Table 2).

Results of the usual split-block analysis of variance are
shown in Table 3. In this case, both the within-row and
between-row spacing effects are significant. The F-test for
within-row spacing by replication interaction (F), 43 = 2.38)
indicates that within-row correlation may be important, but
this has been ignored for this example. The linear and qua-
dratic regression components have been partitioned from
the main effects (i.e., R and C) using orthogonal polyno-
mials (Table 4). The linear components explain most of the
variation in average diameter. In this analysis, the study of
density and rectangularity effects would proceed by contrast-
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TABLE 6. Alternate analysis of variance of the
example data

Source df MS F-oratio P (>F)
Replications 3 0.6199 — —_
Treatments 24 0.0603 3.93 <«0.01

Density linear 1 1.2122 79.03 <0.01
Density quadratic 1 0.0406 2.64 =~ 0.11
Rectangularity

Linear 1 0.0306 2.00 0.16

Quadratic 1 0.0112 0.73 0.40

Density linear X
rectangularity
linear 1 0.0002 0.01 0.92
Error 72 0.0153 — —
Total 99

ing individual treatment means with appropriate standard
errors (Table 5).

The alternate analysis of variance made possible by the
special choices of R; and C; partitions density and rectan-
gularity effects directly (Table 6). Different sets of
orthogonal polynomials (Table 4) were used to obtain the
sums of squares for the linear and quadratic components
of density and rectangularity, and one interaction. These
contrasts are a mutually orthogonal set. Average plot
diameter was found to be linearly related to density but
unrelated to rectangularity, and there was no interaction
between linear components of density and rectangularity.
The higher order polynomials will not contribute signifi-
cantly to the fit of the response surface (Fy; 7, = 0.90).
Therefore, a simple linear regression of average plot
diameter on density will adequately summarize the data.
This conclusion is superficially similar to that reached in the
previous analysis. The advantage of this formulation is that
the conclusion may be stated directly in terms of density
rather than within-row and between-row spacings. In addi-
tion, regression equations may be more easily developed with
density as the independent variable.

Conclusion

There is but one other published application of the split-
block spacing design in forestry (Amateis ef al. 1988).
Perhaps the design should be used more often, if only
because it efficiently uses experimental area for notoriously
large spacing trials. The potential statistical difficulty of
within-row and within-column correlations is probably no
more a problem in this design than in any other that may
be used on nonuniform experimental sites. Although the
example showed plots of unequal sizes, the number of
planted rows or columns may be modified to obtain equal

plot sizes. The increased site homogeneity and cost savings
achieved certainly argues for a compact design.

Perhaps the usually awkward analysis of density has been
a deterrent to more popular use of the split-block design.
In many cases, the comparison of density treatments has
to account for different rectangularity, and it is not always
easy to test the importance of the latter. The example shows
that this can be overcome through judicious choices of
within-row and between-row spacings.

The objective of most forest spacing trials is to find a den-
sity that is in some way optimum, and the planned regres-
sion of yield on density should be considered when select-
ing treatments. The example tests the widest range of
rectangularity at medium density and the widest range of
density at square spacing. This is more efficient for finding
optimum spacings when the response is nonlinear than for
estimating linear response functions. For nonlinear
responses, a good selection of treatments would place the
expected optimum near the center of the design.

Rectangularity may be practically unimportant, but this
is another reason to use the split-block spacing design. The
split-block spacing design takes advantage of the practical
independence of yield from rectangularity to create a
compact field layout. If the effect of rectangularity is
unknown, this design provides a direct test of its importance.
It also estimates components of the density effect that are
independent of rectangularity. More general yield—-density-
rectangularity models may always be explored by ignoring
the split-block design altogether.
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