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Abstract

Ecoregional stratification has been proposed for sampling
and mapping land-cover composition and pattern over time.
Using a wall-to-wall land-cover map of the United States, we
evaluated geographic scales of variance for nine landscape-
level and eight forest pattern indices, and compared stratifi-
cation by ecoregions, administrative units, and watersheds.
Ecoregions accounted for 65 percent to 75 percent of the total
variance of percent agriculture and percent forest because
dominant land-cover is included in ecoregional definitions. In
contrast, ecoregions explained only 13 percent to 34 percent
of the variance of the other seven landscape-level pattern
indices. After accounting for differences in amount of forest,
ecoregions explained less than 5 percent of the variance of
the eight forest pattern indices. None of the stratifications
tested would be effective mapping units for land-cover pattern
because within-unit variance of land-cover pattern is typically
two to four times larger than between-unit variance.

Introduction

Tradeoffs between wall-to-wall mapping and sampling to
estimate tropical deforestation rates have been the topic of
recent discussion. Tucker and Townshend (2000) showed
that a 10 percent sample of Landsat sensor scenes was
inadequate to estimate deforestation rates for individual
countries in South America, and recommended wall-to-wall
coverage to capture localized land-cover dynamics. In
response, Czaplewski (2003) showed that despite localized
dynamics, a 10 percent sample was adequate for larger
geographic areas (biomes, continents) because the sample
size was larger for a fixed sampling intensity. Clearly, a
sampling approach can estimate deforestation for a given
geographic area, to any specified degree of precision, if the
sample size is large enough. A wall-to-wall map is simply
a 100 percent sample that provides measurements for all
geographic areas.

The discussion of sampling versus wall-to-wall mapping
should consider the type of information that is expected to
come from remote sensing. Whereas a focus on estimating
deforestation rates leads naturally to a statistical sampling
approach, a focus on managing deforestation leads to a
geographical mapping approach. It is one thing to know the
deforestation rate, and another to know where to act on that
information. Places that are not sampled still need to be
managed, and an accurate map is required to decide actions
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for specific places. Sampling is obviated by wall-to-wall
mapping. At issue is whether a map prepared from a sample
is accurate for a small area, and thus useful for local land
management.

There are several ways to produce a wall-to-wall map
from a sample of locations. For example, geostatistical
methods fit spatial surface models to sample measure-
ments, which then provide interpolated estimates for the
non-sampled locations. Local accuracy depends on a low
“nugget” variance, which in turn requires a sufficiently
dense sample in relation to the spatial correlation of the
mapped attribute. A second approach uses geographically
defined stratification whereby stratum-level estimates from
sampling are mapped. In this case, local accuracy depends
on spatial uniformity, that is, low within-stratum variance.
Neither of these approaches is likely to solve the problem
of mapping spatially concentrated deforestation rates from
a small sample.

In the United States, the cost and difficulty of develop-
ing wall-to-wall temporal land-cover data have led to a
proposal for sampling and mapping based on ecoregional
stratification (Loveland et al., 2002). Stehman et al. (2003a)
demonstrated that the proposed stratified one-stage cluster
design is effective for estimating population and ecoregion-
level changes in land-cover composition. Stratification is
effective when strata are defined with respect to the quantity
that is to be estimated (Cochran, 1977), and land-cover com-
position is one of the components used to distinguish the
Omernik (1987) ecoregions employed in the study. At the
same time, substantial within-sample and within-ecoregion
variance (see Figure 6 in Gallant et al., 2004) led to recom-
mendations to consider larger sample sizes, smaller sample
units, post-stratification, and regression estimators to incor-
porate ancillary information (Stehman et al., 2003a).

In contrast to land-cover composition, ecoregional
stratification may be less effective for estimating changes in
land-cover spatial pattern. Spatial patterns result from both
local (e.g., urban expansion, parcelization) and regional (e.g.,
fire suppression, abandonment of agriculture) management
regimes. Even if the ecoregional environment determines if
there can be a farm at all (composition), individual humans
decide the size and shape (pattern) of farms. These decisions
are made in a local context that also includes the history of
a landscape, local traditions, and economic and regulatory
criteria (Masek et al., 2000; McDonald and Urban, 2004).
Thus, while ecoregional stratification is effective for estimat-
ing land-cover composition, more work is needed to prove
its utility for sampling and mapping land-cover patterns.
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Hunsaker et al. (1994) showed that regional patterns are
difficult to characterize by sampling, and Riitters and
Coulston (2005) found that forest spatial patterns were only
partly associated with Bailey’s (1995) ecological regions.
Loveland et al. (2002) recommended further evaluation of
ecoregional stratification for estimating changes in land-
cover patterns.

As a part of the evaluations, Loveland et al. (2002)
suggested that significant differences in rates of composition
change among six ecoregions indicated that ecoregions are
appropriate strata for capturing unique patterns of land-
cover change. Griffith et al. (2003a) reported statistically
significant trends in six land-cover pattern indices for 11
sample units in one ecoregion over a 20-year period. Later,
using an expanded set of five ecoregions in the eastern
United States, Griffith et al. (2003b) evaluated trends in 10
indices of land-cover composition and pattern. In most
cases, the temporal trend for each index was statistically
significant within each ecoregion, and for five of the ten
indices tested, the linear component of trend was statisti-
cally different between ecoregions. Griffith et al. (2003b)
suggested that these results support the use of ecoregions
as a geographically coherent way to regionalize national
land-use and land-cover change. In a later summary, Gallant
et al. (2004) concluded that ecoregion boundaries corre-
spond well with land-cover patterns, and, furthermore, that
ecoregion-level information developed from sampling met
the needs of land managers.

These conclusions endorse ecoregional stratification for
mapping changes in land-cover composition and pattern.
However, the demonstrated effectiveness of ecoregional
stratification for sampling does not imply that ecoregion-
level maps will be accurate for the purpose of managing
land-cover changes. Stratification yields gains in sampling
precision even if there is only a weak correlation between
ecoregion boundaries and the quantity of interest (Cochran,
1977), but the management utility of an ecoregion-level map
depends critically on a very high correlation, that is, on very
low within-ecoregion variance. If within-ecoregion variance
is large, then management actions decided at the ecoregion
level will likely be applied at inappropriate places within an
ecoregion. Demonstrating that ecoregions are statistically
different provides little basis for evaluating ecoregions as a
mapping tool for land managers.

In this paper, we present another evaluation of ecore-
gions as a stratification tool for sampling and mapping land-
cover patterns. We use the 1992 National Land Cover Data
(NLCD; Vogelmann ef al., 2001) that has been used in many
studies of land-cover patterns. We address several general-
ized land-cover types (agriculture, urban, and forest) but
focus on forest because the NLCD has been used to assess
forest patterns at a national scale (e.g., Heilman et al., 2002;
Riitters et al., 2002 and 2004a), and because detecting forest
changes was one of the first applications of remote sensing
(e.g., Skole and Tucker, 1993) that remains a relevant global
question today (e.g., Tucker and Townshend, 2000; Achard
et al., 2001; Czaplewski, 2003; Foody, 2003; Rogan et al.,
2003). Although the map is only a snapshot in time, it can
be used to estimate various statistical parameters that are
useful for evaluating alternate multi-temporal sampling
designs, for example within- and between-strata variance
of landscape pattern indices.

As noted by Gustafson (1998) among many others, land-
cover composition and pattern are conceptually different,
referring respectively to the amount and spatial arrangement
of land-cover. But composition is a fundamental aspect of
pattern, if only because it places physical constraints on the
types of patterns that can be realized. For example, forests
cannot be fragmented in fully-forested landscapes. Among
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50 pattern indices tested by Neel et al. (2004), 15 were
strongly related to composition, 28 were related to both
pattern and composition, and only seven were unrelated to
composition. Thus, most pattern indices cannot be inter-
preted independently of composition. Considering the set of
ten indices used by Griffith et al. (2003b), three are specifi-
cally composition indices, and six of the remaining seven
are related to composition (Neel et al., 2004). If ecoregions
are effective for estimating composition, it follows that they
will also be effective for estimating pattern indices that are
related to composition. Tests of ecoregion stratification for
estimating and mapping land-cover pattern should recognize
differences in composition among ecoregions.

Many alternate stratification schemes potentially satisfy
the criterion that ecoregions are useful because they work
(Griffith et al., 2003b). In this paper, we compare stratifica-
tions based on Omernik (1987) ecoregions, Bailey (1995)
ecological regions (provinces and sections), administrative
units (states and counties), and hydrologic units (water-
sheds). Administrative and hydrologic units are often
dismissed because they are based on non-ecological criteria
(e.g., Gallant et al. 2004). But if land-cover patterns are not
controlled by ecological factors, then non-ecological stratifi-
cations might be a better choice. County maps of composi-
tion and pattern, for example, might be more informative
than ecoregion maps because land-use decisions are often
made at the county level.

The questions we address pertain to the use of ecoregions
for sampling and mapping land-cover patterns: (a) Are
ecological stratifications superior to other similarly-scaled
stratification schemes such as administrative units or water-
sheds?; (b) Considering forest pattern indices, are ecoregions
effective for stratification after accounting for different
amounts of forest?; and (c) Do estimates of between- and
within-stratum variance components support the use of
ecoregions for mapping land-cover patterns? Answers to these
questions lead to insights about the spatial scales at which
landscape patterns are created, which in turn can inform the
discussion of sampling versus wall-to-wall mapping in remote
sensing.

Methods

Land-cover Maps

We measured land-cover composition and pattern on the
National Land Cover Data (NLCD) which is a wall-to-wall map
of the conterminous 48 states and District of Columbia. The
NLCD mapping project used Landsat Thematic Mapper (TM)
data (circa 1992) to map 21 classes of land-cover (Table 1)

at a spatial resolution of 0.09 ha pixel ' (Vogelmann et al.,

TABLE 1. AGGREGATION OF NLcD LAND-COVER TYPES FOR ANALYSIS
OF LAND-COVER PATTERNS

NLCD categories Aggregated category

Water
Developed

Open water, perennial ice/snow

Low intensity residential, high intensity
residential, commercial/industrial/
transportation, urban/recreational grasses

Bare rock/sand/clay, quarries/mines,
transitional

Barren or disturbed

Deciduous forest, evergreen forest, mixed Forest
forest, woody wetlands

Shrubland Shrubland

Orchards/vineyards, pasture/hay, row crops, Agriculture
small grains, fallow

Grasslands/herbaceous Grassland

Emergent herbaceous wetlands Wetland
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2001). The T™ data were mapped into the land-cover
classes using a combination of digital image processing
techniques and logical modeling using associated ancillary
data (Vogelmann et al., 1998). Accuracy assessments of the
NLCD (Stehman et al., 2003b; Wickham et al., 2004) sug-
gested aggregating the 21 NLCD land-cover types into eight
generalized categories (Table 1) for measurements of
composition and pattern.

Stratification

We tested the “level 3” strata (n = 84) from Omernik (1987)
and will refer to these strata as “ecoregions.” For comparison,
we chose Bailey’s ecological regions, states and counties, and
watersheds as hierarchically nested, geographically defined
stratifications. For Bailey’s (1995) stratification, we considered
ecological “sections” (n = 164) within ecological “provinces”
(n = 35). We used four levels of U.S. Geological Survey (1999)
hydrological units (watersheds) defined by “2-digits” (n = 18),
“4-digits” (n = 204), “6-digits” (n = 332), and “8-digits”

(n = 2099). Our administrative units included 49 states
(including the District of Columbia) and 3,089 counties
(U.S. Geological Survey, 2002).

Composition and Pattern Measurements

For comparison with studies mentioned earlier, measure-
ments were made within a grid of 56.25 km? (250 pixels

X 250 pixels) analysis units superimposed on the NLCD map.
The units are large enough to measure pattern indices on the
NLCD map, and small enough to estimate within-stratum
variance for the stratifications tested (O’Neill et al., 1996).
Within each analysis unit, we calculated 17 landscape-level
and forest indices (Table 2) representing different aspects of
land-cover composition and pattern. Some of the indices
were also used by Griffith et al. (2003b) and others were
selected based on statistical criteria (Riitters et al., 1995;
Cain et al., 1997). Indices were obtained by tabulating the
frequencies of different land-cover types or the frequencies
of different types of adjacencies (e.g., a forest pixel adjacent
to an agriculture pixel), or by identifying contiguous occur-
rences of each land-cover type (“patches”) to determine
patch areas and patch perimeter lengths. Adjacency and
patch contiguity were evaluated in the four cardinal direc-
tions only, and individual patches were truncated at the
boundaries of analysis units.

Nine landscape-level indices (Table 2) included meas-
ures of land-cover composition, diversity and aggregation,
and descriptors of the number and shape of patches. With a
few exceptions the correlations among these indices (Table 3)
were small (r < 0.50). Eight forest indices (Table 2) included
measures of aggregation, edge, and patch size and shape. We
purposefully included several popular forest indices that
exhibited a high correlation with percent forest (Table 4).

Each analysis unit was associated with an ecoregion,
section, county, and 8-digit watershed according to the
location of its center point. Analysis units were excluded if
their center point was not in those strata, or if they con-
tained missing pixels (e.g., units that crossed international
borders), or if they contained only water pixels. Analysis
units were also excluded from the forest pattern analysis
if they did not contain any forest. A total of 137,345 analy-
sis units met the criteria for the landscape-level analysis,
of which 126,662 contained some forest. The sample sizes
were reduced for some indices because of computational
requirements such as a minimum number of patches (Table 2).

Variance Components Analysis

Variance components analysis (Searle et al., 1992) is a
statistical technique to analyze the sources of variation in
a set of observations. It has been applied, for example, to
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TABLE 2. LAND-COVER COMPOSITION AND PATTERN INDICES CALCULATED
WITHIN 56.25 km? ANALYsIS UNITs. ExcerT As NoTeD, 137,345 ANALYSIS
UNiTs WERE USeED FOR LANDSCAPE-LEVEL INDICES AND 126,662 For
FOREST INDICES. “In” INDICATES LOGARITHMIC TRANSFORMATION

Landscape-level Indices

PctAgr Percent agriculture land-cover

PctDev Percent developed land-cover

PctFor Percent forest land-cover

SiDiv Simpson (1949) diversity index applied to
land-cover proportions

ShCont Contagion index (Li and Reynolds, 1993)

measures overall aggregation of land-cover
types

Number of patches of all land-cover types

Average patch standardized perimeter-to-area
ratio (Baker and Cai, 1992) for patches larger
than four pixels that do not touch the boundary
of the analysis unit (includes both internal
and external perimeters)

Average patch topological dimension (Riitters
et al., 1995), for patches larger than four pixels
that do not touch the boundary of the analysis
unit

Fractal dimension corresponding to patch
perimeter complexity from perimeter-area
scaling (Krummel et al.,1987), for a minimum
of 20 patches larger than four pixels that do
not touch the boundary of the analysis unit
(n = 135,317)

NumPat (In)
PARatAdj

TopoD

PAFract

Forest Indices

F Conn Forest connectivity (Riitters et al., 2000)
measures forest aggregation

Area-weighted average forest patch size

Number of forest — nonforest pixel edges per
forest pixel

Average forest patch size

Number of forest patches

F_AWPatSiz (In)
F_EARat (In)

F_PatSiz (In)
F NumPat (In)

F_PARatAdj Same as PARatAdj except forest patches only
(n = 118,226)

F_TopoD Same as TopoD except forest patches only
(n = 118,226)

F_PAFract Same as PAFract except forest patches only
(n = 88,352)

study the variance structure of indicators of lake condition
(Kincaid et al., 2004) and to test hierarchical designs for
analyzing spatial pattern in benthic macrofauna (Cole et al.,
2001). We used the technique to estimate the variances
associated with different levels of each of the stratifications.
Using the Bailey (1995) stratification as an example, the
nested linear model for index Y is:

1/1-]-]( =M + Pi + Sj{j} + Uk{ij} (1)
where Yy is the index value for the k'™ analysis unit in
section j within province i, u is the overall mean, P; is the
effect due to province i, Sj; is the effect of section j within
province i, and Uy is the residual variation for analysis
unit k within in section j and province i. The parentheses
in the subscripts indicate the hierarchical nesting; the values
in parentheses are the higher-level strata.

Assuming a random effects model, let Var (P) = o *,ovinces
Var (Sy;) = 0 wqion, and Var (Uygy) = o %y The total variance
(0 %0ta)) 1s the sum of the three components:

2 —_ 2 2 2
O total = O province + 0 section + 0 unit (2)

The proportions of total variance associated with provinces,
sections, and units are respectively (0 pwovince/ 0 *total)
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TaBLE 3. CORRELATIONS AMONG LANDSCAPE-LEVEL INDICES

PctAgr PctDev PctFor SiDiv ShCont NumPat PARatAdj TopoD
PctDev —0.01 —
PctFor —0.33 —0.03 —
SiDiv —0.01 0.17 —0.08 —
ShCont 0.09 —0.18 0.08 —0.92 —
NumPat —0.10 0.18 0.00 0.68 —0.78 —
PARatAdj 0.09 0.03 0.03 0.50 —0.46 0.36 —

TopoD -0.37 —0.05 0.26 0.07 —0.04 —0.15 —0.10 —
PAFract —0.25 0.06 —0.09 0.18 —0.32 0.54 0.33 —0.21
TABLE 4. CORRELATIONS AMONG FOREST INDICES

PctFor F_AW PatSiz F_Conn F_EARat F_PatSiz F_NumPat F_PARat Adj F_TopoD
F_AWPatSiz 0.92 —
F Conn 0.91 0.98 —
F_EARat —0.90 —0.98 —1.00
F_PatSiz 0.81 0.91 0.94 -0.95 —
F_NumPat 0.66 0.39 0.33 —0.30 0.08 —
F_PARatAdj 0.53 0.55 0.55 —0.55 0.61 —0.06 —
F_TopoD 0.33 0.38 0.42 —0.42 0.44 —0.12 0.25 —
F_PAFract —0.06 —0.12 —0.25 0.25 -0.25 0.38 0.16 —0.32

(02section/ T2 total), and (02 4ni/ 0%0ta). Unbiased estimates of
variance components can be computed from the analysis of
variance (Proc Nested, SAS Institute, Inc., 2003). The
observed mean squares at each level are equated to their
expected values (which are linear combinations of the true
variances) to solve for the estimated variance components.
We followed the same general procedures to estimate the
percentage of total variance attributable to each level for
ecoregions, administrative units, and watersheds.

Regression Analysis of Forest Pattern Indices
The objective of the regression analysis was to determine
whether Omernik (1987) ecoregions explained a large propor-
tion of total variance in forest pattern indices after taking into
account the amount of forest present. The dependent vari-
ables were the forest indices, and the independent variables
were different combinations of ecoregions and percent forest.
Separate regressions were fitted within each ecoregion
because the specific relationship varies among ecoregions. For
example, the number of forest patches usually increases with
percent forest in ecoregions with little forest overall, but
decreases with percent forest in mostly forested ecoregions,
and the relationship is curvilinear in ecoregions exhibiting a
wide range of percent forest. A second-order polynomial
accounts for many of the possibilities.

We fitted three regression models in a general linear
modeling framework (Proc GLM, SAS Institute, Inc., 2003).
Model I includes only ecoregions as a classification variable:

Model I: le] =wn+ Ei + (Ji(i) (3)

where E; is the mean effect of ecoregion i and Uy; is the
residual variance among analysis units within ecoregion i.
Model I is the same as the nested model used in the vari-
ance components analysis for ecoregions. Model II adds
regression terms for percent forest (PctFor) and fits a second-
order regression within each ecoregion:

Model II: Y;; = u + E; + A*PctFory; + B*Pctfor®; + Uy (4)
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where A and B are regression coefficients estimated within
ecoregions, and E; can now be interpreted as the intercept
for ecoregion i. Model III drops the ecoregion intercept term:
Model IIl:  Yj; = u + A*PctFory; + B*Pctfory;) + Us).  (5)
For comparison among the three models, we examined the
R? values as an overall measure of goodness-of-fit. The R?
value represents the percentage of total variance among
analysis units that is explained by the model, and it natu-
rally increases when more terms are included in the model.

Results

The stacked bar charts in Figure 1 show the results of the
variance components analyses for landscape-level indices.
Omernik (1987) ecoregions accounted for 75 percent of the
total variance for percent forest and 66 percent of the total

for percent agriculture. In contrast, only 20 to 34 percent of the
total variance of land-cover pattern indices, and 13 percent of
the total for percent developed, was attributable to ecoregions.
Similar results were obtained for the Bailey (1995) stratification
and furthermore, provinces accounted for more variance than
sections for percent forest and percent agriculture whereas the
opposite was typical for the other indices.

Strata defined by watersheds and administrative units
also accounted for more variance of percent forest and
percent agriculture in comparison to the other indices. For
the watershed stratification, 2-digit and 4-digit watersheds
together accounted for more of the total variance than 6-digit
and 8-digit watersheds for percent forest and percent agri-
culture. For the administrative stratification, states and
counties accounted for about the same percentage of total
variance of percent forest and percent agriculture. For the
other indices, counties typically accounted for more of the
total variance than states.

Comparison among stratifications must recognize that
the proportion of total variance explained by any stratifica-
tion is partly due to the number of strata (or roughly, the
average size of strata). Other things equal, smaller and
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PAFract

PctFor Administrative

PetAgr units
PctDev M State (49)

SiDiv B County (3089)
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NumPat
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TopoD
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0% 20% 40% 60% 80% 100%

Figure 1. Percentage of total variance of landscape-
level composition and pattern indices attributable to
levels in four geographic stratification schemes. The
number of strata at each level is indicated in the
legends.

therefore more numerous strata should explain a higher
proportion of the total variance of any index. In that sense,
Omernik (1987) ecoregions are slightly better than Bailey
(1995) provinces and sections in accounting for variance
of percent forest or agriculture, because more of the total
variance was attributable to 84 ecoregions than to 164
sections within 35 provinces. By the same logic, provinces
might be better because only 35 provinces accounted for
two-thirds as much of the variance as was accounted for
by 84 ecoregions.

When considering the geographic scale of variance for
a given index, note that if a small number of large strata
account for less variance than a large number of small strata,
then more of the variance is exhibited at finer geographic
scales. For example, Bailey (1995) sections account for three
times more variance of number of patches than provinces.
The implication is that in comparison to the regional scale
variance of percent forest and percent agriculture, the vari-
ance in number of patches is expressed at a more local
geographic scale. Furthermore, since the within-section
variance is twice as large as the sum of variance components
for provinces and sections, the most informative geographic
scale for this index is smaller than sections.

The overall impressions gained from Figure 1 can be
summarized as follows. For percent forest and percent agri-
culture, all of the stratifications accounted for a substantial
portion of total variance, and for a given stratification the
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F_AWPatSiz Omernik
F_Conn ecoregions
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F_PAFract I

F_AWPatSiz Administrative
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F_TopoD
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0% 20% 40% 60% 80% 100%

Figure 2. Percentage of total variance of forest pattern
indices attributable to levels in four geographic stratifi-
cation schemes. The number of strata at each level is
indicated in the legends.

higher-level strata accounted for more variance than lower-
level strata. This suggests that the most informative geo-
graphic scale for percent forest and percent agriculture is
regional. For all of the other indices, none of the stratifica-
tions accounted for a large portion of total variance, and a
comparatively large number of units were typically required
to account for as little as one-third of total variance. This
suggests that most aspects of land-cover spatial pattern are
expressed at local geographic scales.

Figure 2 illustrates the results of the variance compo-
nents analysis of forest pattern indices. As expected, for
the four indices that are highly correlated with percent
forest (area-weighted average patch size, connectivity, edge-
area ratio, and average patch size), the results are roughly
the same as the results obtained for percent forest in the
landscape-level analysis (Figure 1). Considering the other
four indices, the Omernik (1987) and Bailey (1995) stratifica-
tions accounted for less than 40 percent of the total vari-
ance, and even a much larger number of watersheds or
counties typically accounted for less than 40 percent of the
total variance. The within-stratum variance of these forest
pattern indices was typically two to three times larger than
the between-stratum variance. These results mirror the
landscape-level results and suggest that most aspects of
forest spatial pattern are also expressed at local geographic
scales.

Table 5 shows the R? values for the three regression
models relating forest pattern indices to Omernik (1987)
ecoregions and percent forest. For comparisons, the R?
values for Model I are roughly equivalent to the variance
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TABLE 5.

PERCENT OF TOTAL VARIANCE EXPLAINED BY THREE MODELS RELATING FOREST PATTERN INDICES TO ECOREGIONS AND PERCENT FOREST. MODELS

ARE DEFINED IN EQUATIONS 3 THROUGH 5 IN THE TEXT

F_AW PatSiz F_Conn F_EARat F_PatSiz F_NumPat F_PARatAdj F_TopoD F_PAFract
Model
I 71 70 71 68 38 26 17 18
11 96 93 93 92 86 38 22 22
III 96 92 92 90 84 37 17 19

786 July 2006

(b)

Plate 1. National maps of the percent of forest (a) and fractal dimension from
perimeter-area scaling (all land-cover types, (b)) within 56.25 km? analysis units. The
color ramp is from the smallest values (light) to the largest values (dark). Boundaries
of Omernik (1987) ecoregions are shown for comparison.
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components for ecoregions in Figure 2. The increase in
R? for Model II was largest for the number of patches
which exhibited only a moderate correlation (r = 0.66)
with percent forest, and we attribute this to the underlying
curvilinear relationship between number of patches and
percent forest. For all indices, percent forest alone (Model III)
explained more variance than ecoregions alone (Model I).
The difference in R* between Model II and Model III
represents the percentage of variance explained by ecore-
gions after adjusting for differences in percentage forest
among ecoregions. This difference is very small for all
forest indices, indicating that the proportion of total pattern
variance that is accounted for by ecoregions results from
an accounting for differences in percent forest among
ecoregions, not from an accounting of differences in forest
pattern among ecoregions. Although not shown, similar
results were obtained for a parallel analysis using Bailey’s
(1995) provinces and sections in the regression models.
The difference between regional and local scales of
variance is illustrated by national maps (Plate 1) of percent
forest (Plate 1a) and fractal dimension from perimeter-area
scaling (all land-cover types, Plate 1b). Forest area distribu-
tion exhibits a smooth appearance that is clearly associated
with Omernik (1987) ecoregion boundaries. The coarser
appearance of the map of patch shapes indicates a more
local scale of variance, and this index is less clearly associ-
ated with ecoregion boundaries. These visually apparent
differences explain why several different types of large strata
can account for a substantial proportion of the variance of
percent forest, and why no large strata can account for a
high proportion of variance for indices of forest pattern that
are not correlated with percent forest.

Discussion

From a sampling perspective, our results show that any
geographical stratification will improve statistical precision,
at least somewhat, when estimating any of the landscape-
level or forest indices. Furthermore, when estimating land-
cover composition, there should be substantial gains in
precision for indices of forest, agriculture, and similarly
distributed land-cover types (e.g., shrublands and grasslands)
but not for land-cover types that are not concentrated in
particular ecoregions (e.g., urban and water). When estimat-
ing the proportions of dominant land-cover types, gains
should also be larger for stratifications that are either based
at least partly on dominant land cover (Omernik, 1987) or
on biophysical factors that determine dominant land cover
(Bailey, 1995). For all of the stratifications tested, we would
not expect large gains in precision for any index of land-
cover pattern except for those that are highly correlated with
the percent of the dominant land-cover type within strata,
but these arguably are measures of dominant composition
rather than pattern.

From a mapping perspective, ecoregion-level estimates
of dominant land-cover percentages are reasonable first
approximations. However, it is not clear that ecoregion-level
statistics developed from sampling are sufficient for map-
ping. Omernik (1987) and Bailey (1995) ecoregions left
unexplained 25 to 35 percent of the total variance in percent
forest and agriculture, suggesting that percent of dominant
land-cover types varies considerably within individual
ecoregions (see Plate 1). Ecoregions are probably not useful
for mapping non-dominant land-cover types, or land-cover
pattern, because the within-ecoregion variance is typically
two to four times larger than between-ecoregion variance.
Thus, it is unlikely that any regional, geographically defined
stratification will be an adequate substitute for wall-to-wall
mapping when assessing or managing land-cover pattern.
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Although our analysis used only one land-cover map,
the results can be applied to the analysis of changes in
land-cover composition and pattern. Many analyses of
change have focused on finding significant differences
among ecoregions in a sampling framework. Attempts to
extend those results to ecoregional mapping would benefit
from additional analysis of the within- and between-
ecoregion variances of change. In the United States, signifi-
cant ecoregional differences in the rate of urban develop-
ment are likely to be obtained as people migrate to southern
and coastal ecoregions. However, people do not migrate to
ecoregions, they migrate to particular places within ecore-
gions, and new urban development is concentrated near
existing urban areas. We can speculate that analyses of
change from either a sampling or a mapping perspective
will be more accurate with local stratifications than with
regional stratifications.

In the United States, we expect that most changes in
forest spatial patterns will be related to urban development
(e.g., Wear et al., 2004). Roads accompany urban develop-
ment and have profound impacts on some aspects of pattern
such as patch size (Riitters et al., 2004b). Parcelization (i.e.,
the legal subdivision of ownership) is likely to continue,
making it more likely that different owners will make
different land-use decisions for increasingly smaller tracts
of land (Birch, 1996; Sampson and DeCoster, 2000; Gobster
and Rickenbach, 2004). These factors translate to increased
variance of forest spatial pattern at increasingly local geo-
graphic scales. As a result, we expect a reduction of variance
associated with ecoregions and an increase in variance
associated with local geographic scales. For sampling and
mapping forest patterns, ecoregional stratification will
continue to be effective where humans have relatively little
influence on forest pattern generation, but we think this
will represent a smaller percentage of total area over time.
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