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Abstract: ‘Ihe  USDA Forest Service’s Southern
Research Station is implementing an annualized forest
survey in thirteen states. The sample design is a
systematic sample of five interpenetrating grids
(panels), where each panel is measured sequentially.
For example, panel one information is collected in year
o n e , and panel five in year five. The area
representative and time series nature of the sample
design offers increased flexibility in providing estimates
of annual growth, mortality, removals and change in
forest area. Restricting analyses to the most recently
measured panel results in many missing cells in
standard forest inventory tables. Rather than treat all
unmeasured panels as missing, imputed values are used
to update plots in each unmeasured panel. Because it
is uncertain what analyses the ultimate users of these
public-use data may engage in, we evaluate the effect
and consequences of excluding important predictor
variables from the imputation models.

INTRODUCTION
Missing values are a problem in many survey data

sets. In forest inventory data sets it has been common
practice to update missing or deficient data using a
variety of modeling techniques. Deficient data in the
forest inventory context most often means old data.
“Old” does not necessarily relate to well defined time
intervals since observation; it could also relate to
certain catastrophic events such as hurricanes or
wildfires that have occurred since the completion of
data collection. In either case, the representiveness of
the data is in question.

The USDA Forest Service’s Southern Forest
Inventory and Analysis (FIA) program is implementing
a new sample design. For those familiar with the
longstanding lo-year periodic FIA survey, the new
design takes the large periodic survey and divides i t  into
five interpenetrating smaller samples, referred to as
panels 1 through  5. Panel 1 plots are measured in year
1, panel 2 plots in year 2, etc., such that all plots are
measured by the end of year 5. Within each panel the
same sample elements (plots) are measured on each
succeeding occasion. Currently panel remeasurement
occurs on a five year interval.

The chief advantage of the annually repeated survey
over the traditional periodic sample is that the separate
annual samples provide information about variations
that occur between the periods (Reams and Van Deusen
1999). This provides the ability to estimate annual and
secular trends. Also, the sum of repeated surveys over
the entire period can lead to better statistical inference
than a single, concentrated, one-time survey (Kish
1965).

The annual panel design results in one panel of
current information, and four panels of data varying in
age from 2 to 4 years. We could treat all data as
current, however we could also update the values
through the use of models or imputation procedures.
Forest inventory experts have commonly used models
to update old or missing data. Usually regression
models are used and the data are then treated as actual,
and the inventory estimates are produced (Reams and
Van Deusen 1999). This procedure is also known as
single imputation, and the procedure as commonly used
results in negatively biased estimates of the variance
(Reams and Van Deusen 1999).

Public-use (shared) data bases are analyzed by many
ultimate users with varying degrees of statistical
expertise and computing power, and with different
scientific questions and objectives. For example USDA
Forest Service, Forest Inventory & Analysis (FIA) data
are used for a variety of purposes. The FIA
information is most often used as the official forest
inventory statistics for the nation.

Because FIA has been operating for nearly 70 years,
the data are often identified as the only long-term
inventory and monitoring data available to the public
for addressing long-term productivity trends related to
natural and anthropogenic factors. As such, the FIA
data have been used to address research questions never
or infrequently considered by designers and users of the
program. Recent research topics include the potential
influence of air pollution or acid rain on forest
productivity, and the potential influence forests may
have on mitigating global climate change. Other studies
include the long-term sustainability of southern forests
as influenced by competing land-use al ternatives and the
influence of global climate change on forest
product iv i ty .
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The reason for discussing the traditional use of FIA
data for current status and trends in forest inventory and
potential uses of FIA for exploratory analyses revolves
around the use of imputation for annualized forest
inventories. We will demonstrate two methods of
imputation (modeling) for the ammal survey program.
We will also state that the use of modeled or imputed
data to conduct associational and exploratory studies for
quantitative assessment of biological and ecological
processes should be discouraged.

The objectives of this study are:
1. Compare multiply-imputed estimates of inventory,
when imputing 2046, 4096, and 60% of the data. We
use merchantable cubic-foot volume per acre as our
variable of interest.
2. Compare several methods for executing the
imputations. The predominant comparison is between
regression model based imputations and implicit
categorical X matching models. Another comparison,
that of using a model with high rr  versus a model with
low r2 for imputations is presented.
3. Demonstrate that using imputed data for investigating
and developing associational relationships should be
avoided if possible.

METHODS
We use merchantable cubic-foot volume per acre of

natural loblolly pine stands as our inventory variable of
interest. It is known that cubic-foot volume per acre is
a function of stand density, site and age (Schumacher
1939, Schumacher and Coile 1960). Using FIA data
from the most recent survey of central Georgia
(Thompson 1998) to model cubic-foot vo@me per acre
(Y) resulted in the regression model Y =a+b(basal
area/acre)+e,  with an rr= .88. We used this model to
predict values of cubic-foot volume per acre for
rfgression  based imputations. We also tit the model
Y=a+b(site)+ei  with an rZ=.32,  to predict values of
cubic-foot volume per acre to evaluate whether there
was a practical difference between inventory estimates
when using a model with high predictive capability and
one that is relatively low. Site as defined in the above
model is a classification of each forest plot in terms of
inherent capacity to grow crops of industrial wood.

The most precise matches for imputing cubic-foot
volume per acre should be based on matching basal
area/acre, stand age, and site productivity. However,
we could not use the model Y = f(basa1  area/acre,
stand age, and site) to compare the explicit (regression)
method to implicit model matching procedures. This is
because when the observed sample is sampled without
replacement for matching donor records to recipients
the donor distributions are quickly depleted. We

choose to make the matching coarser by dropping age
and site as independent variables. Because cubic-foot
volume per acre can be modeled with a simple linear
regression on basal area per acre with an 12=.88,  little
is lost with model performance.

EXPLICIT IMPUTATION MODELS WITH
UNIVARIATE Y and COVARIATES

A common procedure in forest inventory is to update
sample plots at either the individual tree or whole plot
level. The most common method of predicting
univariate Yi from a set of predictors Xi is the normal
linear regression model. Using the notation of Rubin
WW,

Yi-N(Xip, U2)

is the specification for AY, 1 Xi,e), 8=(/3,logu),  fl is a
vector of q components and u is a scalar.

The posterior distribution of 8 involves only the units
of Yi observed. Standard Bayesian calculations as
described by Box and Tiao (1973),  with the normal
linear model result in a posteriori,  d is &*(n,  - q)
divided by a x2 random variable with df n,-q, where n,
is the numbecof  Yi observed. Also /3  given L? is normal
with mean 0,  and variance-covariance matrix dV,
where, in terms of the usual least-squares statistics
based on n, vectors (Yi,XJ,  where i is an element of
the observed sample, results in

“t=gs ( yi-xiIfl)  “/ (IQ-q)

Pl=‘[C XitYi]
obs

where

V= [C Xi”Xi] -’ m
obs

Since we have described the posterior distribution of
8 in terms of standard distributions from which we can
draw, the estimation task is complete.

The imputation task for this model follows:
1. Draw a x2 random variable with df n,-q, say g, and
let
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u”+=a;  (n,-a)  /ST.

2. Draw q independent N(O,l)  variates to create a q-
component vector Z and let

where [V]rn is a square root of V such as the triangular
square root obtained by Cholesky factorization.

3. Draw the q, values of Yh as

. yi*=XiP*+Ziu*#

where the II,,  normal deviates 3 are drawn
independently.

A new imputed value for Y& is initiated by drawing
a new value of the parameter a*‘.  Thus if m repeated
imputations are desired, these three steps are repeated
m independent times. Donor values for recipient &
come from the most recently measured panel and are
matched using hotdeck procedures as documented in
the following section. A list of donors for each county
is developed from all current year plots collected
throughout the FIA survey work unit. Plots within the
county are excluded from the county donor list.

IMPLICIT IMPUTATION WlTH HOT-DECK
We used a matching procedure similar to the Census

Bureau’s hot-deck procedure (Sande 1983). The
procedure uses categorical X’s (for our study, natural
loblolly pine stands and basal area/at.) to match donors
to recipients and the donors then give their values to the
recipients. If more than m respondents are matches,
then a subsample of m respondents can be drawn
without replacement. If less than m matches are found,
then one or more of the X-variables are made coarser.
The choice of matching tields  in either sequential or
random choice procedures must be made considering
likely sources of variation and the number of complete
or eligible records available as potential donors. If too
many fields are used for matching, there is the risk of
a poor match in the imputed records (Sande 1982).

We compared matching 3 and 4 categories of basal
area/acre. Classes for the 3 category matching are O-60
square feet/ acre (sq. ft./at.), 61-105 sq. ft./at., and
105+  sq. ft./at. Classes for the 4 category matching
are O-35 sq. klac.,  36-70 sq. ft./at., 71-105  sq. ft./at.

and 105+ sq. Mac.
For the site productivity class matching model we

were restricted to using 2 classes. Site productivity
class is defined as a classification of timber land in
terms of inherent capacity to grow crops of industrial
wood. The class identifies the average potential growth
in cubic-feet/acre/year (trees 5 inches d.b.h. or larger
to a 4-inch top) and is based on the culmination of
mean annual increment of fully stocked natural stands.
There are 6 observed classes for site productivity,
where class 1 is the most productive, and class 6 the
least productive. Because the distribution of observed
site productivity classes is clumped into only several
classes we were forced to collapse the observed classes
into two classes. We defined class 1 as observed classes
l-4 and class 2 as observed classes 5 and 6.

With hot deck methods, the variance of the estimates
in simple cases is known to be larger than the variance
of the usual expansion estimates of means and totals.
However, there may be a reduction in bias. Compared
to some other methods of imputation, such as the use of
normal linear regression models, hot deck methods
should produce imputed data sets that appear more
realistic and do a better job of reflecting distributional
properties (Sande 1982).

Data sets created by explicit (regression models) and
implicit (hot-deck matching) models are now ready for
estimation of inventory means and variances. The
method for doing this follows.

IMPUTED MEANS AND VARIANCES
Let Q be the quantity of interest in the survey, for

example, the mean Y in the population, Y, and also that
U is a statistic providing the variance. After generating
m simulated-complete datasets  and analyzing each of
them as if they were genuine complete d$asets  ,we  now
have m estimates for Q and U, i.e. Qsl,. . . ,Q*,  and
c*,,...,o,.

The m repeated complete-data estimates and
associated complete-data variances for Q is

Frn=e  &i/m
i=l

which is the mean of means. The total variance of Q,
is estimated by

T,=U,+ (l+m-l)  P,

where
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is the average of the m complete-data variances, and

p,=k (O*i-Q,)  (&i-P,) / (m-1)
1-l

is the variance among the m complete-data estimates.
The results from using regression based and hot-deck

based imputations are listed in tables l-5. Using either
3 or 4 categories of basal area/acre for hot-deck
matching produced nearly identical results (tables 1 and
2). The results listed in tables l-5 indicate that both
regression and hotdeck based methods produced nearly
identical results for both means and variances. The
similarity of the two methods is somewhat expected
because the Bayesian regression model explicitly
incorporates the variability of the observed sample for
each of the predicted values. Use of regression models
that do not include the addition of a residual value (eJ
for each predicted mean value will result in a biased
underestimate of the variance.

Table 1. Hot-deck imputations of loblolly pine cubic-
foot volume per acre for one (20%),  two (40%),  and
three (60%) panels using m=3,4 and 5. Matches are
based on four basal classes, O-35 sq.  ft./at., 36-70 sq.
ft./at., 71-105 sa.ft./ac.,  and 105+  sa. ft./at.

& & ~
-------------_-_--____ 20 % _--_-_-___________

mean 1707.20 1708.59 1711.10
s.e. 647.98 560.52 501.89

--___________-_-___--- 40 % -------------_____
mean 1699.59 1700.27 1699.87
s.e. 632.12 548.73 489.94

______________________  60 % __________________
mean 1712.02 1709.40 1709.10
s.e. 639.99 533.55 497.00

Table 2. Hot-deck imputations of loblolly pine cubic-
foot volume per acre for one (20%),  two (4096),  and
three (60%) panels using m=3,4,  and 5. Matches are
based on three basal classes, O-60 sq. ft./at., 61-105
sa. ft./at.. and 105+sa. ft./at.

m=3  -m=4 &
----------------------  20 % ~~-~--~~~~~~~-----

mean 1704.12 1702.89 1706.15
s.e. 657.79 567.97 508.37

~~~~~~-~~-----------~  40 % __-_---------_____
mean 1708.80 1701.19 1696.26
s.e. 642.35 552.38 494.76

-------_----__--__-__  40 % _--____-__________
mean 1691.69 1692.33 1695.62
s.e. 653.49 565.96 505.85

Table 3. Hot-deck imputations of loblolly pine cubic-
foot volume per acre for one (20%),  two (40%),  and
three (60%) panels using m=3,4,  and 5. Matches are
based on two site productivity classes, 20-84 cu.
ft./at.  /year,  and 85 +cu.  ft./ac./vear.

& & &
______-__-____________  20 % __________________

mean 1672.26 1680.39 1687.69
s.e. 640.27 558.62 499.66

-____-______________-  -40 $g __________________
mean 1719.26 1719.20 1722.56
s.e. 626.61 544.28 487.40

______________________  60 % ________-_________
mean 1732.99 1719.38 1716.38
s.e. 628.89 545.08 485.69

Table 4. Regression model based imputations of loblolly
pine cubic-foot volume per acre for one (20%),  two
(40%),  and three (60%) panels using m=3,4,  and 5.
Matches are based on four basal area classes, O-35 sq.
ft./at., 36-70 sq. ft./at., 71-105 sq. ft./at., and 105+
sa. ft./at.

& & m=5
__________________-_-- 20 %---_--III  -____

mean 1720.06 1721.99 1723.14
s.e. 638.16 552.15 494.74

________-_-_---------  40 % ~~~~~~~~-~~~~~~---
mean 1702.58 1704.09 1702.69
s.e. 622.62 537.94 481.22

_____----__-_-_______ &-J  $5 --~~~~~~------~~~~
mean 1732.78 1729.40 1731.05
s.e. 622.71 536.38 480.96
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Table 5. Regression model based imputations of loblolly
pine cubic-foot volume per acre for one (20%),  two
(40%),  and three (60%) panels using m=3,4, and 5.
Matches are based on three basal area classes, O-60 sq.
ft./at..  61-105  so. ft./at..  and 105+  so. ft./at.

& & &
----------------------3-J  %  ------------------

mean 1697.10 1702.09 1703.29
s.e. 647.88 561.16 502.08

~-~~~~~~~-~~~-~~~~~~~~  40 %  ____-______--____-
mean 1700.72 1707.66 1707.16
s.e. 626.99 542.45 486.72

--------------------- 60  %  ------------------
mean 1687.41 1692.71 1695.70
s.e 638.11 552.98 493.44

Results indicate that imputing 20%) 40% or 60% of
the data produced minimal changes in the mean and
variance. Increasing imputations from m=3 to m=5
resulted in reductions in the estimated variance.
Imputations from a poorly fit model based on site
productivity class and imputations from a well fit model
based on basal area/acre produced similar estimates.

USING MODELED OR IMPUTED DATA FOR
EMPIRICAL STUDIES

Users of FIA data often develop empirical models of
biological processes. For example forest yield is often
modeled as a function of stand density, age and site.
Under the annual forest inventory there is the desire to
create modeled or imputed data bases for unmeasured
plots, especially for small area estimates. Modeling
and imputation can generate clean-looking data bases
that are easily used, and there is the possibility that
users would consider using simulated data for empirical
modeling (Schreuder and Reich 1998).

Use of modeled data sets for the development of
empirical models should be discouraged. To illustrate
this assertion, we modeled (imputed) data values for
merchantable cubic- foot volume (MCFV) for three of
the five annual panels (60% of the survey plots) in
central Georgia.

Using the full data set (all five observed panels) we
predicted MCFV as a function of basal area per acre
for all trees greater than 5 inches diameter at breast
height (dbh). Using the full data set values resulted in
the following model:

MCFV=-221.62+26.42(BA)
r2=0.88,  n=474

where, MCFV is merchantable cubic foot volume per

acre, and BA is basal area per acre. The correlation
matrix for MCFV and BA is:

1 0 . 9 3 9 6

0.9396 1

I

We simulated a full data set (all 5 panels) with 60
percent (3 annual panels) of the MCFV values predicted
from the above model, and 40 percent observed data.
The following model was fit to the 60 percent simulated
and 40 percent measured data set:

MCFV=-318.08+27.49(BA),
r2=0.63,  n=474

The correlation matrix for MCFV and BA is:

1 0 . 7 9 4 4

0.7944 1

These results are as expected with modeled (imputed)
data sets. That is, the empirical estimate of the
variance-covariance matrix is often not preserved (Ek
et al. 1997). When the objective is to produce
empirical models for specific target populations it is
best to use complete data sets for these studies. A
potentially serious weakness of simulated data sets is
that under different yet reasonable assumptions, very
different data bases and conclusions can be reached by
different researchers.

ESTIMATES OF FOREST INVENTORY
Comparing the ability of modeling(imputation)

procedures to reproduce plot and tree level information
on a sample element by element basis is not our goal.
In the Southern Annual Forest Inventory System
(SAFIS), the goal is to produce valid global statistical
inference not optimal point predictions. Using
multiply-imputed (MI) data sets for forming estimates
of forest inventory is a more practical and defensible
application, than is the development of empirical
regression models of biological processes.

This  is  because mult iple  imputat ion takes into account
the uncertainty of estimated data. This strength has
been identified as weakness by some researchers since
MI often leads to overly conservative estimates of the
variance (Fay 1996). In our potential applications
within SAFIS we view the overly conservative estimates
of variance as an asset. This is because, even with
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improper multiple imputation, confidence intervals
generated are still valid because the actual coverage
rates are higher than the claimed (nominal) confidence
level (Rubin  1996, Judkins 1996).

CONCLUSIONS
Multiply-imputed data sets created either through

explicit regression modeling or by implicit hotdeck
models appear to work about equally well for estimating
current status of forest inventory variables, such as
cubic-foot volume per acre. This statement assumes
that the imputed data sets based on regression models
have variability added back into the mean estimate for
each predicted data point. Our Bayesian model did
this, however users of imputed data should be aware
that the use of regression models without provisions for
injecting variability into predicted mean values will
result in negatively biased variance estimates.

Imputed data sets that contained either 20 percent, 40
percent or 60 percent imputed data worked well for
estimating cubic-foot volume per acre. Means of the
imputed data sets (m=3,  4 and 5) matched closely with
the observed full data set. One standard error of the
mean volume/acre is approximately 600-700 cu. ft./at.
for m=3,  4 or 5 and for all models whether regression
based or by categorical matches on important X
variables such as basal area.

Imputed data sets created from explicit regression
models should not be used for exploratory data analysis.
Typically forest scientists use survey data to develop
associational relationships among numerous variables.
For example cubic foot volume of wood is often
predicted by plot or stand basal area, stand age, and site
productivity. We have demonstrated that imputation by
an explicit regression model does not preserve the
empirical correlation matrix between two independent
variables. We recommend that associational
relationships be developed from actual measured data.
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